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1 Introduction

In recent years the role of gauge three-forms in four-dimensional effective theories has been

revisited in various contexts and from different perspectives. In particular, three-forms can

provide an effective dynamical ‘Hodge-dual’ description of the internal flux quanta which

specify certain classes of string flux compactifications. The inclusion of gauge three-forms

in effective theories may have interesting physical effects, such as the dynamical generation

of the cosmological constant and its neutralization [1–15], the contribution to inflationary

scenarios [16–21], possible resolution of the strong CP violation problem [22–27] and others.

In [28] it was shown how to construct generic N = 1 supergravity models in the

presence of gauge three-forms. The construction naturally applies to supergravities with

a scalar sector described by a special Kähler geometry. This is indeed often the case

for stringy effective theories, as the ones considered in [19, 29, 30], which studied the

role of gauge three-forms in the context of type II compactifications. The link between

double three-forms and the moduli parametrizing a special Kähler space can be understood,

for instance, by thinking of type IIB theory on a Calabi-Yau three-fold and focusing on

the special Kähler space parametrized by its complex structure moduli. As usual, one

can consider a symplectic basis of internal CY three-cycles (ΠI , Π̃J) (I, J = 0, . . . , n)

and parametrize the complex structures moduli by projective coordinates sI ≡
∫

ΠI Ω,

where Ω is the holomorphic CY (3, 0) form [31]. On the other hand, by integrating the

Ramond-Ramond (R-R) six-forms on (ΠI , Π̃J) one gets a set of associated double three-

forms (AI
3, Ã3I) in four-dimensions. Now, this and similar settings are characterized by a

symplectic duality group associated with the special Kähler geometry, which in this example

corresponds just to the group of possible symplectic rotations of the basis (ΠI , Π̃J). These

transformations mix up the coordinates sI with the dual coordinates GI(s) ≡
∫

Π̃I
Ω. At

the same time, they should act on the double three-forms (AI
3, Ã3I) as well, rotating them

as electric-magnetic pairs.

These observations may be extrapolated to other less supersymmetric examples, with

orientifolds and internal fluxes, whose effective theory can be described by an N = 1

supergravity with double three-form multiplets of the form derived in [28], or a variation

thereof. The double three-form multiplets contain a complex scalar and a pair of three-

forms, which will be denoted by sI and (AI
3, Ã3J) as in the above example. We then

expect these supergravities to naturally accommodate the action of the symplectic group

associated with the relevant special Kähler structure. In this paper we show that this

is indeed the case: the symplectic group has a natural action on the double three-form

multiplets and the effective supergravity is covariant under it.

Since our supersymmetric formulation contains three-form gauge potentials, it is also

quite natural to consider the corresponding charged objects, namely membranes sweeping

three-dimensional world-volumes C. By requiring compatibility with the symplectic trans-

formations, they should couple to the three-forms through a bosonic minimal-coupling term

of the form

qI

∫

C
AI

3 − pI
∫

C
Ã3I , (1.1)

– 2 –



J
H
E
P
0
7
(
2
0
1
8
)
0
2
8

where (pI , qJ) denote a symplectic vector of quantized electro-magnetic charges, which

rotate under the action of the symplectic duality group. For instance, in the above type

IIB example, a (pI , qJ)-membrane would correspond to a D5-brane wrapping an internal

three-cycle Π homologous to qIΠ
I − pIΠ̃I .

Such membranes can be coupled in a manifestly supersymmetric way to the bulk sector

of our four-dimensional effective supergravity. Indeed, we will show how to construct an

action for a supermembrane in a curved superspace which couples to the bulk three-forms

as in (1.1). This action contains a Nambu-Goto (NG) and a Wess-Zumino (WZ) term

and is κ-symmetric, generalizing previously constructed supermembrane actions in four

dimensions [8, 12–14, 32–34] and analogous superstring actions with two-form couplings

in D = 3 [35]. The WZ term, which is the supersymmetric completion of (1.1), will be

defined by constructing appropriate super-three-forms from the three-form multiplets. On

the other hand, the NG term will be uniquely fixed by requiring that the membrane action

is κ-symmetric and hence supports a supersymmetric spectrum. The result is that the

tension TM of the (pI , qJ)-membrane is not a constant but rather depends on the scalar

sector of the theory, namely

TM = 2
∣

∣qIs
I − pIGI(s)

∣

∣ . (1.2)

Note that, in the above type IIB example, this formula precisely matches the effective

tension of the wrapped D5-branes, which is given by the volume of the internal cycle Π.

Indeed, the BPS condition corresponds to a calibration condition [36] which implies that

TM =
∣

∣

∫

ΠΩ
∣

∣ =
∣

∣qI
∫

ΠI Ω − pI
∫

Π̃I
Ω
∣

∣, hence reproducing (1.2). This observation can be

easily extended to more general and less supersymmetric type II flux compactifications on

generalized Calabi-Yau spaces [37, 38].

We will provide explicit examples of N = 1 supergravity models coupled to double

three-form multiplets and supermembranes. These include the effective theory resulting

from type IIA compactifications with R-R fluxes. We stress that, differently from what

happens for strings and branes in String Theory and M-theory, in four dimensions the mem-

brane κ-symmetry does not require the bulk sector to obey any dynamical equations. To be

precise, κ-symmetry imposes a set of off-shell constraints on the curved target superspace

torsion which does not result in any equations of motion for the gravity or matter multiplets.

This allows us to consider interacting systems in which the supermembrane back-reacts on

the dynamical ‘bulk’ supergravity sector. Particular examples of such systems, namely

a supermembrane interacting with a single three-form matter multiplet and with single

three-form supergravity were proposed and studied in [12] and [13, 14], respectively.

In this paper we discuss in detail the general structure of BPS domain wall configura-

tions arising in the supergravity theories under consideration, which significantly enlarge

the class of domain walls previously described in an ordinary chiral matter-coupled super-

gravity [39–44] and in a three-form supergravity [8, 33].

We think that the actions constructed in this paper provide an appropriate frame-

work for describing, from an effective four-dimensional perspective, non-trivial dynamical

processes involving at the same time membranes, fluxes and the scalar sector of flux com-

pactifications, as for instance those considered in [9, 10].

– 3 –
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The paper is organized as follows. In section 2 we review one of the main results

of [28], showing how to trade a chiral matter-coupled N = 1 supergravity for a dual theory

that contains double three-form multiplets. In section 3 we specialize to the case where

the kinetic terms for the double three-form multiplets are defined by an underlying special

Kähler geometry. These theories are naturally covariant under special Kähler symplectic

tranformations, under which the gauge three-forms rotate as symplectic vectors. We also

discuss the quantization of vacuum expectation values of four-form fluxes in purely four-

dimensional setting. In section 5 we study the coupling (1.1) of the gauge (super) three-

forms to supersymmetric membranes. The requirement of the supermembrane action to be

invariant under local κ-symmetry fixes its Nambu-Goto term such that the corresponding

tension has the form (1.2).

With all the ingredients settled, in section 6 we consider the complete bulk-plus-

membrane action and study BPS domain walls interpolating between different supersym-

metric vacua separated by the membrane. The vevs of the four-form fluxes are discontin-

uous (i.e. ‘jump’) across the membrane. When the three-forms are integrated out, they

give rise to two different (disconnected) effective scalar field superpotentials on each side

of the membrane. We will see that, as expected, for BPS domain walls the tension (1.2)

precisely balances the minimal-coupling term (1.1) which cancel out in the complete bulk-

plus-membrane BPS action, whose on-shell value depends only on the asymptotic vacua.

In sections 7 and 8 we study a simple model involving only two double three-form

multiples, hence containing four three-form gauge potentials. This model has a single

vacuum for each choice of the four-form field-strength integration constants, and domain

walls interpolate between the two different vacua separated by the membrane. We explicitly

construct analytic solutions describing these domain walls.

In the appendices, we collect additional results. In particular, in appendix D we provide

the complete proof of κ-symmetry for the supermembrane action and in appendix E we

describe the extension of this result to supermembranes coupled to more general bulk

sectors including single three-form multiples.

2 Supergravity with double three-forms

In order to make this paper self-contained and to set the notation, in this section we briefly

review the structure of the N = 1 supergravity with three-form multiplets constructed

in [28]. We will focus on the locally supersymmetric case with double three-form multiplets,

but the construction under consideration can be easily adapted to the rigid case and/or to

the other kinds of three-form multiplets studied e.g. in [8, 12–14, 28, 34, 45–50]. Some of

such examples are described in appendix E.

Consider a general N = 1 supergravity theory describing the coupling of the gravity

multiplet to a set of chiral multiplets (ZI , T r), with I = 0, . . . , n and r = 1, . . . ,m. As

in [28], we start from the super-conformally invariant approach [51–53] (see e.g. [54] for

details) by including in ZI a conformal compensator such that the scaling dimension of ZI is

∆Z = 3, while T r are assumed to have vanishing scaling dimension, ∆T = 0. Furthermore,

we assume that ZI can be regarded as projective coordinates of a special Kähler manifold

– 4 –
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locally specified by a homogeneous prepotential G(Z) such that G(λZ) = λ2G(Z), for any
arbitrary chiral superfield λ. We can now write the supergravity Lagrangian in the form

L′ = −3

∫

d4θ E Ω(Z, Z̄;T, T̄ ) +

(∫

d2Θ2E W(Z;T ) + c.c.

)

. (2.1)

Super-Weyl invariance requires that the ‘kinetic’ superfield Ω(Z, Z̄;T, T̄ ) has scaling di-

mension ∆Ω = 2, while the superpotential W(Z;T ) has scaling dimension ∆W = 3,

which means

Ω(λZ, λ̄Z̄;T, T̄ ) = |λ| 23Ω(Z, Z̄;T, T̄ ) , W(λZ, T ) = λW(Z, T ). (2.2)

Furthermore, we split W(Z;T ) as follows

W(Z;T ) = eIZ
I −mIGI(Z) + Ŵ(Z;T ), (2.3)

where GI(Z) ≡ ∂IG(Z) = GIJZ
J , GIJ ≡ ∂I∂JG(Z), etc., and Ŵ(λZ;T ) = λŴ(Z;T ). It is

instructive to notice that the homogeneity requirements imply

GI(Z) = GIJ(Z)Z
J , GIJK(Z)ZK = 0 . (2.4)

At this point, one may fix the super-Weyl invariance and get a standard supergravity

action. However, by preserving super-Weyl invariance one can more easily derive from (2.1)

a dual theory in which the constants (mI , eJ) are promoted to the (Hodge-dual of the)

field strengths of gauge three-forms. In short (we refer to [28] for details), to get the

dual Lagrangian one removes the terms eIZ
I −mIGI(Z) from the superpotential (2.3) and

substitutes ZI with special chiral superfields SI constructed as follows

SI ≡ 1

4
(D̄2 − 8R)MIJ(ΣJ − Σ̄J). (2.5)

Here MIJ is the inverse of

MIJ ≡ ImGIJ (2.6)

and ΣI are complex linear superfields, i.e. they satisfy

(D̄2 − 8R)ΣI = 0. (2.7)

Note that GIJ and MIJ , which were functions of ZI and Z̄I , should now be considered as

functions of SI and S̄I . The new Lagrangian takes the form

L = −3

∫

d4θ E Ω(S, S̄;T, T̄ ) +

(∫

d2Θ2E Ŵ(S;T ) + c.c.

)

+ Lbd, (2.8)

where Lbd is an appropriate boundary term which is necessary for having a well defined

variational problem [28].

The complex linear superfields ΣI contain the double three-form multiplets, while the

chiral superfields SI can be interpreted as multiplets of the corresponding field-strengths.

Indeed, they are invariant under the gauge transformations

ΣI → ΣI + L̃I − GIJL
J , (2.9)

– 5 –
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where (LI , L̃J) are arbitrary real linear superfield parameters which supersymmetrize the

three-form gauge transformations. We may partially fix (2.9) by imposing a Wess-Zumino

gauge in which, in particular, ΣI | = 0. The remaining bosonic degrees of freedom contained

in ΣI are given by complex scalars sI and double (real) three-forms (AI
3, Ã3J), which appear

in the components1

D2ΣI | = −4s̄I ,

σ̄α̇αm [Dα, D̄α̇]ΣI

∣

∣ = −2
(∗Ã3I − GIJ

∗AJ
3

)

m
.

(2.10)

The residual gauge freedom in (2.9) corresponds to the standard gauge transformations

AI
3 → AI

3 + dΛI
2 and Ã3J → Ã3J + dΛ̃2J , where (ΛI

2, Λ̃2J) are arbitrary two-forms.

