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1 Introduction and conclusions

Inflation [1–3] is an attractive scenario for explaining the initial conditions of the early

universe. An exponential phase of the expansion of the universe is generated by a scalar

field ϕ, the inflaton, with a small mass (compared to the Planck mass) µ. The smallness

of the inflaton mass suggests a pseudo-Nambu-Goldstone origin. Probably the best option

proposed in the literature is a global shift symmetry ϕ → ϕ + c, eventually broken to a

discrete subgroup [4–9].

For trans-Planckian field values the contributions of Planck-scale suppressed higher-

dimensional operators to the inflationary potential are generically relevant. It is therefore

important to consider large-field inflation in the context of some ultraviolet completion, for

which string theory is the leading candidate, described by supergravity in its low-energy

limit. In supergravity, the usual η-problem can be avoided for a shift symmetric Kähler

potential [10] K = K(φ+ φ̄)2) . The invariance is here with respect to φ→ φ+ ic, where c

is a real constant, and the inflaton is ϕ =
√
2 Imφ.

One of the simplest realization of inflation is of large-field, type, achieved with a free

massive scalar field, V = µ2ϕ2 . In addition to primordial curvature perturbations, which

have been measured with remarkable accuracy [11], it predicts sizeable tensor perturba-

tions [12] for which evidence has been reported recently [13].

However, the simplest supersymmetric extension of the potential µ2ϕ2 defined by the

superpotential

W =
1

2
µφ2 , (1.1)
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has a well-known problem generated by the shift symmetry. Due to the negative term

−3|W |2 in the supergravity scalar potential, for large values of the inflaton field the po-

tential becomes V (ϕ) ∼ −3µ2ϕ4 and the potential is unbounded from below.

The problem can be avoided by introducing an additional ‘stabilizer field’ S, which

has no shift symmetry in the Kähler potential [10], i.e.,

K = K((φ+ φ̄)2, |S|2) , (1.2)

together with the superpotential

Winf = µSφ , (1.3)

which breaks the shift symmetry softly. This model has been generalized to a class of

chaotic inflation models by replacing the inflaton field φ by a function f(φ) in the super-

potential [14, 15]. For recent studies of chaotic inflation in supergravity and string theory,

see [16–25] and [26–33], respectively.

Another popular inflationary model is the Starobinsky model [34], which has a dual

interpretation. On one hand, it is a gravitational theory with a higher-derivative term R2.

On the other hand, it can be described as Einstein gravity coupled to a scalar, with a very

particular scalar potential. The model was generalized to supergravity in [35–37], where

it was shown that, in a chiral multiplet formulation, in addition to the inflaton multiplet,

there is a second chiral multiplet needed.1 It was subsequently shown in [39] that the

stabilizer needs additional interactions in order to stabilize its vev to zero during inflation.

In the chiral formulation, the second chiral multiplet can also be replaced by a nonlinear

superfield, where the corresponding scalar is absent [40]. The couplings of this second chiral

multiplet to the inflaton are very similar to the previously discussed case of the stabilizer

field in chaotic inflation and could plausibly have a similar microscopic origin.

One of the open questions is the origin of the shift-symmetry breaking in (1.3). It

seems unnatural from a string theory viewpoint to mix a field with a shift-symmetry to

another field with no such symmetry. This is true in particular in flux compactifications,

which is a generic framework invoked for generating such superpotential mass terms. In the

following we propose a natural interpretation of the stabilizer field and of such a coupling

in terms of a three-form multiplet, both from the viewpoint of the soft breaking of the shift

symmetry and from string theory. More precisely, we will show that the mass term (1.3)

is uniquely singled out by requiring the shift symmetry φ → φ + ic and invariance under

the three-form gauge symmetry.

The three-form was to our knowledge used in chaotic inflaton for the first time in [7–9],

which noticed the nice role of the shift-symmetry in this case, interpreted it as a “natural

inflation” setup. It was also discussed recently in [32, 33] in a string theory setup, as a

concrete F-term string realization of axion-monodromy [5, 6, 41–43].

