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In interferometric surface and wavefront metrology, three-flat tests are the archetypes of measurement
procedures to separate errors in the interferometer reference wavefront from errors due to the test part
surface, so-called absolute tests. What is believed to be a new class of solutions of the three-flat problem
for circular flats is described in terms of functions that are symmetric or antisymmetric with respect to
reflections at a single line passing through the center of the flat surfaces. The new solutions are simpler
and easier to calculate than the known solutions based on twofold mirror symmetry or rotation symmetry.
Strategies for effective azimuthal averaging and a method for determining the averaging error are also
discussed.

OCIS codes: 120.3180, 120.3940, 220.4840.

1. Introduction

In interferometric metrology of precision surfaces
and wavefronts, the system errors of the interferom-
eter are often of the same magnitude as the form
errors of the surface being measured. Procedures to
separate the measurement errors of the interferom-
eter from the form error of the surface under test,
so-called absolute tests, are central to the testing of
precision surfaces and wavefronts with interferom-
eters. The archetype of an absolute test is the three-
flat test, which is used to separate the flatness error
of a nominally flat reference wavefront from the flat-
ness error in the wavefront reflected by a test flat.
Flat reference surfaces are used in many interferom-
eters, and the test methods for flats are also applica-
ble to spherical and some nonspherical surface and
wavefront geometries. The following error separation
method is also applicable outside interferometry when-
ever error separation for two-dimensional measurands
is required.

In a Fizeau interferometer, a two-beam interferom-
eter commonly used for form metrology of precision
surfaces, reference surface SR, and test surface ST are
arranged as shown in Fig. 1. The illumination system
of the interferometer sends a collimated beam to a
transmission flat with reference surface SR, where a
fraction of the beam is reflected. The transmitted

fraction of the beam is partially reflected back by the
test surface ST. The reflected waves travel, coherently
superimposed, to the detector where the surfaces are
imaged, and the flatness error of the test wavefront
relative to the reference wavefront is measured. In
this paper, it is assumed that surfaces and wave-
fronts are described in part coordinates as indicated
by the coordinate frames attached to the reference
and test surfaces in Fig. 1. The combined wavefront
W�x, y�, measured by the interferometer, is

W�x, y� � WR��x, y� � WT�x, y�, (1)

where WR�x, y� stands for the wavefront reflected by
the reference flat and WT�x, y� represents the wave-
front reflected by the test surface. The negative sign
for the x coordinate of the WR term in Eq. (1) accounts
for the rotation of the reference surface about the y
axis by an angle � relative to the test surface. For the
three-flat tests described here, it is also assumed that
reference and test flats are circular with diameter d,
and therefore x2 � y2 � d2�4, with the origin of the
coordinate system at the center of the flats.

With the Fizeau interferometer, flats can be com-
pared in pairs, and the purpose of a flat test is a de-
termination of the flatness error of each flat from
pairwise comparisons of at least three flats. Three flats
A, B, and C can be compared using the measurement
sequence (BA, CA, CB) as shown in Fig. 2. In this
paper, the convention is used that the first letter in a
pair such as BA refers to the reference flat; the second
letter refers to the test flat. The results of the three mea-
surements, which have the same form as Eq. (1), are
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�W1�x, y�
W2�x, y�
W3�x, y�

���1 0 1 0

1 0 0 1

0 1 0 1
��

WA�x, y�
WB�x, y�

WB��x, y�
WC��x, y�

�, (2)

when written in matrix form (following Küchel1).
In this equation, WA, WB, and WC are the wavefronts
reflected by the three flats, and W1, W2, and W3 are
the measurements of the relative wavefront errors.

Regardless of the order in which the flats are com-
pared, at least one must serve as a reference and also
as a test flat. In the example shown in Fig. 2, this is
flat B, which leads to the well-known three-flat prob-
lem. Equation (2) can be solved only for the vertical
line at x � 0 because, in the interferometer coordinate
system, WB�x, y� and WB��x, y� must be considered
different variables and the coefficient matrix in Eq.
(2) is rank deficient. It was proved many years ago
that the three-flat problem cannot be solved by com-
paring more than three flats in the test.2 A solution
can only be found if at least one additional measure-
ment is made.