The lowest components of the chiral superfields SI (2.5) are related to (2.10) as follows

SI | ≡ sI = MIJ(s, s̄)sJ . (2.11)

On the other hand, if we put to zero the fermions, the field-strengths F I
4 ≡ dAI

3 and

F̃4J ≡ dÃ3J enter the SI highest component as follows

F I
S ≡ −1

4
D2SI | = M̄sI − i

2
MIJ∗F4J , (2.12)

where M is the complex scalar auxiliary field of the supergravity multiplet and

F4I ≡ F̃4I − ḠIJF
J
4 (2.13)

are complex four-forms with F̃4I = dÃ3I and F J
4 = dAJ

3 .

It is straightforward to extract from (2.8) the component Lagrangian and fix the super-

Weyl invariance, finally obtaining, in the Einstein frame, supergravity with double three-

forms, scalars and their fermionic partners. In the following sections we will restrict to a

particular subclass of models.

3 A special subclass of models

Let us now assume that the kinetic function Ω has the factorized structure

Ω(S, S̄;T, T̄ ) = Ω0(S, S̄)e
− 1

3
K̂(T,T̄ ) , (3.1)

where Ω0(S, S̄) is defined by the special Kähler structure as follows

Ω0(S, S̄) =
[

iS̄IGI(S)− iSI ḠI(S̄)
]
1
3 . (3.2)

Furthermore, in order to simplify the presentation, we will take Ŵ(S, T ) ≡ 0, so that the

superpotential of the original theory is just given by W(Z) = eIZ
I − mIGI(Z). A non-

trivial Ŵ(S, T ) may be easily incorporated by using the general results of appendix B.

1Here we use the convention (∗ωp)mp+1...m4
= −

√
− det g

p!(4−p)!
ǫm1...m4

ωm1...mp for any bosonic p-form ωp,

where ǫ0123 = −ǫ0123 = 1.

– 6 –
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The corresponding theory with the double three-form multiplets is then described by the

Lagrangian

L = −3

∫

d4θ E Ω0(S, S̄)e
− 1

3
K̂(T,T̄ ) + Lbd . (3.3)

Having in mind the symplectic invariance discussed in the following section, we will gauge

fix super-Weyl symmetry in a slightly more flexible way than in [28].

Let us first express SI in terms of new chiral superfields Y and Φi, with i = 1, . . . , n,

as follows

SI = Y f I(Φ) , (3.4)

where f I(Φ) are holomorphic functions of Φi such that rank(∂if
I) = n. We assume that

the new fields have scaling dimensions ∆Y = 3 and ∆Φ = 0, so that Y can be regarded as

the compensator. Y and Φi are not generic chiral superfields but rather have a constrained

form, which can be in principle obtained by expressing them in terms of SI and then

using (2.5).

We can then write

Ω0(S, S̄) = |Y | 23 e− 1
3
K(Φ,Φ̄) , (3.5)

where
K(Φ, Φ̄) = − log

[

if̄ I(Φ̄)GI(Φ)− if I(Φ)ḠI(Φ̄)
]

= − log
[

−2MIJ(Φ, Φ̄)f
I(Φ)f̄J(Φ̄)

]

,
(3.6)

with GI(Φ) ≡ GI(f(Φ)). We can now fix the super-Weyl gauge symmetry by imposing, for

instance,

Y = 1 , (3.7)

so that the Lagrangian becomes2

L = −3

∫

d4θ E e−
1
3
K(Φ,Φ̄,T,T̄ ) + Lbd , (3.8)

where

K(Φ, Φ̄, T, T̄ ) ≡ K(Φ, Φ̄) + K̂(T, T̄ ) . (3.9)

Of course there is a freedom in the choice of (3.4). This can be associated with the

possibility of redefining Y → eg(Φ)Y and f I(Φ) → e−g(Φ)f I(Φ), which corresponds to a

Kähler transformation

K → K + g(Φ) + ḡ(Φ̄) . (3.10)

3.1 Bosonic action

In order to express this Lagrangian in components, one should take into account (2.5)

and (3.7). For simplicity, let us focus on the bosonic sector, setting all fermions to zero

and writing Y = y +Θ2FY and Φi = φi +Θ2F i
Φ. From (3.4) it follows that

F I
S = f I(φ)FY + yf I i(φ)F

i
Φ, (3.11)

2We work with Plank units M2
P = 1.
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where f I i(φ) ≡ ∂
∂φi f

I(φ) ≡ ∂if
I(φ).3 Then (3.7) is equivalent to y = 1, i.e. sI = f I(φ),

and F I
S = f I iF

i
Φ. In turn, by recalling (2.12), the latter is equivalent to

f I(φ)M̄ − f I i(φ)F
i
Φ =

i

2
MIJ∗F4J . (3.12)

Since we are assuming that the change of coordinates (3.4) is well defined, the (n+1)×(n+1)

matrix (f I , f I i) is invertible and then (3.12) can be inverted to express M and F i
Φ in terms

of the field-strengths (F I
4 , F̃4J). Note that MIJ and GJK should now be considered as

functions of (φi, φ̄ı̄).

Upon expanding (3.8) in bosonic components, performing the usual Weyl rescaling

eam → eame
1
6
K , (F i

Φ, F
q
T ,M) → e−

2
3
K(F i

Φ, F
q
T ,M) (3.13)

to pass to the Einstein frame, integrating out F q
T and using (3.12), we arrive at the bosonic

action

Sbos =−
∫

d4x e

(

1

2
R+GIJf

I
if̄

J
̄ ∂φ

i∂φ̄̄ + K̂pq̄ ∂t
p∂t̄q̄ − T IJ∗F̄4I

∗F4J

)

+ Sbd (3.14)

with the boundary term4

Sbd = 2Re

∫

B
T IJ(Ã3I − GIKA

K
3 ) ∗F4J

= −2Re

∫

d4x e∇m

[

T IJ
(∗Ã3I − GIK

∗AK
3

)m ∗F4J

]

,

(3.15)

where B is a space-time boundary (at infinity). In the above action, we have introduced

the following quantities

GIJ ≡ − MIJ

(fMf̄)
+

(Mf̄)I(Mf)J
(fMf̄)2

, (3.16a)

T IJ ≡ 1

4
e−K

[

MIKGLKMLJ +
1

γ

f I f̄J

(fMf̄)2

]

, (3.16b)

γ ≡ K̂q̄K̂
q̄pK̂p − 3 (3.16c)

with (Mf)I ≡ MIJf
J , (Mf̄)I ≡ MIJ f̄

J and (fMf̄) ≡ f IMIJ f̄
J . The inverse matrix of

T IJ defined by TIJT JK = T KJTJI = δKI has the following form

TIJ = −4eK
[

(fMf̄)MIJ − (1 + γ)(Mf)I(Mf̄)J
]

. (3.17)

Clearly, γ must be non-vanishing in order for the above action to make sense. Indeed,

in deriving (3.14) a vanishing γ would imply an obstruction in integrating out the auxiliary

fields of the ‘spectator’ chiral multiplets T p. In the following, we will assume that γ is non-

vanishing and constant. For instance, in the case of type II orientifold compactifications

one finds γ = 1 [56, 57]. Or, in the absence of a spectator sector, we have γ = −3.

3In general, for any function of φ (and φ̄), e.g. K(φ, φ̄) we define Ki ≡
K

∂φi ≡ ∂iK, Kī ≡
K

∂φ̄ī
≡ ∂īK etc.

4For a moment we are omitting the standard Gibbons-Hawking boundary term [55], which will however

be needed below, when we discuss domain wall solutions.
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Note that GIJ = GJI , f
IGIJ = GJI f̄

I ≡ 0 and T IJ = T JI . Furthermore, the special

Kähler structure requires that MIJf
I f̄J < 0 and that the kinetic matrix GIJf

I
if̄

J
̄ is

positive definite, see for instance [58]. Note also that

K k̄lf̄K
k̄
fLl GIKGLJ = GIJ . (3.18)

This can be verified by projecting the first and second index along the complete bases

(f I , f Ii ) and (f̄J , f̄J̄ ), respectively, and recalling that Kī = GIJf
I
i f̄

J
̄ .

The three-form equations of motion are

dRe(T IJ∗F4J) = 0 , dRe(GIJT JK∗F4K) = 0 . (3.19)

These equations imply that Re(T IJ∗F4J) and Re(GIJT JK∗F4K) are constant, at least away

from the membrane sources introduced below, namely

2Re(T IJ∗F4J) = mI , 2Re(GIJT JK∗F4K) = eI , (3.20)

or equivalently

T IJ∗F4J = − i

2
MIJ(eJ − ḠJKm

K), (3.21)

where mI , eJ are real constants.

Consistent boundary conditions require the same combinations of the four-forms and

scalars to take the fixed constant value on the boundary B. One can then check that,

indeed, the boundary term (3.15) makes the variational principle well defined, see for

instance [5, 59] for a discussion of this issue in simpler settings.

3.2 Duality to standard matter-coupled supergravity

Let us now explicitly check the relation of the above formulation to the ordinary bosonic

supergravity action (in the absence of membranes). First, we notice that the part of the

action (3.14) containing the three-forms can be written in the following form

S3-forms =

∫

d4x e T IJ∗F̄4I
∗F4J + Sbd

= −
∫

d4x e T IJ∗F̄4I
∗F4J

− 2

∫

[

Ã3I ∧ dRe(T IJ∗F4J)−AI
3 ∧ dRe(GIJT JK∗F4K)

]

.

(3.22)

For further comparison with the conventional supergravity action let us define the following

quantities

WI ≡ −2iMIJT KJ∗F̄4K , (3.23a)

W ≡ f IWI =
i

γ
e−K̂

(

f I∗F̃4I − GI
∗F I

4

)

, (3.23b)

Wi ≡ f Ii WI . (3.23c)
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At the moment this is just a change of variables, but we will shortly see thatW is associated

with the superpotential of the conventional supergravity.

By using the relations (3.16a)–(3.18) it can be checked that the scalar potential, which

is given by

V ≡ T IJ∗F̄4I
∗F4J (3.24)

can be more explicitly written as follows

V = eK
[

(fMf̄)2MIKMJLGLKWIW J̄ + γ|W |2
]

= eK
(

Kī(Wi +KiW )(W ̄ +K̄W ) + γ|W |2
)

.
(3.25)

Now, if the four-forms satisfy the equations (3.19)–(3.21), the action (3.22) reduces to

S3-forms = −
∫

d4x e T IJ∗F̄4I
∗F4J

≡ −
∫

d4x
√−g V (φ, φ̄, t, t̄; e,m) , (on-shell 3-forms)

(3.26)

which corresponds to an effective potential V for the scalar fields, in which however the

coupling parameters (eI ,m
I) are generated dynamically by the expectation values of the

four-form fluxes. Notice that the contribution of the non-vanishing boundary term (3.15)

has been crucial for getting the correct potential.

In view of (3.21), the quantities W and Wi defined in (3.23) become the following

holomorphic functions of the scalar fields φi

WI = eI −mJGJI(φ),

W = eIf
I(φ)−mIGI(φ),

Wi = ∂iW,

(3.27)

and (3.25) reduces to

V = eK
(

KīDiWD̄̄W + γ|W |2
)

, (3.28)

where DiW (φ) ≡ (∂i +Ki)W and Ki = ∂iK = −fiMf̄

fMf̄
with K from (3.6).

Therefore, when the three-forms are integrated out, W (φ) is identified with the super-

potential of the standard Einstein supergravity formulation obtained by gauge-fixing to the

Einstein frame the original Weyl invariant Lagrangian (2.1) with W = eIZ
I −mIGI(Z).

This discussion shows how the general superspace arguments of [28] work in the bosonic

sector of the theory.

It is worth mentioning that the supergravity models studied in this paper do include

effective theories originating from flux compactifications of Type IIA and IIB string theory.

Indeed, the superpotential (3.27) is of the same form as that obtained in [60, 61], where

the constants eI ,m
J are ultimately interpreted as quanta of background fluxes. In [28] the

three-form potential (3.25) was explicitly computed for a case of Type IIA effective theories,

matching, on-shell, with the well known results from flux compactifications [56, 62]. Owing

to the generality of the previous discussion, the results obtained in this section can also be

extended to describe a landscape of Type IIB flux compactifications with orientifolds (see

e.g. [57, 63, 64]).
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In the context of effective theories arising from string compactifications, setting the

gauge three-forms on-shell as in (3.20) amounts to choosing a particular configuration of

internal fluxes. However, we emphasize that in our three-form formulation the internal flux

quanta are promoted to unfixed dynamical quantities and, as we will see in the following

sections, one can naturally include membranes, which can mediate dynamical transitions

between different choices of flux quanta. Our formulation then provides a description of the

effective theories originating from flux compactifications in which it is possible to access the

landscape of all the vacua corresponding to all different choices of fluxes and the possible

transitions between them within a single four-dimensional theory.