1It is also possible to realize the Starobinsky model by using massive vector multiplets [38].
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2 Three-form and shift symmetry

Let us start from a lagrangian containing a scalar ϕ and a three-form field Cmnp, having a

global shift symmetry ϕ→ ϕ+ c, up to boundary terms,

S0 =

∫

d4x

{

− 1

2
(∂ϕ)2 − 1

2× 4!
F 2
mnpq +

µ

24
ϕ ǫmnpqFmnpq

}

, (2.1)

where

Fmnpq = ∂mCnpq + 3 perm. . (2.2)

For future convenience we define

F =
1

4!
ǫmnpqFmnpq , Fmnpq = −ǫmnpqF . (2.3)

The lagrangian (2.1) has actually to be supplemented with a boundary term

Sb =
1

6

∫

d4x ∂m (FmnpqCnpq − µϕǫmnpqCnpq) , (2.4)

in order to find the correct field equations. It is interesting to notice that, whereas the

“bulk” action (2.1) has a shift symmetry ϕ → ϕ + c only up to boundary terms, the

total action

S = S0 + Sb =

∫

d4x

{

− 1

2
(∂ϕ)2 − 1

2× 4!
F 2
mnpq −

µ

6
ǫmnpq∂mϕ Cnpq

}

+
1

6

∫

d4x ∂m (FmnpqCnpq) (2.5)

is exactly shift symmetric. A massless three-form field has no on-shell degrees of freedom.

As such, it can be integrated out via its field eqs.

∂mFmnpq = +µ ǫmnpq∂
mϕ , (2.6)

whose solution is given by

F = +µϕ− f0 , (2.7)

where f0 is a constant, which is to be interpreted as a flux. It was argued in [44] that f0 is

quantized in units of the fundamental electric coupling f0 = ne2, fact that was argued to

have important consequences for the landscape of string theory. After doing so, the final

lagrangian takes the form

S =

∫

d4x

{

− 1

2
(∂ϕ)2 − 1

2
(µϕ− f0)

2

}

. (2.8)

Notice that the boundary term Sb is crucial in obtaining the correct action. Ignoring it

leads to the wrong sign of the last term in (2.8), fact that created confusion in the past.

In the form (2.8), it is clear that the theory describes a massive scalar field of mass m,

whereas the flux f0 determines the ground state. It is remarkable that, whereas the action

has a shift symmetry that would naively suggests that the scalar is massless, actually the
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field acquires a topological mass [7–9]. In the final formulation (2.8) the shift symmetry

seems completely broken. There is one sense in which a discrete subgroup of it is preserved,

however, namely

ϕ→ ϕ+
e2

µ
, n→ n+ 1 , (2.9)

where n is the flux quantum. A nice string intepretation of (2.9) in terms of axion mon-

odromy and brane nucleation was recently provided in [32, 33], following [7–9].

2.1 Dual formulation

The dual formulation contains only a massive three-form field. The duality proceeds start-

ing from the master action

S0 =

∫

d4x

{

µ2

2
V 2
m − 1

2× 4!
F 2
mnpq −

µ

6
ǫmnpqVm(Hnpq − Cnpq)

}

, (2.10)

where H3 = dB2 is the field strength of a two-form field B2, in form language. Field eqs.

of B gives

dV = 0 → V = −dϕ . (2.11)

Plugging back in (2.10) one finds the original action (2.1). Alternatively, eliminating the

vector field through its field eqs. leads to

V m =
1

6µ
ǫmnpq(Hnpq − Cnpq) ,

Sdual =

∫

d4x

{

− µ2

12
(Hnpq − Cnpq)

2 − 1

2× 4!
F 2
mnpq

}

. (2.12)

In the dual formulation, the massive three-form has one degree of freedom, matching the de-

gree of freedom of the scalar in the original formulation. In the action (2.12) the three-form

absorbed the two form B2 and its axion in a generalization of the Stueckelberg mechanism

(see for ex. [45, 46]), which is transparent writing the action in the more compact form

Sdual =

∫
{

− µ2

2
(dB2 − C3) ∧⋆ (dB − C3)−

1

2
F4 ∧⋆ F4

}

. (2.13)

3 Three-form multiplet in supersymmetry and stabilizer multiplet in

inflation

The three-form multiplet in supersymmetry is defined as the real superfield [47–53]

U = Ū = B + i(θχ− θ̄χ̄) + θ2M̄ + θ̄2M +
1

3
θσmθ̄ǫmnpqC

npq (3.1)

+θ2θ̄

(√
2λ̄+

1

2
σ̄m∂mχ

)

+ θ̄2θ

(√
2λ− 1

2
σm∂mχ̄

)

+ θ2θ̄2
(

D − 1

4
�B

)

.