Over the past two decades, two important ideas
have been developed that lead to approximate solu-
tions for the three-flat problem. The first is the ap-
plication of symmetries of the plane. The wavefronts
in Eq. (2) can be split into parts WI, which are in-
variant under a symmetry operation, and parts WV,
which change when the same symmetry operation is
applied to them:

W�x, y� � WI�x, y� � WV�x, y�. (3)

When the symmetry operation is chosen such that
WI�x, y� � WI��x, y� for all y, which means that the
points W�0, y� along the y axis do not change under
the symmetry operation, the number of unknowns in
Eq. (2) is reduced by one, and for the invariant com-
ponent, Eq. (2) can be simplified to

�
W1

I�x, y�
W2

I�x, y�
W3

I�x, y�
� ��1 1 0

1 0 1

0 1 1
��

WA
I�x, y�

WB
I�x, y�

WC
I�x, y�

�. (4)

The inverse of the coefficient matrix in this equation
exists and the invariant components of the three-flat
wavefronts can be expressed in terms of the invariant
components of the measurements:

�
WA

I�x, y�
WB

I�x, y�
WC

I�x, y�
� �

1

2� 1 1 �1

1 �1 1

�1 1 1
��

W1
I�x, y�

W2
I�x, y�

W3
I�x, y�

�. (5)

In the Cartesian plane with Euclidian geometry,
there are four kinds of symmetry: translations, re-
flections, rotations, and glide reflections, or glides.
Glides combine a translation along a line with a re-
flection at the same line. For the circular flats dis-
cussed here, symmetries containing translations are
not useful. Reflections and the subgroup of conti-
nuous rotations permit invariant functions WI�x, y�,
which satisfy the condition WI�x, y� � WI��x, y�.
These two symmetries can be used for solving the
three-flat problem.

While symmetries make it possible to solve Eq. (2)
for part of the wavefront flatness error, an additional
concept must be introduced to find a solution for the
part of the wavefront, which varies under symmetry
operations. This is the concept of N-position averag-
ing, summarized in Section 2, which was described by
Evans and Kestner3 and can be used to eliminate one
of the unknown rotationally variant parts of the
wavefronts and solve Eq. (2) for WV�x, y�.

The use of mirror symmetry to solve the three-flat
problem was originally suggested by Ai and Wyant,4

who broke up wavefronts into symmetry components
with respect to twofold mirror symmetry at the x and
y axes. Later, Parks et al.5 combined N-position av-
eraging with twofold mirror symmetry to find solu-
tions for the three-flat problem. Küchel1 recently
described a class of three-flat solutions in terms of

Fig. 1. (Color online) Reference surface SR and test surface ST in
a Fizeau interferometer and coordinate system of the flat surfaces
that are being compared. The coordinate system of the interferom-
eter is indicated with bold arrows.

Fig. 2. (Color online) Measurement sequence (BA, CA, CB) for the
comparison of three flats A, B, and C.
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wavefront components, which are invariant and vari-
ant under continuous rotations.

In this paper, it is shown that a class of pixel-by-
pixel solutions to the three-flat problem can be con-
structed in terms of functions that are symmetric and
antisymmetric with respect to mirror operations at
the y axis only. Solutions based on mirror symmetry
at one line turn out to be the simplest solution of the
three-flat problem and, in the analysis of measure-
ment data, require minimal computational effort. A
second orthogonal mirror line is not required. The
only advantage of twofold mirror symmetry is that
special measurement sequences with desirable sta-
tistical properties may be constructed.1