3.3 Quantization of integration constants

In the above discussion, the integration constants (mI , eJ) introduced in (3.20) and ap-

pearing in the effective superpotential (3.27) have been treated as arbitrary real constants.

However, this is really so if the gauge three-forms (AI
3, Ã3J) are associated to non-compact

gauge symmetries. On the other hand, constructions from string theory, as well as purely

four-dimensional arguments (see for instance [65]), indicate that in consistent quantum

gravitational theories all gauge symmetries should be compact. In practice, this means

that the integrals

ϕI ≡
∫

E
AI

3 , ϕ̃J ≡
∫

E
Ã3J (3.29)

over any compact three-dimensional submanifold E , are periodic. It is then natural to

normalize the gauge three-form fields so that (3.29) have 2π-periodicity.

The compactness of the gauge symmetries implies quantization conditions on the cor-

responding field strengths. As in [17], a simple way to identify these conditions is to relate

our system to a 1-dimensional theory by performing the dimensional reduction of the four-

dimensional theory R × E along the compact space-like E . Let us focus on the four-form

part of the bosonic action (3.14), namely

∫

R

dt Lflux ≡ −
∫

R×E
T IJ F̄4I

∗F4J , (3.30)

where t parametrizes the time direction R. In the 1-dimensional effective theory one can

compute the momenta conjugated to the angles (ϕI , ϕ̃J), namely

πI ≡ ∂Lflux

∂ ˙̃ϕI

= −2Re
(

T IJ∗F4J

)

,

π̃I ≡ ∂Lflux

∂ϕ̇I
= 2Re

(

GIJT JK∗F4K

)

,

(3.31)

where ϕ̇I , ˙̃ϕJ denote the derivatives of the angles with respect to t. Quantum mechanically,

the momenta must be integrally quantized: πI , π̃J ∈ Z, since the angles are 2π-periodic.

On the other hand, by comparing (3.31) and (3.20) we see that −πI and π̃J coincide with

the integration constants mI and eJ respectively. Hence, we arrive at the quantization

condition

eI ,m
J ∈ Z . (3.32)
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This shows how the compactness of the gauge symmetries implies the quantization of the

constants appearing in the effective superpotential (3.27). This is in agreement with what

is expected from explicit string theory models, in which eI ,m
J usually measure quantized

internal fluxes. However, we stress that the three-form formulation has allowed for a purely

four-dimensional derivation of this fact.

In string models the quantized constants eI ,m
J may need to satisfy an additional

tadpole cancellation condition, which would fix the value of a linear combination thereof. In

our formulation with three-forms, implementing this constraint would require to integrate

out a single real gauge three-form which is a particular linear combination of the original

2n+ 2 ones and to select a specific value of the corresponding integration constant. Thus

the supergravity effective theory with the remaining 2n + 1 independent three-forms will

identically satisfy the tadpole cancellation condition. For simplicity, in this paper we do

not further consider this possibility.

4 Symplectic covariance

The above models of supergravities with gauge three-forms is based on the existence of a

local special geometry defined by the prepotential G(S), see for instance [66] for a recent

review on special geometry and more references. In fact, one can formulate the models

without actually using the prepotential G(S) but rather the 2(n+ 1)-dimensional vector

V ≡
(

SI

GJ

)

. (4.1)

One can immediately recognize that our general formulation of the double three-form mul-

tiplets is covariant under the symplectic transformations

V 7→ V̂ = SV, (4.2)

where S is an Sp(2n+ 2;R) matrix, i.e. such that STIS = I and

I =

(

0 −✶
✶ 0

)

. (4.3)

We will say that a (2n + 2)-dimensional vector transforms as a symplectic vector if it

transforms as V in (4.2). We can write

S =

(

A B

C D

)

, (4.4)

where A,B,C,D are n× n constant matrices such that

ATD − CTB = ✶ , ATC − CTA = 0 , BTD −DTB = 0. (4.5)

Notice that, assuming that A+BG is invertible, (4.2) is equivalent to

ŜI = (A+BG)IJS
J , (4.6a)

Ĝ = (C +DG)(A+BG)−1, (4.6b)
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where G ≡ (GIJ). Furthermore, MIJ transforms as follows

M̂ = (A+BḠ)−1TM(A+BG)−1. (4.7)

In order to better understand the action of the above symplectic transformations on the

elementary degrees of freedom of the double three-form multiplets, we observe that (4.6a)

can be alternatively defined by

Σ̂I = ΣJ [(A+BG)−1]J I , (4.8)

as can be readily checked by using (2.5).

One may in fact remove the condition on the non-degeneracy of A+BG by introducing

the ‘prepotentials’ (PI , P̃J) defined as follows

PI ≡ −2MIJ ImΣJ , P̃I ≡ −2Im(ḠIJMJKΣK) , (4.9)

which are such that

SI = − i

4
(D̄2 − 8R)PI , GI = − i

4
(D̄2 − 8R)P̃I . (4.10)

Hence
(

PI

P̃J

)

(4.11)

transforms as a symplectic vector and encodes, in a symplectic covariant way, all the degrees

of freedom of the double three-form multiplets ΣI . This indicates that the supergravity with

double-three forms may be formulated directly in terms of the symplectic vectors, without

requiring the existence of a symplectic prepotential G(S), but just assuming GI = GIJ(S)S
J .

However, we will not attempt a complete discussion of such an intrinsic formulation and

for simplicity will assume the existence of a prepotential, which is always available in an

appropriate duality frame [58].

From these observations one can extract how the double three-forms transform. If all

fermions vanish, combining (4.8) and (2.10) we find that the (2n+ 2)-dimensional vectors

(

AI
3

Ã3J

)

(4.12)

transform as symplectic vectors.

Note that the extension of covariance to the original theory (with the ordinary chiral

multiplets ZI) we started from requires that the constants (mI , eJ) must transform as a

symplectic vector. In this way, the form of the superpotential eIZ
I −mIGI is preserved.

On the other hand, the quantizations conditions discussed in section 3.3 imply that the

Sp(2n+2;R) group is reduced to a discrete subgroup Sp(2n+2;Z). This structure naturally

appears in stringy effective theories.

So far we have described the actions of the above transformations on the symplectic

vectors (4.1) and (4.11) of the super-Weyl invariant formulation. On the other hand,

in order to fix the super-Weyl gauge invariance, one should express SI (or, in a more
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intrinsic formulation which does not assume the prepotential G, all the components of the

symplectic vector (4.1)) as local holomorphic functions of the ‘inhomogeneous coordinates’

(Y,Φi) as in (3.4). By identifying GI(f(Φ)) → GI(Φ), a symplectic transformation maps

the symplectic vector

V (Y,Φ) = Y

(

f I(Φ)

GJ(Φ)

)

(4.13)

to a new symplectic vector depending holomorphically on (Y,Φi). These symplectic trans-

formations generically relate different equivalent choices of (f I(Φ),GJ(Φ)) and guarantee

the symplectic covariance, but not necessarily the invariance, of the theory. On the other

hand, a duality symmetry of the special Kähler structure is a transformation of (Y,Φi)

that induces a symplectic transformation of (4.13). For a simple example see section 7.5

Notice that the above discussion has not involved the kinetic potential Ω, which should

be appropriately restricted to be symplectic-invariant. This does happen for the class of

models considered in section 3. Using the bosonic components of these transformations,

one can explicitly check that the form of the bosonic Lagrangian (3.14) is left invariant by

the symplectic transformations.

5 Inclusion of membranes

In this section we include supersymmetric membranes with charges (qI , p
J) minimally cou-

pled to the double three-form multiplets (AI
3, Ã3J). In order to keep the supersymmetry

manifest, we promote the bosonic embedding of the membrane world-volume C to an em-

bedding into the N = 1 superspace extension of four-dimensional space-time which is

defined by the map

ξi 7→ zM (ξ) =
(

xm(ξ), θµ(ξ), θ̄µ̇(ξ)
)

, (5.1)

where the ξi with i = 0, 1, 2, are the membrane world-volume coordinates. The bosonic

minimal-coupling term (1.1) can then be supersymmetrized to

SWZ =

∫

C
A3 (5.2)

with

A3 = qIAI
3 − pIÃ3I , (5.3)

once we provide a set of appropriate super three-forms (AI
3, Ã3I) whose lowest components

coincide with (AI
3, Ã3I). These super three-forms are constructed in terms of the pairs

of the real ‘prepotentials’ (PI , P̃J) (4.9). Given a prepotential P, the associated super

5In particular, by homogeneity, Φi will be mapped to new Φ̂i while Y will be transformed into Ŷ =

Y eg(Φ̂), for some holomorphic function g(Φ̂). One can use g(Φ) to preserve the gauge fixing-condition (3.7)

by combining the symplectic transformation with the field redefinition of the kind discussed just after (3.9),

which corresponds to a Kähler transformation.
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three-form A3 is defined by

A3 =−2iEa ∧ Eα ∧ Ēα̇σaαα̇P +
1

2
Eb ∧ Ea ∧ Eασab α

βDβP

+
1

2
Eb ∧ Ea ∧ Ēα̇σ̄ab

β̇
α̇D̄β̇P

+
1

24
Ec ∧ Eb ∧ Eaǫabcd

(

σ̄dα̇α[Dα, D̄α̇]P − 3GdP
)

.

(5.4)

The super three-forms (AI
3, Ã3I) are obtained by plugging the prepotentials (4.9) into (5.4),

using the composite prepotential

P = qIPI − pIP̃I = −2qIMIJ ImΣJ + 2pIIm(ḠIJMJKΣK) . (5.5)

The gauge transformations (2.9) here translate into the gauge transformations

PI → PI + 2LI , P̃I → P̃I + 2L̃I , (5.6)

where we recall that (LI , L̃J) are arbitrary real linear multiplets. For the three-forms

A3I and ÃI
3 these transformations of the prepotentials determine the special structure of

the super-2-form parameters α2I and α̃I
2 of the superspace gauge transformations A3I 7→

A3I + dα2I and ÃI
3 7→ ÃI

3 + dα̃I
2. Thus the WZ term is gauge invariant modulo boundary

terms which vanish in the case of the closed supermembrane (or for an infinite domain

wall type object). Note that (5.4) and hence the WZ term (5.2) are also Weyl invariant by

construction (for the coupling of the membrane to pure three-form supergravity this fact

was noticed in [34]).

The prepotentials and the super three-forms organize in symplectic vectors
(

PI

P̃J

)

,

(

AI
3

Ã3J

)

(5.7)

linearly transforming under (4.4). We see that the complete WZ term (5.2) is invariant

under the symplectic transformations provided that the vector of the charges
(

pI

qJ

)

(5.8)

transforms as a symplectic vector as well. Thus symplectic transformations cannot be

considered as a symmetry of a single membrane characterized by definite values of the

charges pI and qI , but rather of the whole set of supermembranes with all possible values

of charges. A quantization of the membrane charges, which is automatic in stringy mod-

els, imposes the symplectic transformations (4.4) to take discrete values. For instance, if

pI , qJ ∈ Z, then S ∈ Sp(2n+ 2;Z) relate supermembranes with different allowed values of

integer charges.

Now, the WZ term (5.2) should be completed with a supersymmetric NG-like term.

Furthermore, we require the complete membrane action to be invariant under local κ-

symmetry, in order to get a supersymmetric physical spectrum on the membrane world-

volume. The appropriate NG-term turns out to be

SNG = −2

∫

C
d3ξ

√
− deth

∣

∣qIS
I − pIGI(S)

∣

∣ . (5.9)

– 15 –



J
H
E
P
0
7
(
2
0
1
8
)
0
2
8

In (5.9) the bulk superfields SI are evaluated on zM (ξ) and deth ≡ dethij(ξ) where

hij(ξ) ≡ ηabE
a
i (ξ)E

b
j (ξ) with Ea

i (ξ) ≡ Ea
M (z(ξ))∂iz

M (ξ). (5.10)

By using the standard constraints for the supervielbeins EA
M , one can check that the

complete action

SM ≡ SNG + SWZ (5.11)

is invariant under the κ-symmetry transformations

δzM (ξ) = κα(ξ)EM
α (z(ξ)) + κ̄α̇(ξ)EM

α̇ (z(ξ)). (5.12)

The local fermionic parameter κα(ξ) (with κ̄α̇(ξ) ≡ κα(ξ)) satisfies the projection condition

κα =
qIS

I − pIGI

|qISI − pIGI |
Γαα̇κ̄

α̇, (5.13)

where

Γαα̇ ≡ iǫijk

3!
√
− deth

ǫabcdE
b
iE

c
jE

d
k σ

a
αα̇. (5.14)

The proof of the invariance of the action under (5.12) is given in appendix D. The κ-

symmetry implies that half of the degrees of freedom of the fermionic world-volume fields

θα(ξ) are pure gauge. On the other hand, the invariance under world-volume diffeomor-

phisms implies that three degrees of freedom contained in the bosonic fields xm(ξ) are pure

gauge. Hence, the membrane carries one bosonic and two real fermionic degrees of freedom,

which constitute the spectrum of an N = 1 scalar supermultiplet in three dimensions.