The difference between U and a regular vector superfield V is the replacement of the vector

potential Vm by the three-form Cnpq. In order to find correct kinetic terms, the analog
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of the chiral field strength superfield Wα for a vector multiplet is replaced by the chiral

superfield [47]

S = −1

4
D̄2U , S(ym, θ) =M +

√
2θλ+ θ2(D + iF ) , (3.2)

with F defined as in (2.3). The definition (3.2) is invariant under the gauge transformation

U → U − L, where L is a linear multiplet. Correspondingly, lagrangians expressed as a

function of S will have this gauge freedom. One can therefore choose a gauge in which

B = χ = 0 in (3.1) and the physical fields are M,λ. The supersymmetrization of the

coupling of the inflaton φ to the three-form is a superpotential mass term coupling a chiral

superfield φ including the inflaton

[µSφ]F + h.c. = [µ(φ+ φ̄)U ]D − Sb(φ) , (3.3)

where Sb(φ) is a total derivative, given explicitly by

Sb(φ) = µ ∂m
[

1

4

(

B∂m(φ+ φ̄)− ∂mB(φ+ φ̄)
)

+
1

2
√
2
(χσmψ̄ + ψσmχ̄)−

i

6
ǫmnpq(φ− φ̄)Cnpq

]

. (3.4)

The inflaton ϕ is contained in the imaginary part of the lowest component φ| = (ζ +

iϕ)/
√
2. Notice that in the generalization of the stabilizer models proposed in [14, 15], the

superpotential W = f(φ)S can also be re-written as a contribution to the Kahler potential

[Sf(φ)]F + h.c. = [(f(φ) + f̄(φ̄))U ]D − Sb(f(φ)) , (3.5)

where Sb(f(φ)) is a boundary term generalizing (3.4) that we don’t display here. However

only for the linear case f(φ) = µφ is the shift symmetry unbroken in the action, up to

boundary terms. On the other hand, shift symmetry is preserved by additional terms

in the Kahler potential of the type [(φ + φ̄)g(U)]D. However, only for a linear function

g(U) = U is this term invariant under gauge transformations of the three-form U → U−L.
The linear coupling µ[(φ+ φ̄)U ]D = [µφS]F +h.c.+total deriv. is therefore uniquely singled

out by requiring shift symmetry and three-form gauge symmetry.

Let us consider the simplest2 example of interest for applications to inflation, provided

by the lagrangian containing the chiral superfields S and φ

K = |S|2 + 1

2
(φ+ φ̄)2 + Sb ,

W = µSφ , (3.6)

where the boundary action Sb is given by

Sb = Sb(φ) + Sb(C) ,

Sb(φ) = µ

∫

d4θ (φ+ φ̄)U − µ

(
∫

d2θ Sφ+ h.c.

)

,

Sb(C) =
1

2
[Dα(SDαU − UDαS) + h.c.] (3.7)

2We will comment later on expected changes by considering a more general Kahler potential.
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and is needed, as in the previous section, in order to get consistent field eqs. The shift

symmetric kinetic term 1
2(φ + φ̄)2 is equivalent in the global supersymmetry case, up to

boundary terms which are innocent (unlike the ones containing the three-form), to the

standard one |φ|2. We keep however this form for later generalizations to supergravity.