2. Azimuthal Average and N-Position Average

Before describing the solution of the three-flat prob-
lem, properties of the azimuthal average and its
approximation through an N-position average are
briefly reviewed because of the pivotal importance of
these concepts in solving the three-flat problem. For
a wavefront W�r, �� in polar coordinates, defined on
the interior of a circle with radius d�2, an operator
�·	R and a function WR�r� are defined:

WR�r� �
def

�W�r, ��	R �
def 1

2�



0

2�

W�r, ��d�. (6)

The operator �·	R is called the azimuthal averag-
ing operator and WR�r� is the azimuthal average of
W�r, ��. WR�r� does not depend on the azimuth angle
�; it is rotationally invariant. The azimuthal averag-
ing operator, �·	R, is a projection operator because

��W�r, ��	R	R � �W�r, ��	R � WR�r�, (7)

which follows directly from its definition in Eq. (6).

The difference ��r, �� �
def

W�r, �� � WR�r� between the
wavefront W�r, �� and its azimuthal average WR�r� is
the rotationally variant residuum of W�r, ��. Every
wavefront W�r, �� can be written as a sum of a rota-
tionally invariant component and one that changes
with rotation:

W�r, �� � WR�r� � ��r, ��. (8)

An important consequence of Eq. (7) is that the azi-
muthal average of the rotationally variant residuum
vanishes identically:

���r, ��	R � �W�r, �� � WR�r�	R � WR�r� � WR�r� � 0.

(9)

When the azimuthal average of a sampled wavefront
W�r, �� is to be calculated with a computer, the inte-
gral in the definition of the azimuthal average Eq. (6)
must be approximated by a sum. First, the integral in
Eq. (6) can be written as the limit of a Riemann sum:

WR�r� �
1

2�



0

2�

W�r, ��d�

� lim
N→�

� 1

2� �
k�0

N�1

W�r, �k�	�k. (10)

When a constant angle increment 	� � 2��N is in-
troduced, and the limit is approximated by a finite
sum, the last equation becomes

WR�r� �
1

N �
k�0

N�1

W�r, k	��

�
1

N �
k�0

N�1

W�r, � � k	��. (11)

In the second line of Eq. (11), the constant function
segments of the Riemann sum are replaced by the
function segments W�r, �� themselves. The approxi-
mation of the azimuthal average defined by Eq. (11)
is called the N-position average of W�r, ��. It is cal-
culated by rotating W�r, �� N times by the angle
	� � 2��N and averaging the results. The N-position
average is a periodic function in �, with period
2��N. This is because in every angle interval
�2�k�N, 2��k � 1��N	, 0 � k � N � 1, the same
segments of function W�r, �� are averaged. For wave-
fronts sampled on a square grid, the angle increment
	� must be chosen so that the increment at the edge
of the image corresponds to twice the pixel spacing,
which averages all the information contained in the
sampled image. For a circular image with a radius of
P pixels, N � �P positions are needed. A circular
image that just fills a detector array with 1000 

1000 pixels requires 1570 rotations. Using a personal
computer available in 2005, brute-force evaluation of
Eq. (11) with so many rotations is unacceptably slow
due to the large number of interpolations required for
the image rotations. If N is not a prime number, one
way of reducing the effort required to compute the
N-position average is to factorize N into numbers
that are not integer fractions of each other �N �
q1 · q2 · q3, . . .�, and to apply a sequence of N-position
averages with N � q1, q2, q3, . . . to the wavefront
W�x, y�. The number of rotations required will gener-
ally be much smaller than N. For example, N �
105 can be factored into 3 
 5 
 7. Equation (11) is
applied first with N � 7 to W�x, y� and then, in a
second step, with N � 5 to the result of the first
averaging procedure, and finally, in a third step, with
N � 3 to the second intermediate result. After fac-
torization, only 15 rotations of the function W�x, y�
need to be calculated instead of the 105 rotations
required to calculate the 105-position average using
Eq. (11) in one step, and, using a computer, it is easily
confirmed that the results are practically identical. It
is offered as conjecture that the result of this multi-
step N-position average is the same as applying
Eq. (11) in one step. Another way of computing the
N-position average is to transform W�x, y� into polar
coordinates, carry out the averaging in polar coordi-
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nates, and then transform the result back into the
Cartesian coordinates of the original image. Since
only two interpolation steps are required, and the
averaging procedure in polar coordinates is a trivial
operation, this is also much faster than calculating
Eq. (11) in Cartesian coordinates. In practice, the
implementation of the second approach may meet
obstacles because image detectors sample on a
square grid, and the software supplied with the
interferometers usually does not provide for trans-
formations of images into polar coordinates.