Actually, for the membrane action to be kappa-symmetric, it is sufficient to require

that GI(S) ≡ GIJ(S)S
J with no other restrictions on GIJ(S) (e.g. homogeneity restrictions).

In other words, supermembranes can couple to more general classes of supergravity models

than those we have concentrated our attention on. Other generalizations are described in

appendix E.

Note also that the bosonic contribution of the NG term (5.9) exactly reproduces the

field-dependent tension (1.2) expected from string compactifications. Clearly, the super-

membrane action (5.11) does not change under the (discrete) symplectic transformations,

provided that (5.8) transform as a symplectic vector. So, as we have already discussed,

the symplectic transformations should be considered as dualities relating supermembranes

with different (quantized) charges (qI , p
J).

Furthermore, as expected, the projector (5.13) is compatible with the projector as-

sociated with BPS membranes obtained by wrapping probe D-branes in N = 1 string

compactifications, see for instance [37, 38].6 However, we stress that the invariance un-

der (5.12) goes beyond the probe regime, since it does not require the bulk sector to be

6The κ-symmetry of a p-brane was shown to be in one-to-one correspondence with supersymmetry

preserved by the p-brane BPS state [67] as well as by the ‘complete but gauge fixed’ Lagrangian description

of the supergravity coupled to p-brane interacting systems [68–70].
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on-shell. In other words, by summing (5.11) and (2.8) one gets a supersymmetric action

describing the off-shell coupling between the supergravity bulk and the membranes.7

Finally, so far the membrane action has been written in the Weyl-invariant and man-

ifestly supersymmetric form. We can now gauge fix the Weyl invariance as described in

section 3, write down the action in components and perform the standard Weyl rescal-

ing eam → e
1
6
Keam for passing to the Einstein frame. By isolating the bosonic terms, one

easily gets

SM = − 2

∫

C
d3ξ

√
− deth e

1
2
K ∣
∣qIf

I(φ)− pIGI(φ)
∣

∣

+ qI

∫

C
AI

3 − pI
∫

C
Ã3I + (fermions) ,

(5.15)

where now hij denotes the pull-back of the bulk Einstein-frame metric, hij ≡ gmn∂ix
m∂jx

n.

In what follows we will gauge fix worldvolume reparametrization invariance of the

action (5.15) by imposing the static gauge, in which the worldvolume coordinates are

identified with three of four coordinate functions xm(ξ) = (xµ(ξ), y(ξ)), namely

xµ(ξ) = δµi ξ
i , µ = 0, 1, 2 . (5.16)

In this gauge the worldvolume dynamics of the membrane is described by a single real

field y(x) which is a Goldstone field associated with the bulk diffeomorphism symmetry

spontaneously broken by the membrane.

6 Jumping domain walls

In this section we study 1
2 -supersymmetric solutions of a bulk-plus-membrane system. We

will focus on the class of models described in section 3. The extension to more general

matter-coupled models is straightforward.8

Before concentrating on supersymmetric domain walls, let us analyze the bosonic sector

of the theory depending on the three-forms. It includes the last two terms in (3.14) and

the WZ term in (5.15). Let us rewrite these terms as follows

∫

d4x e T IJ∗F̄4I
∗F4J −

∫

(pIÃ3I − qIA
I
3) ∧ δ1(C)

+ 2

∫

B
Ã3I Re(T IJ∗F4J)− 2

∫

B
AI

3 Re(GIJT JK∗F4K) ,

(6.1)

where δ1(C) is a delta-like one-form localized on the membrane world-volume C. In the

static gauge (5.16) δ1(C) = dyδ(y − y(x)) and in the bulk diffeomorphism gauge (F.17) it

reduces to δ1(C) = dyδ(y).

7Previous examples of four-dimensional superfield actions of this type have been constructed for dynam-

ical interacting systems of supergravity and/or matter multiplets coupled to massless superparticles [71],

superstrings [72] and supermembranes [12, 13].
8See [8] for an example of a supergravity domain wall in the presence of a single gauge three-form and

no flowing scalar fields. Domain wall solutions in 4D minimal supergravity were discussed in [39, 43] and

in [33], where the duality equations relating scalars to 3-forms were imposed.
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Varying (6.1) we get the three-form equations of motion

dRe
(

T IJ∗F4J

)

= −1

2
pIδ1(C),

dRe
(

GIJT JK∗F4K

)

= −1

2
qIδ1(C).

(6.2)

Comparing them with (3.19), we see that the membrane has modified the latter by localized

sources proportional to the charges (qI , p
J). This means that the solution of (6.2) is still

given by (3.20), with constant (mI , eJ) away from the membrane. On the other hand,

as one passes from the left to the right of the membrane, with respect to the orientation

defined by the one-form δ1(C), the values of these constants ‘jump’ as follows

mI → mI − pI , eI → eI − qI . (6.3)

This implies that we may still integrate out the three-forms away from the membrane,

getting an ordinary supergravity with the superpotential (3.27). However, we should at

least use two such ordinary supergravity actions, one on the left and one on the right from

the membrane worldvolume, whose superpotentials are related by the jump (6.3).

If the three-form gauge symmetries are compact as discussed in section 3.3, from (6.3)

and (3.32) we immediately conclude that the membrane charges must be integrally

quantized

pI , qJ ∈ Z . (6.4)

Let us now come back to the search for flat domain walls including the membrane. We

split the space-time coordinates xm into (xµ, x3 ≡ y), µ = 0, 1, 2, and take the following

ansatz for the space-time metric

ds2 = e2D(y)dxµdxµ + dy2 . (6.5)

We would like to study the simplest supersymmetric domain wall associated with a single

flat membrane located at y = 0, that is C = {y = 0}. The extension to the case of multiple

membranes is straightforward.

The fermions are set to zero and the scalar fields φi are allowed to depend only on the

transverse coordinate

φi = φi(y). (6.6)

As we will see, it is consistent to assume that φi(y) are continuous in y, while their derivative

may jump at y = 0.

In the class of models described in section 3, the presence of the chiral multiplets T p

would not allow for supersymmetric vacua with W 6= 0. This would imply that a BPS

domain wall must necessarily degenerate on one or both of its sides (see for instance [73]).

Hence, in order to lighten the discussion, we will assume absence of T p multiplets, which

may be easily reinstated into the flow equations. We can then write the complete Kähler

potential in the form

K(Φ, Φ̄) = K(Φ, Φ̄) + K̂0 , (6.7)

where K̂0 is a constant.
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For the three-form gauge potentials one chooses an ansatz which respects the symme-

tries of the domain wall configuration setting

AI
3 = αI(y)dx0 ∧ dx1 ∧ dx2 , Ã3I = α̃I(y)dx

0 ∧ dx1 ∧ dx2, (6.8)

which are assumed to be continuous at the membrane position y = 0.

6.1 Bulk supersymmetry

To find the flow equations satisfied by 1
2 -BPS domain walls, one imposes that the corre-

sponding Killing equations admit two independent solutions. As usual, the Killing equa-

tions are obtained by imposing that the supersymmetry transformations of the fermions

vanish, and can be found in appendix C (see equation (C.4)). Their analysis is carried out

in a way similar to the derivation of the flow equations for the domain walls in standard

supergravity (see e.g. [39–44] for details). As a result one gets the following flow equations

φ̇i = e
1
2
K(φ,φ̄)+iϑ(y)Kī(W ̄ +K̄W ) , (6.9a)

Ḋ = −e 1
2
K(φ,φ̄)|W |, (6.9b)

where the dot corresponds to the derivative with respect to y, e.g. Ḋ ≡ d
dyD, and ϑ(y) =

ϑ(φ(y), φ̄(y)) is the phase of W , namely

W = eiϑ|W | . (6.10)

We recall that, before fixing the expectation value of the field-strengths, W and Wi are

defined as in (3.23).

Note that the supersymmetry preserved by the domain wall is characterized by the

Killing spinor ζα(y) satisfying the projection condition

ζα = ieiϑ(σ3)αα̇ζ̄
α̇. (6.11)

In order to have an everywhere supersymmetric domain wall solution, including the mem-

brane sitting at y = 0, it is natural to require ϑ(y) to be continuous at y = 0. From the

first equation in (C.4) and (6.11) it then follows that

ϑ̇ = −Im
(

φ̇iKi

)

. (6.12)

Now, for the complete bulk description of the domain wall configurations we should add

to (6.9) the equations of motion of the three-forms sourced by the membrane (6.2). For the

domain wall configuration their solution gives the following form of the superpotential W

W (φ, y) = e−If
I(φ)−mI

−GI(φ)−Θ(y)
(

qIf
I(φ)− pIGI(φ)

)

, (6.13)

where Θ(y) is the Heaviside step function, and

Wi = ∂iW. (6.14)
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Comparing this form of W with eq. (3.27) in the absence of the membrane we see that the

superpotential becomes a step function of y. This means that away from the membrane at

y = 0 the bulk fields obey the standard supergravity equations associated with two distinct

superpotentials W− and W+, for y < 0 and y > 0 respectively. These superpotentials

take the form (3.27) associated with the constants (mI
−, e−I) and (mI

+, e+I), satisfying the

relations mI
− = mI

+ + pI and e−I = e+I + qI .

Let us now introduce a ‘flowing’ covariantly holomorphic superpotential [44]

Z(φ, y) ≡ e
1
2
K(φ,φ̄)W = e

1
2
K(φ,φ̄) [Θ(y)W+(φ) + Θ(−y)W−(φ)] . (6.15)

As in (6.13), the dependence of Z on y is both explicit, through the step functions, and

implicit, through (6.6). The membrane induces the jump

∆Z ≡ lim
ε→0

(Z|y=ε −Z|y=−ε) = −e 1
2
K (qIf

I − pIGI

)

|y=0. (6.16)

The absolute value of ∆Z is determined by the membrane tension

TM ≡ 2 e
1
2
K ∣
∣qIf

I − pIGI

∣

∣

y=0
= 2|∆Z| (6.17)

and at y = 0 the phase eiϑ(y) enters the κ-symmetry projector (5.13).

Due to the holomorphicity of W , which implies

∂̄|W |+ i∂̄ϑ |W | = 0, (6.18)

and the definition of Z, we have

∂̄|Z| ≡ 1

2
eiϑe

1
2
KD̄̄W̄ . (6.19)

Hence, in terms of Z the flow equations (6.9) take a known form [39–44]

φ̇i = 2Kī ∂̄|Z|, (6.20a)

Ḋ = −|Z|, (6.20b)

where Kī is the inverse of the φi kinetic matrix which in our case is Kī ≡ f Ii f̄
J
̄ GIJ , with

GIJ defined in (3.16a).

We see that, owing to (6.19), the flow equation (6.20a) has fixed-point solutions pro-

vided by the supersymmetric vevs φi∗ (such that D̄W |φ∗ = 0). Then the solution of

eq. (6.20b) is D = −|Z∗|y + const., which corresponds to an AdS space of radius 1/|Z∗|
for Z∗ 6= 0 and to flat space if Z∗ = 0. Hence, a regular BPS domain wall interpolates

between two different supersymmetric vacua and its geometry is asymptotically AdS or

flat for y → ±∞.

As it will be clear from the following discussion, for the given choice of signs, the

flow equations (6.20) lead to a complete solution only if Z is nowhere vanishing along

the flow and if |Z|y=+∞ 6= |Z|y=−∞. We will assume |Z|y=+∞ > |Z|y=−∞, but, by the

coordinate flip y → −y, one can analogously consider the case |Z|y=+∞ < |Z|y=−∞ (and

nowhere vanishing Z). The latter case then requires opposite signs in (6.20) and other
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flow equations. Note also that performing the change y → −y, one should also flip the

relative sign of the Killing spinor projector (6.11). This should be correlated with the sign

in the corresponding kappa-symmetry projector which, in turn, is related to the sign of the

membrane WZ term (see section 5).

As we have already mentioned, the phase ϑ(y) is required to be a continuous function.