The full lagrangian can also be written as only a contribution to the Kahler potential

K = |S|2 + 1

2
(φ+ φ̄)2 + µ(φ+ φ̄)U + Sb(C) . (3.8)

Notice that in the form (3.8) the coupling inflaton-three form is precisely in the form (2.5),

which includes therefore the inflaton-dependent boundary term Sb(φ), as seen from the

explicit expression

[

(φ+ φ̄)U
]

D
= FφM + F̄φ̄M̄ +D(φ+ φ̄)− i

6
ǫmnpq∂

m(φ− φ̄)Cnpq − (λψ + λ̄ψ̄)

+ ∂m
[

1

4

(

B∂m(φ+ φ̄)− ∂mB(φ+ φ̄)
)

+
1

2
√
2
(χσmψ̄ + ψσmχ̄)

]

. (3.9)

Field equations determine the auxiliary fields to be

2D + µ(φ+ φ̄) = 0 , F = − iµ
2
(φ− φ̄)− f0 ,

Fφ + µS̄ = 0 , (3.10)

where f0 is a flux allowed since F is a field strength and not really an auxiliary field, such

that its field eq. is ∂n(F + iµ
2 (φ− φ̄)) = 0. The final lagrangian is obtained after taking into

account carefully the contribution of the boundary terms. The scalar potential is given by

V = µ2|M |2 + |µφ+ if0|2 , (3.11)

and display again the combination inflaton/flux similar to (2.8). As already discussed in

the non-supersymmetric case and displayed in (2.9), the shift symmetry is broken to a

discrete subgroup, with a corresponding change in the flux quantum.

Notice that for the purpose of finding the correct on-shell lagrangian and scalar poten-

tial, there is a simpler formulation in which S is treated as a standard chiral superfield with

D+iF as standard auxiliary fields, no boundary terms are included, but the superpotential

of the theory is changed according to [51–53]

W (φ, S) →W ′(φ, S) = W (φ, S) + if0S , (3.12)

which in our case becomes

W ′ = µSφ+ if0S . (3.13)

Similarly to (2.9), for quantized flux f0 = ne2, there is a discrete remnant of the

shift symmetry

φ→ φ− ie2

µ
, n→ n+ 1 , (3.14)

interpreted in terms of membrane nucleation which induces the monodromy in the infla-

ton excursions.
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3.1 Dual formulation

The dual formulation starts from the master action

K = |S|2 + µ2

2
V 2 + µ2V (U − L) , (3.15)

where V is a real vector superfield and L is a linear multiplet satisfying D2L = D̄2L = 0,

that can be expressed as a function of the unconstrained fermionic superfield Σα via L =

DαD̄2Σα + D̄α̇D
2Σ̄α̇. Field eq. of the linear multiplet gives

µV = φ+ φ̄ , (3.16)

which, after plugging back into (3.15), gives the original bulk Kahler potential (3.8). On

the other hand, eliminating the vector superfield via its field eqs. leads to

V = −U + L , Kdual = |S|2 − µ2

2
(U − L)2 . (3.17)

The dual lagrangian (3.17) contains a massive three-form multiplet, which has precisely

the same degrees of freedom as the original action containing two chiral superfields S and

φ. Notice that the combination U−L is the analog of the Stueckelberg combination V −dφ
for a massive vector multiplet and is gauge invariant in the same sense. In the massive case,

all bosonic B,M,Cmnp and fermionic fields χ, λ are physical. The action (3.17) contains

therefore four bosonic and four fermionic degrees of freedom, of mass µ. They match of

course the degrees of freedom of the chiral multiplet formulation in terms of the chiral

fields φ, S. Interestingly enough, in analogy with the non-supersymmetric starting point,

the massive three-form multiplet contains both the inflaton and the stabilizer field, and its

mass term drives chaotic inflation.

3.2 Corrections to the inflaton potential

Whereas the mass term (3.6) or equivalently the D-density [(φ+ φ̄)U ]D is uniquely singled

out by the shift symmetry and the three-form gauge symmetry, more general Kahler (or

higher derivative) contributions can be considered. As shown in [39], corrections to the

stabilizer Kahler potential, for ex. a term of the type −ζ(S̄S)2 are actually needed in order

to generate a large stabilizer mass during inflation, without changing the inflaton potential.

A more general Kahler potential of the form K(S, S̄, φ+ φ̄) does not change conceptually

our discussion above provided it contains in its expansion the standard quadratic terms,

and does not impact inflationary dynamics provided that its stabilizes the field M to zero

during inflation.