3. Mirror Symmetry

The simplest class of functions for which WB��x, y�
� WB�x, y�, with �d�2 � y � d�2, are functions that
are invariant under reflection at the y axis. This sug-
gests that wavefronts should be split into one part
that is invariant under reflection at the y axis and
another part that changes when it is mirrored. For a
wavefront W�x, y�, an operator �·	x, and the mirrored
function Wx�x, y� are defined by

Wx�x, y� �
def

�W�x, y�	x �
def

W��x, y�. (12)

Two functions, We�x, y� and Wo�x, y�,

We�x, y� �
def 1

2 �W�x, y� � Wx�x, y�	,

Wo�x, y� �
def 1

2 �W�x, y� � Wx�x, y�	, (13)

are defined, which are, respectively, the even (symmet-
ric) and odd (antisymmetric) components of W�x, y�
according to their behavior under reflections at the
y axis:

�We	x � We,

�Wo	x � �Wo. (14)

From here on, function arguments will be omitted
when the meaning of an equation is clear without
them. Obviously, every wavefront W�x, y� can be writ-
ten as a sum of a mirror-symmetric component and a
nonsymmetric component:

W � We � Wo. (15)

Figure 3 shows an example of a wavefront W and its
decomposition into even and odd components. In solv-
ing the three-flat problem, the behavior of the even
and odd symmetry components under azimuthal av-
erages is of particular interest. When the functions in
Eqs. (13) are split into components that are invariant
and variant under rotation symmetry according to
Eq. (8), the result is

We �
1

2 �W � Wx� � WR �
1

2 �� � �x�,

Wo �
1

2 �W � Wx� �
1

2 �� � �x�. (16)

Applying the azimuthal averaging operator, �·	R, to
these equations, and using Eq. (9), results in

�We	R � WR,

�Wo	R � 0. (17)

The rotationally invariant part of the wavefront is
entirely contained in the even wavefront component,
and the azimuthal average of the odd wavefront com-
ponent is zero.

4. Flat Tests

The three-flat problem is solved by adding one mea-
surement to the sequence (BA, CA, CB) in which one

Fig. 3. (Color online) Function W(x, y) and its decomposition into even (symmetric) and odd (antisymmetric) components. The coordinates
are pixel numbers. The origin (x, y) � (0, 0) is at the center of the images.
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of the flats is measured against the azimuthal aver-
age of the other flat. For example, in Fig. 4, which
shows the modified measurement sequence (BA, BAR,
CA, CB), reference flat B is measured against the
azimuthal average of test flat A. Recalling that
the azimuthal average can be approximated by the
N-position average [Eq. (11)], the measurement
W2�x, y� in Fig. 4 can be realized by averaging N
measurements of reference flat B against test flat A,
in which A is rotated N � 1 times by 	� � 2��N. It
can easily be seen that this has the desired effect of
measuring flat B against the azimuthal average of A,
thus removing the rotationally variant component of
flat A from W2�x, y� [see Eq. (9)]:

W2�x, y� �
1

N �
k�0

N�1

�WB��x, y� � �WA�x, y�	k	��

� WB��x, y� �
1

N �
k�0

N�1

�WA�x, y�	k	�

Ç

�WA

R

�x, y�

. (18)

The operator �·	� is used to indicate a rotation by an
angle �.