In other words, we require the phase of Z not to change in passing through the domain wall,

so that ∆Z = eiϑ(0)|∆Z|. This requirement together with the covariant holomorphicity

of Z and eq. (6.20a) imply that ϑ(y) satisfies the flow equations (6.12) and hence the

following identity holds

d|Z|
dy

= 2Re
(

φ̇i∂i|Z|
)

+
1

2
TM δ(y), (6.21)

which just follows from (6.15). Using the flow equation (6.9), we can rewrite (6.21) in the

following form

2e−3D d

dy

(

e3D|Z|
)

= −eI(y)∗F I
4 +mI(y)∗F̃4I − TMδ(y), (6.22)

where

mI(y) ≡ mI
− − pIΘ(y) , eI(y) ≡ e−I − qIΘ(y).

Equation (6.22) is solved by choosing (continuous) gauge potentials AI
3, Ã3J such that

2|Z|vol3 = eI(y)A
I
3 −mI(y)Ã3I , (6.23)

with vol3 ≡ e3Ddx0 ∧ dx1 ∧ dx2, which in turn implies that

TMvol3|y=0 =
(

qIA
I
3 − pIÃ3I

)

|y=0 . (6.24)

Hence, there is a perfect cancellation between the on-shell values of the NG and WZ term

in the membrane action evaluated on the domain wall solution. This is somewhat similar

to static membrane solutions in AdS × S backgrounds [74].

As in [44], we can combine (6.20) and (6.21) to get the following equation

Ċ = 4Kī∂i|Z|∂̄|Z|+ 1

2
TMδ(y) ≥ 0, (6.25)

where we have introduced C(y) ≡ −Ḋ(y). The function C(y) is analogous to the monotoni-

cally increasing c-function introduced in [75, 76] in the AdS/CFT context. Equation (6.25)

shows the contribution of the membrane to the monotonic flow of C(y), which ‘jumps up’

by 1
2TM at y = 0. A similar equation was also derived in [77] by dimensionally reducing

ten-dimensional flow equations in the presence of effective membranes corresponding to

D-branes wrapped along internal cycles.

Under our assumption that |Z|y=+∞ > |Z|y=−∞, equation (6.20b) tells us that |Z| =
C. Hence (6.25) also implies that |Z| monotonically increases as we move from y = −∞
to y = +∞. Clearly, in the case |Z|y=+∞ < |Z|y=−∞, the appropriate sign-reversed flow

equations imply that |Z| is monotonically decreasing, while (6.25) still holds, since in that

case the sign-reversed (6.20b) becomes |Z| = Ḋ ≡ −C.
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Finally, let us momentarily remove our assumption that Z is nowhere vanishing, sup-

posing that Z|y0 = 0 at some transversal coordinate y0. Then, |Z| must necessarily be

monotonically increasing for y > y0 and decreasing for y < y0, so that Z can vanish only

at y0. This implies that for y > y0 the flow equations (6.20) hold, while for y < y0 one

must use the sign-reversed ones.

In conclusion, the bulk supersymmetry conditions (6.11), (6.12), (6.20a) and (6.20b)

are basically unaffected by the presence of the membrane. In the following subsection we

will re-derive them from an effective one-dimensional BPS action.

6.2 BPS action and domain wall tension

The above supersymmetric flow equations can be alternatively derived by plugging the

above domain wall ansatz into the complete bulk-plus-membrane action and using the

three-form equations of motion.

Let us first focus on the terms appearing in (6.1). Using Stokes’ theorem, we can

rewrite them as follows,

−
∫

d4x e T IJ∗F̄4I
∗F4J +

∫

AI
3 ∧
[

2dRe(GIJT JK∗F4K) + qIδ1(C)
]

−
∫

Ã3I ∧
[

2dRe(T IJ∗F4J) + pIδ1(C)
]

.

(6.26)

It is then easy to see that, if we integrate out the gauge three-forms using their equations

of motion (6.2), we are left with the following term

−
∫

d4x e T IJ∗F̄4I
∗F4J (on-shell 3-forms). (6.27)

We can then repeat the discussion of section 3.2, writing (3.26) as the (minus) potential

of the standard N = 1 supergravity (see eq. (3.28)), with the only difference that the

superpotential is not constant but changes as described above when passing the membrane

position y = 0. Then, for the domain wall solution under consideration, eq. (6.27) can be

written in terms of the jumping central charge (6.15) as follows
∫

d4x e T IJ∗F̄4I
∗F4J =

∫

d3x

∫

dy e3D
(

KīDiZD̄̄Z̄ − 3|Z|2
)

, (6.28)

where DiZ ≡ ∂iZ + 1
2KiZ.

Let us now consider the remaining, ‘gravitational’ part of the bosonic action, which is

given by

−
∫

d4x e
(1

2
R+Kī ∂φ

i∂φ̄̄
)

+ SGH

− 2

∫

C
d3ξ

√
− deth e

1
2
K ∣
∣qIf

I(φ)− pIGJ(φ)
∣

∣ ,

(6.29)

where SGH is the Gibbons-Hawking boundary term [55].

For the domain wall ansatz in the static gauge (5.16), the contribution of the membrane

at y = 0 appearing in the second line of (6.29) reduces to

−
∫

d3x

∫

dy δ(y)TMe
3D, (6.30)

where TM has been defined in (6.17).
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Now, following [44], one can take the sum of (6.28) with the first line of (6.29) evaluated

on the domain wall ansatz and write it in the form
∫

d3x

∫

dy e3D
[

3
(

Ḋ + |Z|
)2 −Kī

(

φ̇i − 2Kik̄∂k̄|Z|
)( ˙̄φ̄ − 2K l̄∂l|Z|

)

]

− 2

∫

d3x

∫

dy e3D
[

3Ḋ|Z|+ 2Re
(

φ̇i∂i|Z|
)

]

.

(6.31)

On the other hand, using (6.21) we can write the second line of (6.31) in the form

− 2

∫

d3x

∫

dy

[

d

dy

(

e3D|Z|
)

− 1

2
δ(y)TMe

3D

]

(6.32)

whose second term is precisely the opposite of (6.30).

Then, in the sum of (6.31) and (6.30), the terms localised on the membrane perfectly

cancel and the complete action reduces to the following BPS form

Sred =

∫

d3x

∫

dy e3D
[

3
(

Ḋ + |Z|
)2 −Kī

(

φ̇i − 2Kik̄∂k̄|Z|
)( ˙̄φ̄ − 2K l̄∂l|Z|

)

]

− 2

∫

d3x
[(

e3D|Z|)|y=+∞ −
(

e3D|Z|
)

|y=−∞
]

.

(6.33)

This reduced action is identical in form to the one obtained in [44] in the absence of

membranes, basically because of the observed reciprocal cancellations of various terms

localised on the membrane.

Hence, as in the absence of membranes, the extremization of the BPS action (6.33)

precisely reproduces the bulk flow equations (6.20). Furthermore, on any solution of the

flow equations, we get

Sred|on−shell = −2

∫

d3x
[(

e3D|Z|)|y=+∞ −
(

e3D|Z|
)

|y=−∞
]

= −
∫

d3x̃ TDW, (6.34)

where on the slices of constant y we have introduced coordinates x̃µ = eD(y)xµ, so that d3x̃

denotes the physical volume, and

TDW = 2
(

|Z|y=+∞ − |Z|y=−∞
)

(6.35)

denotes the overall tension of the domain wall.

Equation (6.35) is formally identical to the formula obtained in the absence of mem-

branes [39–44]. However one should keep in mind that it includes the contribution of

the membrane. This can be seen by splitting the overall change of |Z| in the bulk and

membrane contributions

TDW = 2
(

|Z|y=+∞ − lim
ε→0

|Z|y=ε

)

+ 2
(

lim
ε→0

|Z|y=−ε − |Z|y=−∞
)

+ TM . (6.36)

See also [77] for the same conclusion reached starting from a ten-dimensional description

of similar domain wall solutions.

From (6.35) we see that our working assumption |Z|y=+∞ > |Z|y=−∞ guarantees

that TDW > 0. The case |Z|y=+∞ < |Z|y=−∞ (with still nowhere vanishing Z) can be
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obtained by changing y → −y in the above steps, so that the sign-reversed flow equa-

tions (6.20) extremize the corresponding BPS reduced action and the tension is given by

TDW = 2
(

|Z|y=−∞ − |Z|y=+∞
)

.

Furthermore, as mentioned at the end of section 6.1, the case in which there is a vanish-

ing point of y0 of Z can be obtained by gluing two regions along which |Z| flows in opposite

directions, first decreasing from |Z|y=−∞ to 0 and then increasing to |Z|y=+∞. The above

arguments can be easily adapted to this case as well and give TDW = 2
(

|Z|y=−∞+|Z|y=+∞
)

,

again as in the absence of membranes [39–44]. However, in this case the membrane sitting

at y0 would have vanishing localized tension, TM = 0. This would signal breaking of the

validity of the effective action.

6.3 World-volume analysis

It remains to check that the membrane world-volume preserves the same supersymmetry

as the domain wall solution of the bulk field equations, and that the membrane equations

of motion are satisfied.

As discussed above, we can consider Z to be nowhere vanishing and |Z|y=+∞ >

|Z|y=−∞, without loss of generality. Recall that the Killing spinors ζα(y) satisfy the projec-

tion condition (6.11). These bulk supersymmetries act on the membrane sector by shifting

the world-volume fermions. Hence, they are preserved by the membrane only if they can

be regarded as (gauge) κ-transformations. We should hence check that on the membrane

ζα|y=0 = κα (6.37)

with κα satisfying the constraint (5.13). Due to the global continuity of the phase of Z, in

the case at hand the condition (5.13) can be written as

κα =
∆Z
|∆Z|Γαα̇κ̄

α̇ = eiϑΓαα̇κ̄
α̇, (6.38)

where Γαα̇ is defined in (5.14) and should be evaluated for the static membrane placed at

y = 0. This gives

Γαα̇ = i(σ3)αα̇ . (6.39)

We see that (6.38) with (6.39) is equivalent to the restriction of (6.11) to y = 0. This

implies that the membrane world-volume is perfectly compatible with the background

supersymmetry. Hence the fully coupled bulk-plus-membrane domain wall configuration

preserves two supersymmetries out of four.

From the form of the BPS action of the previous subsection, we have seen that any

explicit dependence on the membrane has disappeared. Moreover, in view of eq. (6.24),

the on-shell membrane action vanishes. In other words, even if we move the position of

the domain-wall membrane configuration, the action (6.33) and its on-shell value (6.34) re-

main unchanged (for fixed boundary conditions). This clearly suggests that the membrane
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equations of motion are identically satisfied for the considered domain wall solutions thus

confirming their consistency.9

Indeed, in the static gauge and on the domain wall solution the membrane equa-

tions (F.11) reduce to
[

e−3D d

dy

(

e3D|T |
)

− qI
∗F 4I + pI∗F̃4I

]

y=0

= 0, (6.40)

where T (y) ≡ qIf
I(φ(y)) − pIGI(φ(y)) ≡ eiϑT (y)|T (y)|, so that |T |y=0 = TM and ϑT |y=0

coincides with the phase ϑ|y=0 of Z at y = 0. Now, using the flow equations (6.9), upon

some algebra one can check that the following relation holds for an arbitrary y

e−3D d

dy

(

e3D|T |
)

− cos(ϑ− ϑT )
(

qI
∗F 4I − pI∗F̃4I

)

− sin(ϑ− ϑT )X = 0, (6.41)

with

X = MIJ
[

(qI +NILp
L)∗F̃4J +

(

MJKMILp
L −NJKNILp

L −NJKqI
) ∗FK

4

]

(6.42)

andNIJ ≡ ReGIJ . We see that even though the individual terms in (6.41) are discontinuous

at y = 0, their combination is such that the limit y → 0 of the whole expression is well-

defined and produces the membrane equation of motion.