On the other hand, corrections to the inflaton potential arise from higher-derivative

interactions. The simplest higher-derivative ghost-free correction to the effective action is

of the form
1

Λ4
[DαSDαS Dα̇S̄D

α̇S̄]D , (3.18)

where Λ is an UV scale. This generates corrections of the type 1
Λ4F

4 to the effective action,

of the type considered in the non-supersymmetric case in [7–9], which in this case lead to

corrections to the inflaton potential δV ∼ µ4ϕ4

Λ4 . According to [7–9], such corrections to not

affect significantly chaotic inflation provided that Λ ≫MGUT .
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4 Supergravity formulation of the three-form multiplet

The supergravity embedding of the three-form multiplet was pioneered in [48–52, 54].

In what follows we use the notations and conventions of [55]. The chiral weight of the

three-form multiplet U in supergravity is zero, because it is real. The Weyl weight w,

on the other hand, is arbitrary. It is convenient to take it equal to 2, so in what follows

(cU , wU ) = (0, 2). We also define the chiral projector Σ, of weights (cΣ, wΣ) = (3, 1). In

the old minimal supergravity, the compensator S0 has weights (c0, w0) = (1, 1) and it is

fixed at S0 = S̄0 = eK/6 in order to define supergravity in the Einstein frame. All other

chiral fields are defined in order to have zero chiral and Weyl weights. One can then define

the analog of the chiral superfield S in the previous section by3

S =
1

S3
0

Σ(U) = e−
K

2 Σ(U) . (4.1)

The inflaton will be one of the matter fields with zero weights, such that an arbitrary

supergravity lagrangian will be of the form

S =
[

−3e−
1

3
K(φ,S,φ̄,S̄)S0S̄0

]

D
+

[

S3
0W (φ, S)

]

F
. (4.2)

Of particular interest in what follows for inflationary models is the mass-like term

[

µS3
0φS

]

F
=

[

µ(φ+ φ̄)U
]

D
− Sb , (4.3)

where Sb is a boundary term. In analogy with the rigid limit therefore, the would-be mass

term does not break the shift symmetry. The boundary term is expected, similar to the

rigid case, to be completely included in the lagrangian with the term µ(φ + φ̄)U in the

Kahler potential.

It was shown in [51, 52] that, similarly to the global supersymmetry case, the su-

pergravity couplings of the three-form can be described by using the chiral superfield S,

treated as a standard chiral superfield, with the modification (3.12) of the superpotential.

This is the simplest approach that we will use in what follows.

4.1 Chaotic inflation

The lagrangian for chaotic inflation is provided by [10]

K = |S2|+ 1

2
(φ+ φ̄)2,

W = µSφ+ if0S , (4.4)

3Our definition (4.1) is the same as in Burgess et al. in [48–50] in the superconformal formalism and in

Binétruy et al. in [48–52] in the Kahler superspace setup. These references were concerned with gaugino

condensation in supersymmetry and supergravity and in this context the three-form multiplet was the

Chern-Simons form of Yang-Mills theories, whereas in our case it is identified with the stabilizer multiplet

in inflation. None of these references wrote explicitly boundary terms, which were discussed in the rigid case

in [53]. Reference [54] contains a different, unrelated supergravity construction, containing a three-form as

a compensator multiplet.
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where we added the flux contribution f0 for practical calculations (allowing to compute

naively scalar potential and field eqs.) and we neglected Kahler corrections for the sta-

bilizer [39], which are important for the inflationary dynamics but not for our current

discussion. We have shown in section 3 that in the global supersymmetry case there is

a dual formulation in terms of a massive three-form multiplet, of lagrangian (3.17). The

supergravity generalization is similar. Starting from the master action

S =
[

−3e−
1

3
K(S,S̄,µV )S0S̄0 + µ2V (U − L)

]

D
, (4.5)

where V is a vector multiplet of weights (cV , wV ) = (0, 0) and L is a linear multiplet of the

same weights as the three-form multiplet U , (cL, wL) = (0, 2), eqs. of motion of the linear

multiplet and the action can be written as

µV = φ+ φ̄,

S =
[

−3e−
1

3
K(S,S̄,φ+φ̄)S0S̄0 + µ(φ+ φ̄)U

]

D
. (4.6)

In the dual version, one uses the field eqs. of the vector multiplet

δK

δV
e−

1

3
KS0S̄0 + µ2(U − L) = 0 . (4.7)

For example for a quadratic form K = µ2

2 V
2, after eliminating the vector multiplet V =

−U + L, we recover the mass term of a massive three-form multiplet (3.17).