The modified measurement sequence shown in
Fig. 4 corresponds to the flat test equation

�
W1�x, y�
W2�x, y�
W3�x, y�
W4�x, y�

� � �
1 0 1 0 0

0 0 1 0 1

1 0 0 1 0

0 1 0 1 0
��

WA�x, y�
WB�x, y�

WB��x, y�
WC��x, y�
�WA�x, y�	R

�. (19)

The vectors in this equation can be split into their
even and odd components according to Eq. (15). For
the right-hand side (rhs) vector of Eq. (19), the de-
composition is

�
WA�x, y�
WB�x, y�

WB��x, y�
WC��x, y�
�WA�x, y�	R

� �





 WA

e�x, y�
WB

e�x, y�
WB

e��x, y�
WC

e�x, y�
WA

R 





� �
WA

o�x, y�
WB

o�x, y�
WB

o��x, y�
�WC

o�x, y�
0

�. (20)

This leads to two equations, one for the even and one
for the odd components of the wavefronts. The equa-
tion for the odd components is

�
W1

o�x, y�
W2

o�x, y�
W3

o�x, y�
W4

o�x, y�
� � �

1 0 1 0

0 0 1 0

1 0 0 �1

0 1 0 �1
��

WA
o�x, y�

WB
o�x, y�

WB
o��x, y�

WC
o�x, y�

�. (21)

Because the odd component of wavefront WA is zero
under azimuthal averaging [Eq. (17)], one of the vari-
ables in Eq. (19) is eliminated, and the matrix in
Eq. (21) can be inverted. The solution for the odd
wavefront components is

�
WA

o�x, y�
WB

o�x, y�
WB

o��x, y�
WC

o�x, y�
� � �

1 �1 0 0

1 �1 �1 1

0 1 0 0

1 �1 �1 0
��

W1
o�x, y�

W2
o�x, y�

W3
o�x, y�

W4
o�x, y�

�. (22)

For the even components, one of the variables in
Eq. (19) is eliminated because WB

e��x, y� � WB
e

�x, y�. The resulting equation for the even compo-
nents is

�
W1

e�x, y�
W2

e�x, y�
W3

e�x, y�
W4

e�x, y�
� � �

1 1 0 0

0 1 0 1

1 0 1 0

0 1 1 0
��

WA
e�x, y�

WB
e�x, y�

WC
e�x, y�
WA

R
�, (23)

which has the solution

�
WA

e�x, y�
WB

e�x, y�
WC

e�x, y�
WA

R
� �

1

2�
1 0 1 �1

1 0 �1 1

�1 0 1 1

�1 2 1 �1
��

W1
e�x, y�

W2
e�x, y�

W3
e�x, y�

W4
e�x, y�

�. (24)

Fig. 4. (Color online) Measurement sequence comparing three
flats, which can be solved for the flat surfaces.
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Using Eq. (15), even and odd components of the
three wavefronts in Eqs. (22) and (24) can be added
to get a single equation for three wavefront
errors:

�WA

WB

WC

��
1

2� 1 1 �1 2 �2 0 0

1 �1 1 2 �2 �2 2

�1 1 1 2 �2 �2 0
�




 W1

e

W3
e

W4
e

W1
o

W2
o

W3
o

W4
o





.

(25)

Equation (25) is the desired three-flat test solution
that describes the wavefronts reflected by the three
flats as linear combinations of the even (symmetric)
and odd (antisymmetric) components of the mea-
surements. Figure 5 is an illustration of this three-
flat solution. The top row shows the simulated
flatness errors of the three flats. For the purpose of
illustrating the flat test, the wavefronts were gen-
erated by evaluating Zernike polynomials with 100
random coefficients, which are uniformly distrib-
uted in the interval [0, 1), even though in real flats
the coefficients are not likely to be of similar mag-
nitude. Off-center subapertures of the polynomials
were then selected to generate wavefronts without
the symmetry properties of the Zernike functions.
Offsets and tilts are removed. A three-flat test was
then simulated using the measurement sequence
(BA, BAR, CA, CB) as shown in Fig. 4; the azimuthal
average was approximated with six-position averag-
ing. The middle row of Fig. 5 shows the solution of the
three-flat test using Eq. (25), and the difference be-
tween the true wavefronts and the flat test solutions
is shown in the bottom row. The differences between
the true wavefronts and the flat test solutions for all
three flats are the same because only one flat, A, was
rotated about the z axis in the test.