7 A simple model

To exemplify the above general discussion, we now consider a concrete simple model. It

has two double three-form multiplets SI = (S0, S1), associated with the prepotential

G = −iS0S1. (7.1)

Since G is quadratic, the 2× 2 matrix

GIJ = iMIJ = −i

(

0 1

1 0

)

(7.2)

is constant, and the constraint (2.5), defining the chiral superfields SI in terms of the

complex linear superfields ΣI = (Σ0,Σ1), becomes linear

S0 = − i

2
(D̄2 − 8R)ImΣ1 , S1 = − i

2
(D̄2 − 8R)ImΣ0 . (7.3)

Consider a general Lagrangian of the form (2.8), putting to zero the spectators T p and

the superpotential Ŵ. At the component level, the Lagrangian includes four three-forms










A0
(3)

A1
(3)

Ã(3)0

Ã(3)1











(7.4)

9This is in agreement with a general statement [78–80] that the p-brane equations of motion in the

interacting system including dynamical gravity can be obtained as a consistency condition for the Einstein

equations, i.e. the covariant energy-momentum tensor conservation.
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where, for clarity, we have introduced the change of notation AI
3 → AI

(3), etc. As in (2.13),

one can combine the corresponding field strengths F 0
(4), F

1
(4), F̃(4)0, F̃(4)1 into the complex

field-strengths

F(4)0 = F̃(4)0 − iF 1
(4) , F(4)1 = F̃(4)1 − iF 0

(4) . (7.5)

Let us introduce the parametrization (3.4) of S in terms of the chiral superfields

(Y,Φ), with

f0(Φ) = 1 , f1(Φ) = −iΦ . (7.6)

Then, the general arguments of [28] imply that upon gauge-fixing the super-Weyl invariance

and integrating out the gauge three-forms, one recovers standard supergravity coupled to

the chiral superfield Φ with superpotential

W (Φ) = (e0 + im1)− i(e1 + im0)Φ , (7.7)

where e0, e1,m
0,m1 are real constants. Notice that this result does not depend on the

choice of the kinetic function Ω(S, S̄) in the Lagrangian (2.8). In the following we will

focus on a specific simple choice for Ω(S, S̄).

7.1 Bosonic action, three-forms and SL(2,Z) dualities

Let us now take Ω(S, S̄) as in (3.2), which corresponds to using for the scalar field φ = Φ|
the special Kähler potential

K(φ, φ̄) = − log (4Imφ) (7.8)

associated with the prepotential G. In particular, we see that in order to have a well defined

Kähler potential we should require

Imφ > 0. (7.9)

Then, by the general results of section 3.1, the bosonic sector of the supergravity action

for φ and the gauge three-forms (7.4) is given by

S = −
∫

d4x e

[

1

2
R+

∂φ ∂φ̄

4(Imφ)2
− T IJ(φ)∗F̄4I

∗F4J

]

+ Sbd (7.10)

with Sbd as in (3.15) and

T IJ(φ) =
e−K̂0

6 Imφ

(

1 iφ− Imφ

−iφ̄− Imφ |φ|2

)

, (7.11)

where K̂0 is the constant appearing in the complete Kähler potential (6.7). It is known

that the group of symmetries associated with the special Kähler structure defined by the

prepotential (7.1) is SL(2,R) (see for instance [66]). More precisely, an element
(

a b

c d

)

∈ SL(2,R) (7.12)

acts on φ as follows

φ→ aφ+ b

cφ+ d
. (7.13)
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In the assumption of the quantization conditions of section 3.3, this reduces to SL(2,Z)

(with a, b, c, d ∈ Z), which we will interpret as the duality group of the model. This duality

symmetry SL(2,Z) is embedded into the group of symplectic transformations Sp(4,Z), see

e.g. [66]. Here we focus on the SL(2,Z) generators

t =

(

1 1

0 1

)

, s =

(

0 1

−1 0

)

(7.14)

which correspond to the following Sp(4,Z) transformations

S(t) =











1 0 0 0

0 1 0 1

−1 0 1 0

0 0 0 1











, S(s) =











0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0











. (7.15)

One can check that, applying S(t) and S(s) to the (bosonic component of) the symplectic

vector (4.13), with f I(Φ) as in (7.6), one gets the t- and s-actions on φ as in (7.13).10

Furthermore, one can verify that [S(s)S(t)]3 = ✶, which together with S(s)2 = −✶ implies

that (7.15) generate a four-dimensional representation of SL(2,Z).

By applying (7.15) to (7.4), one can then get the transformation properties of the gauge

three-forms under the SL(2,Z) duality group. Consider the complex field-strengths (7.5)

and organize them into a 2-components vector

~F(4) ≡
(

F(4)0

F(4)1

)

. (7.16)

Under SL(2,Z) we have ~F(4) → U ~F(4), with

U(t) =

(

1 −i

0 1

)

, U(s) =

(

0 −i

−i 0

)

. (7.17)

Notice that these matrices satisfy U †σ1U = σ1 and detU = 1, i.e. they are elements of

SU(1, 1) (defined with respect to the C2 metric σ1), which is known to be isomorphic to

SL(2,R). In other words, U(t) and U(s) generate the SU(1, 1) representation of SL(2,Z).

Using (7.11), one can also check that the 2 × 2 matrix T IJ(φ) transforms as follows

T (φ+ 1) = U(t)†−1T (φ)U(t)−1 ,

T
(

− 1

φ

)

= U(s)†−1T (φ)U(s)−1 .
(7.18)

Observing that the combination Ã(3)I − ḠIKA
K
(3) appearing in the boundary term (3.15)

transforms as F(4)I , one can readily check that the bulk and boundary terms in the ac-

tion (7.10) are separately invariant under the SL(2,Z) duality group. This shows that the

SL(2,Z) duality group is indeed a symmetry of the action (7.10).

10Under s one needs to make also the change Y → φY , which can be reabsorbed by a Kähler transfor-

mation K → K − log φ− log φ̄.
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7.2 The mini-landscape of vacua

Let us study the vacua of the action (7.10) (in the absence of membranes). As discussed

in section 3.2, one can first integrate out the gauge three-forms by picking up a particular

symplectic constant vector










m0

m1

e0
e1











∈ Z4 (7.19)

defined as in (3.20) and rewriting (7.10) in the form

S = −
∫

d4x e

[

1

2
R+

∂φ ∂φ̄

4(Imφ)2
+ V (φ, φ̄)

]

, (7.20)

where V is a conventional N = 1 potential

V (φ, φ̄) = eK
(

Kφφ̄|DφW |2 − 3|W |2
)

= − eK̂0

2Imφ

[

(m1)2 + (e0)
2 + 4(m0m1 + e0e1)Imφ

+ 2(m0e0 −m1e1)Reφ+ ((m0)2 + (e1)
2)|φ|2

]

,

(7.21)

with K = K + K̂0 and W and K are as in (7.7) and (7.8), respectively. Generically,

the effective action (7.20) is not invariant under SL(2,Z) transformations of φ (unless

we appropriately transform also the integration constants mI , eJ). However, given the

‘microscopic’ formulation with three-forms we started from, we can regard this breaking

as spontaneous rather than explicit.

Let us first consider the simplest possibility: m0 = m1 = e0 = e1 = 0. In this

case W ≡ 0 and hence V ≡ 0. So, we have a one-dimensional moduli space of vacua

parametrized by an arbitrary expectation value of φ. As standard in similar situations,

one should identify two vacua related by an SL(2,Z) duality transformation. In view of

the restriction (7.9), the moduli space of the inequivalent vacua can be identified with the

familiar fundamental domain
{

− 1

2
≤ Reφ ≤ 1

2

}

∩
{

|φ| ≥ 1
}

. (7.22)

On the other hand, this moduli space is drastically modified by any non-trivial set of

constants (7.19). It is useful to introduce the complex numbers

α0 ≡ e0 − im1 , α1 ≡ e1 − im0 (7.23)

taking values in Z+ iZ. Notice that the vector

~α ≡
(

α0

α1

)

(7.24)
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transforms as (7.16) under the SL(2,Z) duality tranformations, that is, in the fundamental

SU(1, 1) representation generated by (7.17). The bosonic component of the superpoten-

tial (7.7) takes the form W = ᾱ0 − iᾱ1φ and the corresponding supersymmetric vacuum

expectation value of φ (such that DφW |φ∗ = 0) is

φ∗ = i
α0

α1
. (7.25)

Taking into account (7.9), we require

Imφ∗ =
1

|α1|2
Re(α0ᾱ1) (7.26)

to be finite and positive. In particular, this implies that the cases α1 = 0 and Re(α0ᾱ1) = 0

must be discarded. Then, given a certain ~α, (7.25) is the only extremum of the poten-

tial (7.21).

The condition Imφ∗ > 0 is equivalent to requiring that

Re(α0ᾱ1) ≡
1

2
~α†σ1~α > 0. (7.27)

At the supersymmetric vacua (7.25) the covariantly holomorphic superpotential Z takes

the value

Z∗ = e
1
2
K̂0

ᾱ1

|α1|
√

Re(α0ᾱ1) (7.28)

and the potential reduces to

V∗ = −3|Z∗|2 = −3 eK̂0Re(α0ᾱ1) , (7.29)

which is strictly negative in view of (7.27), and thus determines the constant curvature of

the AdS vacuum. The AdS radius (in natural unitsMP = 1) is identified with the inverse of

|Z∗| = e
1
2
K̂0
√

Re(α0ᾱ1) . (7.30)

Since α0 and α1 are integrally quantized, we should assume that e
1
2
K̂0 ≪ 1 in order to be

within the regime of reliability of our effective supergravity, which is equivalent to |Z∗| ≪ 1,

therefore the AdS radius is much larger than the Planck length.

Now the SL(2,Z) duality group of the theory relates a vacuum (7.25) associated with

a certain set of constants (7.19) (and a corresponding effective superpotential (7.7)) to

another vacuum associated with a different set of constants and effective superpotential. It

follows that, chosen a certain (generic) set of constants (7.19), the domain of φ is the entire

upper half-plane (7.9) (up to some possible residual and non-generic identification), and

not the fundamental domain (7.22). This is a purely four-dimensional realization of the

flux-induced monodromy effects observed in string compactifications, see for instance [18]

for a recent discussion.

On the other hand, in order to identify the inequivalent vacua, corresponding to in-

equivalent choices of the constants (7.19) and of the corresponding effective potentials, we

can restrict ourselves to the vacua (7.25) which sit in the fundamental domain of (7.22).
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Figure 1. A sampling of vacua (7.25) filling the fundamental domain (7.22), for the values of the

constants eI ,m
J ∈ [−11, 11].

The set of such vacua is plotted in figure 1. A similar set of vacua appears in the simplest

models of type IIB flux compactifications on a rigid Calabi-Yau [81], in which φ can be

identified with the axion-dilaton. In the type IIB models one needs to impose the tadpole

cancellation condition, which adds a constraint on the set of allowed vacua. In our formu-

lation with gauge three-forms, the tadpole cancellation condition can be implemented as

outlined at the end of section 3.3.

8 Domain walls between aligned vacua

In this section we explicitly construct a class of domain walls of the kind discussed in sec-

tion 6, relating pairs of vacua φ|−∞ = φ∗ and φ|+∞ = φ′∗ of the form (7.25), corresponding

to two sets of constants αI and α′
I respectively. We make the simplifying assumption that

the phases of Z∗ and Z ′
∗ are aligned and that the phase of Z(y) remains constant along the

flow. Of course, in order to have a (non-trivial) domain wall |Z∗| and |Z ′
∗| should be differ-

ent and then the corresponding vacua cannot be related by a SL(2,Z) duality. From (6.12)

we see that we should impose Im(φ̇ ∂φK) = 0 with K as in (7.8). This is possible only if

Reφ is constant and equals to

Reφ∗ = − Im(α0ᾱ1)

|α1|2
. (8.1)

Clearly, we should also require Reφ′∗ = Reφ∗ . Hence,

v(y) ≡ Imφ(y) (8.2)
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is the only dynamical real field along the flow. As in section 6, we will assume that |Z| is
always increasing along the flow, which drives the field v from v|−∞ = v∗ towards v|+∞ = v′∗
and, at y = 0, it crosses a membrane of charges pI , qJ such that

q0 − ip1 = α0 − α′
0 , q1 − ip0 = α1 − α′

1 . (8.3)

The equations of the flow (6.20) are governed by the growth of |Z|. In particular,

equation (6.20a) reduces to

v̇ = 4v2
d

dv
|Z| . (8.4)

For y < 0, |Z| takes the following form

|Z(v)| = e
1
2
K̂0

2
√
v

[

|α1|v +
Re(α0ᾱ1)

|α1|

]

. (8.5)

For y > 0 the from of |Z| is obtained by replacing αI with α′
I in (8.5).

On the left of the membrane, v∗ is a global minimum of |Z|. Hence, it is a repulsive

fixed point of (8.4), a flow is triggered and v is driven away from v∗, letting the value of |Z|
increase. When the membrane is reached at y = 0, v and consequently |Z| have evolved to

certain values v(0) and |Z|y=0. Here, the solution of the flow equations on the left should

be glued to the one on the right. We are then led to impose the continuity of v across

y = 0 while still keeping a growing |Z|. However, since on the right of the membrane v′∗ is

also a global minimum of |Z|, v′∗ is a repulsive (rather than attractive) fixed point of (8.4).