4.2 The Starobinsky model

The equivalence between higher-derivative supergravity and standard supergravity with

two chiral superfields was pioneered by Cecotti [35] and developed further in [36, 37]. In

what follows, we discuss the Starobinsky model and duality in the case where one of the

chiral fields contain the three form. In the simplest, chiral formulation, the Starobinsky

model is given by

K = −3 ln(T + T̄ − |S2|),

W = µ

(

T − 1

2

)

S + if0S , (4.8)

where again S is the chiral superfield containing the four-form field strength, but treated

as a standard chiral superfield in (4.8), due to the addition of the flux superpotential linear

term proportional to f0. The inflaton ϕ is defined here via the real part of T :

T = e

√

2

3
ϕ
+ i

√

2

3
a , (4.9)

with a being an axion. Similar to the previous cases, the model has a discrete shift symme-

try acting on the axion field. If the flux is quantized f0 = ne2, with e being the elementary

three-form electric charge and with our definition (4.9), the symmetry transformation is

a→ a−
√

3

2

e2

µ
, n→ n+ 1 (4.10)
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but it does not involve the inflaton ϕ. This version of Starobinsky model cannot therefore

be considered as “natural” in the sense that super-Planckian values of the inflaton cannot

be reached by nucleating three-form membranes.

Dual gravitational formulation. The dual description starts from the lagrangian

S = −
[

(1 + T + T̄ − |S|2)S0S̄0
]

D
+
[

(µT + if0)SS
3
0

]

F

= −
[

(1− |S|2)S0S̄0
]

D
+

[

T

(

µS − R
S0

)

S3
0 + if0SS

3
0

]

F

, (4.11)

where in (4.11) R denotes the chiral gravity multiplet superfield and in the last equality

we used the identity [36, 37, 55]
[

(f(Λ) + f̄(Λ̄))S0S̄0
]

D
=

[

f(Λ)RS2
0

]

F
+ total derivative . (4.12)

One can therefore eliminate the chiral multiplet S in favor of the gravity multiplet R,

according to

R = µS0S =
µ

S2
0

Σ(U) =
1

S0
Σ(S̄0) , (4.13)

where the last equality defines actually the chiral multiplet R in supergravity. In detail,

the components of the chiral superfield R are

R =

(

u ≡ S + iP , γmnDmψn , −
1

2
R − 1

3
A2

m + iDmAm − 1

3
uu

)

, (4.14)

where u and Am are the “old minimal” auxiliary fields of N = 1 supergravity and ψn is

the gravitino field. Notice that according to the prescription (3.12), if the flux term f0 is

included as in (4.11), S can be treated as a standard chiral multiplet in the lagrangian.

Let us however ignore this term and look at the duality with S containing the four-form

field strength. In components, (4.13) contains the duality relations

ū = µM, γmnDmψn =
√
2 µλ ,

−1

2
R− 1

3
A2

m − 1

3
|u2| = µD, DmAm = µF . (4.15)

In the dual formulation, the vector multiplet auxiliary field Am of the old minimal super-

gravity is therefore replaced by the three-form Cmnp and the duality relation (4.15) contain

the duality C3 =⋆ A, or in components Cmnp = ǫmnpqA
q. Duality (4.13) also implies the

relation µ(U − L) = S0S̄0. It is unclear to us if this could be interpreted as replacing the

chiral compensator S0 of the old minimal supergravity by a three-form compensator.4

For the dual lagrangian, the simplest option is probably to add the flux superpotential

term f0 as in (4.11) and treat S as a standard chiral superfield. One therefore finds, in the

old minimal supergravity formulation

Sdual = −
[

S0S̄0 −
1

µ2
RR̄

]

D

+

[

if0
R
µ
S2
0

]

F

. (4.16)

According to (4.12), the last, new term compared to the standard higher-derivative super-

gravity in (4.16), is a total derivative.