In practice, the measurement sequence (BA, BAR,
CA, CB) and its solution, Eq. (25), is useful when, for
example, one of the flats is coated with a Clapham–
Dew-type coating.6 Such flats are used for testing
flats with highly reflective coatings and can only
serve as transmission flats. When the flatness errors
of three nominally identical transmission flats are to
be determined, it is preferable to use a variant of the
test in which all flats undergo the same measure-
ments and enter with the same statistical weight. An
example of such a measurement sequence is (BA,
BAR, CB, CBR, AC, ACR). The equation describing
this three-flat test is





 W1�x, y�
W2�x, y�
W3�x, y�
W4�x, y�
W5�x, y�
W6�x, y�






�





 1 0 0 0 1 0 0 0 0

0 0 0 0 1 0 1 0 0

0 1 0 0 0 1 0 0 0

0 0 0 0 0 1 0 1 0

0 0 1 1 0 0 0 0 0

0 0 0 1 0 0 0 0 1












 WA�x, y�

WB�x, y�
WC�x, y�

WA��x, y�
WB��x, y�
WC��x, y�
�WA�x, y�	R

�WB�x, y�	R

�WC�x, y�	R





. (26)

The solution proceeds along the lines laid out for
Eq. (19). The vector of the wavefronts on the rhs of
Eq. (26), written as sum of even and odd compo-
nents, is





 WA�x, y�

WB�x, y�
WC�x, y�

WA��x, y�
WB��x, y�
WC��x, y�
�WA�x, y�	R

�WB�x, y�	R

�WC�x, y�	R





�





 WA

e�x, y�
WB

e�x, y�
WC

e�x, y�
WA

e�x, y�
WB

e�x, y�
WC

e�x, y�
WA

R

WB
R

WC
R 






�





 WA

o�x, y�
WB

o�x, y�
WC

o�x, y�
WA

o��x, y�
WB

o��x, y�
WC

o��x, y�
0

0

0 





. (27)

The resulting equations for the even and odd compo-
nents are solved in the same way as outlined in the
solution for the measurement sequence (BA, BAR,
CA, CB). The solution for the even wavefront compo-
nents is





 WA

e�x, y�
WB

e�x, y�
WC

e�x, y�
WA

R

WB
R

WC
R 






�
1

2





 1 0 �1 0 1 0

1 0 1 0 �1 0

�1 0 1 0 1 0

�1 2 �1 0 1 0

1 0 �1 2 �1 0

�1 0 1 0 �1 2












 W1

e�x, y�
W2

e�x, y�
W3

e�x, y�
W4

e�x, y�
W5

e�x, y�
W6

e�x, y�





, (28)
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and the equation for the odd components has the
solution





 WA

o�x, y�
WB

o�x, y�
WC

o�x, y�
WA

o��x, y�
WB

o��x, y�
WC

o��x, y�





�





 1 �1 0 0 0 0

0 0 1 �1 0 0

0 0 0 0 1 �1

0 0 0 0 0 1

0 1 0 0 0 0

0 0 0 1 0 0









 W1

o�x, y�
W2

o�x, y�
W3

o�x, y�
W4

o�x, y�
W5

o�x, y�
W6

o�x, y�





.