Hence the solution to the flow equations is such that v reaches the value v′∗ at y = 0 and

then remains constant

v(y) = v′∗ for y ≥ 0 . (8.6)

Correspondingly, |Z| starts from |Z∗| at y = −∞ and smoothly grows until it reaches the

membrane. At this point it jumps up to |Z ′
∗| and then remains constant (see figure 4 for an

example). Hence, on the right of the membrane, the background is just the AdS vacuum

solution.

Recalling (6.36), we see that the bound

TDW ≥ TM (8.7)

is saturated if and only if on the left-hand side of the membrane |Z| is also constant. In the

following we will first examine the case in which the bound (8.7) is saturated, leading to

trivial flow equations on both sides of the membrane, and then we will consider an example

for which the inequality (8.7) strictly holds.

As a warm up, let us assume that on the left of the membrane ~α = 0, so that the

potential (7.21) and Z are identically zero. Then, for y < 0, the flow equations (6.20)

are trivial and are immediately solved by taking v and D to be arbitrary constants. In

particular, with no loss of generality, we can choose D(y) ≡ 0 for y < 0. Therefore, on the

left of the membrane, the bulk is always at a fixed Minkowski vacuum. As discussed above,

on the right of the membrane, the bulk is at its supersymmetric AdS vacuum, in which v

takes the constant value v′∗. Hence, by continuity, we should impose that v(y) ≡ v′∗ also
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Figure 2. The fundamental domain of φ. Along the domain wall, φ flows up along the vertical

line specified by Reφ∗.

for y < 0. Furthermore, by imposing also the continuity of the warp factor, we must set

D(y) = −|Z ′
∗|y for y > 0.

It is worthwhile to mention that this particular case of trivial flow for both y < 0 and

y > 0 can be realized only when on the left-hand side the vacuum is Minkowski, owing to

the freedom in choosing any constant value of v for y < 0.

Let us now consider a more involved example, for which the flow on the left side of the

membrane is nontrivial. For any choice of initial constants α0, α1 and any k ∈ Q such that

kα1 ∈ Z+ iZ (8.8)

we can choose a jump to new constants

α′
0 = α0 + kα1 , α′

1 = α1 , (8.9)

which clearly satisfies Reφ′∗ = Reφ∗. Notice that

Imφ′∗ = Imφ∗ + k . (8.10)

The flow moves along the vertical direction of the upper-half-plane parametrized by φ (see

figure 2). With no loss of generality, we take k > 0, so that Imφ′∗ > Imφ∗. From (7.28),

one can also see that |Z ′
∗| > |Z∗| which is the default assumption in section 6.

Under these restrictions, the initial and final values of v(y) are

v∗ =
Re(α0ᾱ1)

|α1|2
, v′∗ =

Re(α0ᾱ1)

|α1|2
+ k (8.11)

and the membranes charges are

p0 = 0 , p1 = k Imα1 , q0 = −kReα1 , q1 = 0 . (8.12)

– 32 –



J
H
E
P
0
7
(
2
0
1
8
)
0
2
8

2 4 6 8

-50

-40

-30

-20

-10

Figure 3. The potential (7.21) for the choice of the constants e1 = m0 = 1, e0 = m1 = 2, k = 1

and keeping Reφ = 0. The solid red line refers to the potential on the left of the membrane, while

the dashed blue line to that on the right. This potential exhibits, on the left of the membrane,

a supersymmetric AdS critical point located at v∗ = 2 and, on the right, a supersymmetric AdS

critical point at v′
∗
= 3.

0 2 4 6 8
1.5

2.0

2.5

3.0

3.5

4.0

Figure 4. The flow of |Z| for the same set of parameters as in figure 3. The solid red line refers to

|Z| on the left of the membrane, while the dashed blue line to that on the right. The flow drives v∗
towards the value v′

∗
, at which |Z| jumps so that v is located at new supersymmetric vacuum on

the right.

We can now compute the function Z(v, y) corresponding to our setting

Z(v, y) =
ᾱ1e

1
2
K̂0

2|α1|
√
v

[

|α1|v +
Re(α0ᾱ1)

|α1|
+ k|α1|Θ(y)

]

. (8.13)

In agreement with (6.21), Z(v, y) is discontinuous at y = 0 and the width of the disconti-

nuity is set by the tension of the membrane with the charges (8.12)

lim
ε→0

∣

∣

∣
Z(yM + ε)−Z(yM − ε)

∣

∣

∣
=
k|α1|e

1
2
K̂0

2
√

v|y=0

≡ 1

2
TM . (8.14)

An example for the flow of |Z| is depicted in figure 4.
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Figure 5. Above are depicted all the solutions to the flow equations (8.15), (8.18) for the same

set of parameters as in figure 3. The solid red lines refer to the quantities in the region on the

left of the membrane, while the dashed blue lines to those on the right. On the top left there is

the evolution of the scalar field: starting from the critical point on the left of the membrane, the

field v is driven towards the critical point on the right of the membrane. On the top right there

is the modulus of the covariantly holomorphic superpotential |Z|, which is always increasing. On

the bottom left there is the warping D(y), which is always decreasing, using which the curvature,

on the bottom right, can be obtained. As expected from the AdS vacua, the curvature is at a fixed

positive value when the field v reaches the vacua and, even though not explicitly shown here, is

singular at the point y = 0. In the figures y is |Z∗|−1 units.

Consider now the flow equation (8.4). For the examples under consideration, it takes

the explicit form

v̇ = e
1
2
K̂0

√
v

[

|α1|v −
Re(α0ᾱ1)

|α1|
− k|α1|Θ(y)

]

, (8.15)

which is solved by

v(y) =

{

v∗ coth
2
[

1
2 |Z∗|(y + c)

]

for y ≤ 0 ,

v′∗ for y ≥ 0 .
(8.16)

The integration constant c must be negative, c < 0, and is fixed by the continuity at y = 0,

which imposes v∗ coth
2
[

1
2c |Z∗|

]

= v′∗ and always admits a solution.

Since the bulk exhibits a non-trivial flow only on the left-hand side of the membrane,

the membrane tension is given by the vacuum expectation value of φ′∗ to the right of the
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membrane

TM =
k|α1|2eK̂0

|Z ′
∗|

. (8.17)

We still have to solve the equation for the warping (6.20b), which in the present

case reads

Ḋ = −e
1
2
K̂0

2
√
v

[

|α1|v +
Re(α0ᾱ1)

|α1|
+ k|α1|Θ(y)

]

. (8.18)

It also admits an analytic solution given by

D(y) =

{

d+ e−
1
2
K̂0 (log(− sinhu) + log coshu) for y ≤ 0 ,

−|Z ′
∗|y for y ≥ 0 ,

(8.19)

where we have set to zero an arbitrary additive constant and u(y) ≡ 1
2 |Z∗|(y + c). The

integration constant d is fixed by imposing the continuity of D(y) at y = 0.

A couple of final comments. Notice that on the left-hand side of the membrane the

deviation of the complete solution from the AdS vacuum is concentrated within a length

of the same order of the AdS radius |Z∗|−1. Hence, in this sense, the domain wall may

be considered as ‘thick’. Furthermore, clearly, we can make a coordinate redefinition y →
y − yM to get a solution with the membrane localised at any point yM.

9 Conclusions

In this paper we have studied and expanded the N = 1 supergravities including double

three-form multiplets introduced in [28]. We have focused on the subclass of models in

which the dynamics of the double three-form multiplet sector is governed by a special

Kähler structure and is covariant under symplectic tranformations.

Into this setup we have included supermembranes of arbirary (quantised) charges,

which naturally couple to the supersymmetric completion of the three-form potentials via

a WZ term. Given the WZ term, the worldvolume κ-symmetry of the membrane action

fixes the form of its NG term which includes the dependence on the bulk scalar sector in

the way expected from string compactification models (see appendix D for the proof of

κ-symmetry and appendix E for further generalizations).

The back-reaction of the membrane induces a jump in the vevs of the four-form field-

strengths. Hence, from a more conventional supergravity perspective (which can be re-

trieved from the three-form theory by setting the field-strengths on-shell), this implies the

appearance of an effective superpotential with different coupling constants on the left and

on the right-hand side of the membrane. Within this setup we have examined how super-

symmetric vacua corresponding to different four-form flux integration constants separated

by the membrane are connected by ‘jumping’ BPS domain walls. As a simple and instruc-

tive example we have considered a model with two double three-form multiplets and found

explicit analytic solutions describing jumping domain walls therein. Thus, our results gen-

eralize the class of the BPS domain walls of four-dimensional N = 1 supergravities studied

previously e.g. in [8, 33, 39–44].
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We believe that the results of this paper provide an appropriate starting point for

describing, from an effective four-dimensional perspective, non-trivial dynamical processes

involving at the same time membranes, fluxes and the scalar sector of flux compactifi-

cations, as for instance those considered in [9, 10]. In particular, in this paper we have

only considered the effects of membranes on flat BPS domain walls, postponing the study

of other possible dynamical effects (for example, the nucleation of non-BPS membrane

bubbles) and their physical implications to the future.
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A Super-Weyl transformations

The Lagrangian (2.1) is invariant under the super-Weyl transformations of the chiral su-

perfields and the super-vielbein [51, 52]

Z → e−6ΥZ,

Ea
M → eΥ+ῩEa

M ,

Eα
M → e2Υ−Ῡ

(

Eα
M − i

2
Eα

Mσ
αα̇
a D̄α̇Ῡ

)

.

(A.1)

After singling out the chiral compensator as in (3.4), we can think of the super-Weyl

transformation as acting on the chiral compensator only

Y → e−6ΥY (A.2)

leaving the chiral superfields Φi invariant. Under a general Kähler transformation

K(Φ, Φ̄) → K(Φ, Φ̄) + f(Φ) + f̄(Φ̄) (A.3)

the Lagrangian (2.1) is not invariant. Such invariance is only restored if (A.3) is accompa-

nied by a super-Weyl rescaling of the compensator and the superpotential, namely

Y → e−f(Φ)Y ,

W (Φ) → e−f(Φ)W (Φ) .
(A.4)
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In other words, the chiral compensator and the superpotential are holomorphic sections of

a complex line bundle over the Kähler manifold.

The prepotential P which determines the structure of the three-form gauge superfield

A3 in (5.4) transforms under the Weyl rescaling as follows

P → e−2(Υ+Ῡ)P. (A.5)

This ensures that A3 is Weyl invariant [34].

B General bosonic action

With the choice of the kinetic function as in (3.1) and (3.2), the most general superfield

action built from (2.8) leads to the bosonic component action of the following form

Sbos =−
∫

d4x e

(

1

2
R+GIJf

I
if̄

J
̄ ∂φ

i∂φ̄̄ + K̂pq̄ ∂t
p∂t̄q̄

)

+ S3-forms + S
Ŵ

(B.1)

where the three-form action S3-forms is

S3-forms =

∫

d4x e T IJ∗F̄4I
∗F4J + S3−forms, bd (B.2)

and the Ŵ -depending action SŴ is (where we use the property of the superpotential Ŵ =

ŴKf
K)

S
Ŵ

=

∫

d4x e

{

−eK
[

K̂ q̄p − 1

γ
K̂ q̄lK̂lK̂

l̄pK̂l̄

]

ŴpŴ q̄

}

+Re

∫

d4x e

{

− i

γ(fMf̄)
K̂q̄K̂

q̄pŴpf̄
I∗F4I+

+ i(fMf̄)

[

ŴKGILMLKMIN − Ŵ f̄N

(fMf̄)2

]

∗F4N

}

+ S
Ŵ , bd .

(B.3)

Here γ is defined as in (3.16c). The boundary terms are given by

S3−forms, bd = 2Re

∫

B
T IJ(Ã3I − GIKA

K
3 )∗F4J (B.4)

and

S
Ŵ , bd =Re

∫

B

{

− i

γ(fMf̄)
K̂q̄K̂

q̄pŴpf̄
I(Ã3I − GIKA

K
3 )+

+ i(fMf̄)

[

ŴKGILMLKMIN − Ŵ f̄N

(fMf̄)2

]

(Ã3N − GNPA
P
3 )

}

.