4A different formulation of supergravity with a three-form compensator multiplet was proposed some

time ago in [54].
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5 Embedding in string theory

A natural interpretation of the inflaton in string theory is as a Wilson line [26–28, 32, 33],

which being an internal component of a gauge field, it enjoys the shift symmetry as a

remnant of the higher-dimensional gauge symmetry. On the other hand, the three-form

origin could be one of the RR forms present in the closed string spectrum of type II strings.

Let us give a suggestive example of one D5 brane in type IIB strings, without getting into

various possible subtleties; it is by no means to be considered as a unique possibility. There

is a U(1) gauge field living on the brane. In what follows we denote by x5, x6 the internal

dimensions in the brane wordvolume and by A5, A6 the internal component of the gauge

fields. After a suitable complexification (we take the complex structure of the torus τ = i

to simplify the discussion)

z =
x5 + ix6√

2
, φ =

A6 + iA5√
2

, (5.1)

the one-form gauge field and field strengths are

A = AMdx
M = Amdx

m + 2 Im (φdz) , F =
1

2
Fmndx

m ∧ dxn + 2 Im (dφ ∧ dz) . (5.2)

Type IIB strings have a four-form that can contain three-forms from the four-dimensional

viewpoint

C4 ⊃ Cz
3dz + C̄z

3dz̄ , (5.3)

that in components read Cz
3 = 1√

2×3!
(Cmnp5 − iCmnp6)dx

m ∧ dxn ∧ dxp. Then the Chern-

Simons couplings of the RR forms to the brane worldvolume gauge field is given by

q5

∫

D5
C ∧ eF ⊃ µ

∫

(dφ ∧ C̄z
3 + dφ̄ ∧Cz

3 ) = −µ
∫

(φ ∧ F̄ z
4 + φ̄ ∧ F z

4 ) + total deriv. , (5.4)

where q5 is the D5 brane RR charge and µ = q5
∫

C2 ΦC̄
z
3 , where C2 is the two-cycle wrapped

by the brane and Φ, C̄z
3 are the internal profiles of the corresponding fields. The flux

parameter f0 of the previous sections is related by Hodge duality to the five-form flux along

the internal space. One concrete setup is the orientifold of type IIB string by Ω′ = ΩI4,
where I4 is the inversion of four (two complex) internal coordinates z1, z2. The RR 4-form

C4 is odd under Ω, but its components Cz1
3 , C

z2
3 ∼

∫

C1 C4, integrals over one-cycles in the

z1, z2 internal space are even. The D5 brane under consideration should wrap z1 or z2.

In this case, the inflaton mass parameter µ is determined by the D5 brane charge q5, and

also by the wavefunction normalization of the Wilson line kinetic term, which depends in

general on complex structure moduli. A small value µ ∼ 10−5MP could then be obtained

for extreme values of complex structure moduli.

Another possible realization is the type I string with magnetized [59–61] D9 branes.5

In this case, the Chern-Simons couplings of RR fields to D9 brane gauge fields are

q9

∫

D9
C ∧ eF ⊃ q9

∫

D9
C6 ∧ F ∧ F ⊃ q9

∫

D9
ǫm1···m4ǫi1···i6Cm1m2m3i1i2i3∂m4

Ai4 〈Fi5i6〉 ,
(5.5)

5In what follows m1 · · ·m4 are spacetime indices, whereas i1 · · · i6 are internal indices.
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where 〈Fi5i6〉 is a magnetic flux and where C6 is the RR six-form, dual to the RR two-form

of type I string. Here the inflaton mass µ is given by an integral over the compact space

of internal wavefunctions and the magnetic flux µ ∼ q9
∫

CdΦ 〈F 〉. The coupling (5.5)

has a form similar to (5.4) with appropriate identification of fields. The flux parameter

f0 is here related to a seven form field strength flux or, by Hodge duality, by an internal

three-form flux ⋆F7 = F3 = f0Ω, where Ω is the holomorphic (3, 0) form. Other string

theory examples are discussed in [32, 33] (see also [62]). The importance of integrating out

consistently four-dimensional three-forms in superstring compactifications was emphasized

in [63].

Our discussion here only concerns the origin of the inflaton-stabilizer coupling. In

a realistic string setup, other issues have to be addressed, like moduli stabilization and

supersymmetry breaking (see for ex. [26–33]). They are however beyond the goals of

this paper.
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