(29)

When the even and odd components of the solutions
for WA, WB, and WC are added, a single equation for
the flatness errors of all three wavefront errors re-
sults:

�WA

WB

WC

��
1

2� 1 �1 1 2 �2 0 0 0 0

1 1 �1 0 0 2 �2 0 0

�1 1 1 0 0 0 0 2 �2
�








 W1

e

W3
e

W5
e

W1
o

W2
o

W3
o

W4
o

W5
o

W6
o





. (30)

The form of the coefficient matrix in Eq. (30) reflects

Fig. 5. (Color online) Simulation of a three-flat test based on simple mirror symmetry using Eq. (25) with six-position averaging. Top row,
simulated flat wavefronts; middle row, flat solutions of the flat test; bottom row, difference between true wavefronts and the test solution.
The coordinates are pixel numbers. The origin (x, y) � (0, 0) is at the center of the images.
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the nature of the measurement sequence in which all
flats are treated identically. Equation (29) contains a
second solution for the odd components of the wave-
fronts:

�
WA

o�x, y�
WB

o�x, y�
WC

o�x, y�
� �� 0 0 �1

�1 0 0

0 �1 0
��

W2
o�x, y�

W4
o�x, y�

W6
o�x, y�

�. (31)

When this solution for the odd components is added
to the solution for the even components, an even sim-
pler formula than Eq. (30) is found for the three-flat
wavefronts:

�WA

WB

WC

��
1

2� 1 �1 1 0 0 �2

1 1 �1 �2 0 0

�1 1 1 0 �2 0
�




 W1

e

W3
e

W5
e

W2
o

W4
o

W6
o





.

(32)

Solutions for other measurement sequences, includ-
ing ones with more than three flats, can be derived as
needed using the mathematical recipe described in
this section.

5. Efficient N-Position Averaging

In the simulation of the three-flat test shown in
Section 4 (Fig. 5), the three-flat solutions differ from
the true wavefronts because the six-position aver-
age is not a good approximation of the azimuthal
average needed in the measurement W2 of Eq. (19).
In practical implementations of three-flat tests, true
wavefronts are not known, but it is still possible to
quantify the effectiveness of the approximation used
for the azimuthal average. The solution for the even
wavefront components, Eq. (24) in the previous sec-
tion, also contains a solution for the rotationally in-
variant part of the wavefront of flat A, which was

rotated in the measurement sequence (BA, BAR, CA,
CB):

WA
R � W2

e �
1

2�W1
e � W3

e � W4
e�. (33)

Similarly, in the case of the measurement sequence
(BA, BAR, CB, CBR, AC, ACR), the even solution,
Eq. (28), also contains solutions for the rotationally
invariant component of the three-flat wavefronts:

�
WA

R

WB
R

WC
R� �

1

2��1 2 �1 0 1 0

1 0 �1 2 �1 0

�1 0 1 0 �1 2
�




 W1

e

W2
e

W3
e

W4
e

W5
e

W6
e





. (34)

For the measurement sequence (BA, BAR, CA, CB),
an alternative way of calculating the rotationally in-
variant components of the wavefronts is to split the
wavefronts into rotationally invariant and variant
components and to solve Eq. (2) for the rotationally
invariant components. In this case, a measurement
against the azimuthal average of one of the flats is
not needed. This leads to the following solution for
the rotationally invariant wavefront components, as
shown in the derivation of Eq. (5):

�
WA

R

WB
R

WC
R� �

1

2� 1 1 �1

1 �1 1

�1 1 1
��

W1
R

W3
R

W4
R�. (35)

The rotationally invariant components of the mea-
surements W1, W3, and W4 on the rhs of Eq. (35) are
calculated numerically from the measurement data
using one of the methods discussed in Section 2. For
these solutions, none of the flats need to be rotated.

Fig. 6. (Color online) Rotationally invariant component of WA, shown in the top left corner of Fig. 5, calculated with Eq. (35) (left) and
with Eq. (33) (middle). The difference is shown on the right.
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The solution for the rotationally invariant compo-
nent in Eq. (33) [and also in Eq. (34)], however,
depends on a form of the N-position average, which
involves actual rotations of a flat [see Eq. (18)]. The
difference between the two solutions for the rota-
tionally invariant wavefront component is a quan-
titative measure of the effectiveness of the
N-position approximation that was performed in
the measurements that lead to the solution in Eq.
(33) [and Eq. (34)]. It can be used to determine the
contribution of the approximation error to the un-
certainty of the three-flat solution.

Clearly, a good approximation of the azimuthal
average is essential for achieving a low uncertainty
of the flat solutions. In the example of Fig. 5, the
error in the approximation of the azimuthal aver-
age amounts to approximately 10% of the flatness
errors in the flat wavefronts because relatively few
rotation positions of flat A were used (see Fig. 6).
Depending on the angular frequency content of the
flatness errors, it may be necessary to average a large
number of measurements to achieve a low uncer-
tainty.

In this section, methods for the approximation of
the azimuthal average are reviewed. As discussed in
Section 3, Eq. (18), to average away the rotationally
variant component of a wavefront from flat A, a series
of measurements

W� � WB��x, y� � WA�x, y�,
W � WB��x, y� � �WA�x, y�		�,

É

(36)

are made in which the test flat is repeatedly rotated
by an angle of 	� � 2��N. Greek letters are used as
indices to avoid confusion with the measurement
numbers introduced earlier in Eq. (2). When the
differences between these measurements are consid-
ered,

W � W� � �WA�	� � WA, (37)

it is found that the contribution of the stationary flat
cancels out in all differences. From this, it follows, as
Parks et al.5 have shown, that the measurements
W�, . . . , WN in an N-position sequence can be calcu-
lated from the first two using the recursion relation

W� � W��1 � �W � W�����2�	�, 3 � � � N. (38)

This recursion relation makes it possible to reduce
the number of measurements needed to determine
the N-position average Eq. (11) for as few as two
measurements, independent of N, albeit at the cost of
increased uncertainty. In practice, it will usually be
desirable to make several measurements at several
rotation positions to achieve a low measurement un-
certainty for the difference W � W�, which is then

used to calculate the remaining data sets using
Eq. (38).

A different, but closely related, approach to remov-
ing the rotationally variant part from one of the
wavefronts is found when the wavefronts in Eq. (37)
are broken up into rotationally invariant and variant
components using Eq. (8), which results in the equa-
tion

�A�r, � � 	�� � �A�r, �� � W � W�. (39)

This equation is a difference equation for the rota-
tionally variant part �A of the flat that is rotated in
the difference measurement, and it can be solved
with standard methods. Once a solution for �A has
been found, the equation for W2 in Eq. (18) can be
rewritten as

W2�x, y� � WB��x, y� � WA�x, y� � �A�x, y� (40)

because �A is the wavefront component approxi-
mately removed by the N-position averaging. In a
three-flat test, solving Eq. (39) is thus approximately
equivalent to the application of N-position averaging
[see Eq. (18)] to remove one of the odd wavefront
components from Eq. (19).

The difference equation, Eq. (39), is solved by ex-
pressing �A as a series and then solving the resulting
algebraic equation for the coefficients of the series.
Parks7 and later Fritz8 have described a method of
solving Eq. (39) in which �A is described by a (trun-
cated) Zernike series. This method of solving Eq. (39)
may be practical now because, with modern comput-
ers, it is possible to compute Zernike polynomials
with large numbers of terms. An alternative, and
equivalent, approach is to interpret the flat area as a
set of concentric circles and find solutions on the cir-
cles using trigonometric polynomials. This solution
for Eq. (39) was recently proposed by Freischlad.9,10 A
quantitative comparison of different three-flat test
solution algorithms is currently under way in our
laboratory.

I am indebted to my colleague Johannes Soons at
the National Institute of Standards and Technology
for many thought-provoking discussions and for
shouldering most of the work on a MATLAB toolbox
for the analysis of interferometry data, which was
used for the simulation of three-flat tests and for the
preparation of several figures.
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