(B.5)
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C Supersymmetry transformations of fermions

In the double three-form supergravity under consideration the supersymmetry transforma-

tions of the gravitino and the chiralini, in the bosonic background, have the following form

δψm
α = −2D̂mζ

α − iem
ce−

K
2 W (ǫσcζ̄)

α ,

δχi
α =

√
2ζαe

K
2 K ̄i(W ̄ +K̄W )− i

√
2σαβ̇

aζ̄ β̇∂aφ
i ,

δρpα =
√
2ζαe

K
2 K̂ q̄pKq̄W − i

√
2σαβ̇

aζ̄ β̇∂at
p ,

(C.1)

where W and Wi were defined in (3.23), the covariant derivative of the supersymmetry

parameter is given by

D̂mζ
α ≡ ∂mζ

α + ζβωmβ
α − i

2
Amζ

α , (C.2)

and the U(1) Kähler connection is

Am =
i

2

(

Ki∂mφ
i −Kı∂mφ̄

ı + K̂p∂mt
p − K̂p̄∂mt̄

p̄
)

. (C.3)

In the absence of Tp multiplets, the BPS condition on the domain wall ansatz dis-

cussed in section 6 is obtained by setting to zero the corresponding variations (C.1), which

reduce to
δψy

α =− 2ζ̇α + iAyζ
α − ie

K
2 W (ǫσy ζ̄)

α ,

δψi
α = eD

[

Ḋ (ζσyσ̄i)
α − ie

K
2 W (ǫσiζ̄)

α
]

,

δχi
α =

√
2ζαe

K
2 K ̄i(W ̄ +K̄W )− i

√
2σαβ̇

y ζ̄ β̇φ̇i .

(C.4)

D Proof of κ-symmetry

In superspace, we mostly follow notation and conventions of [82]. In particular, for the

superspace superform algebra of this and the following appendices, we adopt the inverse-

index notation and the external-derivative acts from the right.11

The action of the supermembrane in the background of supergravity and three-form

multiplets, (5.11), (5.9) and (5.2), can be written in the following form

SM = SNG + SWZ = −2

∫

C
d3ξ

√
− det h |T |+

∫

C
A3 , (D.1)

where T is a composite special chiral superfield

T = qIS
I − pIGI(S) = qIS

I − pIGIJ(S)S
J , (D.2)

11Here and in the following appendices, the results of [12–14, 71, 72] are employed. To pass from the

(mostly minus) notation used there to that of [82], one should change the sign of the metric, ηab 7→ −ηab, the

spin connection ωa
b 7→ −ωa

b, curvature Ra
b 7→ −Ra

b and of the right-handed fermionic covariant derivative,

D̄α̇ 7→ −D̄α̇, rescale the chiral superfield of supergravity R 7→ R/8, and assume that the following quantities

do not change the sign: Ea, σa
αα̇, εabcd, ε

ijk, Ga.
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which is constructed as

T = − i

4
(D̄2 − 8R)P (D.3)

from the composite prepotential

P = qIPI − pIP̃I = −2qIMIJ ImΣJ + 2pIIm(ḠIJMJKΣK) (D.4)

in which PI and P̃I were defined in (4.9). The three-form A3 in the WZ term of (D.1) is

constructed as in (5.4) with the composite prepotential (D.4). The field strength of this

super-three-form is

H4 = dA3 = iEb ∧ Ea ∧ Ēα̇ ∧ Ēβ̇σ̄ab α̇β̇T − iEb ∧ Ea ∧ Eα ∧ Eβσab αβT̄

− i

6
Ec ∧ Eb ∧ Ea ∧ Ēα̇ǫabcdσ

d
αα̇DαT − i

6
Ec ∧ Eb ∧ Ea ∧ Eαǫabcdσ

d
αα̇D̄α̇T̄

+
1

96
Ed ∧ Ec ∧ Eb ∧ Eaǫabcd

(

(DD − 24R̄)T + (D̄D̄ − 24R)T̄
)

. (D.5)

The measure d3ξ in the Nambu-Goto type term is defined by

dξi ∧ dξj ∧ dξk = ǫijk d3ξ . (D.6)

This implies the identities

d3ξ
√
−h =

1

3
∗3Ea ∧ Ea , d3ξ δ

√
−h = ∗3Ea ∧ δEa , (D.7)

where the action of worldvolume Hodge duality operation ∗3 on a one-form is defined by

∗3EA :=
1

2
dξj ∧ dξi

√
−hǫijkhklEA

l . (D.8)

This latter can be used to write the variation of the Nambu-Goto action with respect to

the embedding coordinates zM (ξ) in the form

δSNG = −2

∫

C

∗3Ea ∧ δEa |T | − 2

∫

C
d3ξ

√
−hTδT̄ + δT T̄

|T | , (D.9)

while the variation of the Wess-Zumino term is12

δSWZ =

∫

C
δA3 =

∫

C
(iδzdA3 + d iδzA3) =

∫

C
iδzH4. (D.10)

Here for varying C we used the Lie derivative formula δz = diδz + iδzd and its Lorentz

covariant extension

δz = Diδz + iδzD , (D.11)

which is equivalent to the Lie derivative modulo local Lorentz transformations.

12In the case of a closed membrane or an infinitely extended membrane (with a proper behaviour at

infinity) the total derivative term does not contribute.
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We are searching for κ-symmetry transformations, leaving the supermembrane action

invariant, in the form which is common for a general class of superbranes, i.e.

iκE
a = δκz

MEa
M (z) = 0 ,

iκE
α = δκz

MEα
M (z) = κα , iκE

α̇ = δκz
MEα̇

M (z) = κ̄α̇ .
(D.12)

For this transformations the variations of the bosonic supervielbein, chiral superfields and

the WZ term take the form

δκE
a = DiκEa + iκDEa = −2iEα(σaκ̄)α + 2i(κσa)α̇E

α̇ , (D.13)

δκT = καDαT , δκT̄ = καD̄α̇T̄ , (D.14)

iκH4 = − 2iEb ∧ Ea ∧ Ēα̇(κ̄σ̄ab)α̇T + 2iEb ∧ Ea ∧ Eα(σabκ)αT̄−

− i

6
Ec ∧ Eb ∧ Eaǫabcd(σ

dκ̄)αDαT − i

6
Ec ∧ Eb ∧ Eaǫabcd(κσ

d)α̇D̄α̇T̄ .
(D.15)

Now, using the identities

Eb ∧ Ec ∧ Eβσbc β
α = −2 ∗3Ea ∧ Eβ(σa Γ)β

α ,

d3ξ
√
−hΓ =

i

3!
σaǫabcdE

b ∧ Ec ∧ Ed ,
(D.16)

one can check that the variation of the WZ term (D.10) cancel the variation (D.9) of the

NG term, provided

κα =
T

|T |(Γκ̄)α . (D.17)

This is exactly the condition (5.13) of the main text.

E Generic systems of 3-form matter, supergravity and supermembranes

The supermembrane interaction with a single three-form multiplet is described by the

equations from the previous section, if we consider the special chiral superfield T to be

fundamental, i.e. expressed through a single fundamental real prepotential P rather than

composite as in (D.2). In this case the chiral superfield T has the auxiliary field FT =

F + i∗F4 whose real part is a scalar and the imaginary part is the dual of the single

four-form.

Now, to describe general systems of supergravity and three-forms coupled to the mem-

brane we introduce a set of chiral superfields of conformal weight 3, ZΛ (Λ = (I, I)), where

the indices I and I label the subsets of double and single three-form superfields. In this

set the conformal compensator Y can be chosen at will. It can be either single- or dou-

ble three-form superfield. Then the other superfields are associated with the double or

single 3-form matter supermultiplets. Note that there also is a third case in which the

conformal compensator is not among the independent fields of the set ZΛ coupled to the

membrane. Then the supermembrane couples to supergravity only via the physical three-

form superfields. In this case the off-shell supergravity can be consistently chosen to be the
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conventional old-minimal supergravity with the both components of its complex auxiliary

field being scalars (and not three-forms).

The general action for the supermebrane coupled to the superfields ZΛ has the follow-

ing form

Sp=2 = −2

∫

C
d3ξ

√
−h|qΛZΛ|+ qI

∫

C
C3

I + q̄I

∫

C
C̄I

3 + qI

∫

C
AI

3 , (E.1)

where CI
3 are the complex super three-forms associated with the double three-form super-

multiplets and the real super three-forms AI
3 are associated with the single three-form ones.

The action is invariant under the kappa-symmetry transformations (D.13) and (D.17)

in which T = qΛZ
Λ.

F Membrane equations of motion

Here we enlist the equations of motion coming from the complete action (3.14)+(5.15) and

their form after employing the domain wall ansatz (6.5).

First, the equation of motion of the graviton is

Rmn − 1

2
gmnR = Tmn + gmnV +

∫

d3ξ TM

√
−h√−g δ (x

m − zm(ξ))hab∂az
m∂bz

n (F.1)

with

Tmn = Kī (g
mngpq − 2gmpgnq) ∂pφ

i∂qφ̄
j . (F.2)

Taking the trace of (F.1), we get the following equation for the scalar curvature

− R

2
= Kī ∂

mφi∂mφ̄
j + 2V +

3

2

∫

d3ξ

√
−h√−g δ (x

m − zm(ξ))TM . (F.3)

In the static gauge xµ(ξ) = ξiδµi , in which the only nontrivial worldvolume bosonic field is

y(x), the last term in (F.3) reduces to 3
2TM

√
−h√
−g
δ (y − y(x)) and the equation for the scalar

curvature becomes

− R

2
= Kī ∂

mφi∂mφ̄
j + 2T IJ∗F̄4I

∗F4J +
3

2

√
−h√−g δ (y − y(x))TM . (F.4)

The domain wall ansatz (6.5) implies that the only nonvanishing (vielbein) component of

the spin connection is

ωa3
i = −δai e2D(y)Ḋ , (F.5)

so that the curvature two-form reduces to

Rab = −ea ∧ ebḊ2 + 2δ
[a
3 e

b] ∧ dy D̈ (F.6)

and the Ricci scalar is

R = 6
(

2Ḋ2 + D̈
)

. (F.7)
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We can then combine (F.3) with the flow equation (6.20b), immediately getting

d|Z|
dy

= Kīφ̇
i ˙̄φ̄ +

1

2
TM δ(y) (F.8)

coherently with (6.21). The above equation is also implied by the three-form field equa-

tions (6.2) if one uses the definition of W in (3.23). This shows the consistency of the su-

pergravity equations of motion with the domain wall ansatz [8] and the flow equations [33].

Let us now come to the equations of motion for the membrane. When all the fermions

are set to zero, in the Einstein frame the supermembrane action has the form (5.15), which

we write as

SM = −2

∫

C

d3ξ
√
−hTM + qI

∫

C

AI
3 − pI

∫

C

Ã3I (F.9)

with

TM = Z = e
1
2
K|(qIf I(φ)− pIGI(φ))| . (F.10)

The supermembrane equations are then

Di

(√
−hhijEjaTM

)

=
√
−hDaTM +

1

3!
εabcdε

ijkEb
iE

c
jE

d
k

(

qI
∗F I

4 − pI∗F̃I4

)

, (F.11)

where Ea
i are coefficients of the pull back of the bosonic vielbein, Ea

i = ∂ix
meam(x(ξ)). In

the bosonic background (6.5), after fixing the ‘static gauge’ xµ = ξiδµi , these latter acquire

the form

Ea
i = ∂iy(x)δ

a
3 + eD(y)δai (F.12)

so that

hij = e2D(y)ηij + ∂iy(x)∂jy(x) ,

hij = e−2D(y)

(

ηij −
e−2D(y)∂iy(x)∂jy(x)

1 + e−2D(y)∂ky(x)∂ky(x)

)

,
(F.13)

where ∂iy(x) = ηij∂jy(x). Let us consider a ground state solution of these equations in

the domain wall background (6.5) in which the scalar fields depend only on the transverse

coordinate y, TM = TM (y), the three-form gauge potentials have the form (6.8), while

∗F I
4 = −e−3D d

dy
αI(y) , ∗F̃4I = −e−3D d

dy
α̃I(y) , (F.14)

and DaTM = δ3a
d
dyTM .

It is natural to assume that the ground state solution describes a flat membrane world-

volume such that

∂iy = 0 ⇒ y(x) = y0 = const ,

where y0 indicates the place of the membrane in the bulk.

This implies that Ea
i = eD(y0)δai , hij = e2D(y0)ηij , Di

(√
−hhijEjaTM

)

=

−3δ3aḊe
DTM (y0), and the only nontrivial (a = 3) component of the equations (F.11) takes

the form
(

3ḊTM +
d

dy
TM − qI

∗F 4
I (y) + pI∗F̃4I(y)

)∣

∣

∣

∣

y=y0

= 0 , (F.15)
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or, taking into account (F.14), we have

d

dy

(

e3DTM + qIα
I − pI α̃I

)

∣

∣

∣

∣

y=y0

= 0 , (F.16)

where T (y0) = TM is the membrane tension.

Let us now connect the previous discussion with that of section 6. There, we considered

the (super)membrane action (5.15) as part of the action for the interacting system including

dynamical supergravity and matter fields. In general, actions of this kind possess the bulk

diffeomorphism invariance which can be used to choose, directly in the action, the gauge

in which the embedding of the supermembrane worldvolume into the bulk is described by

the equation

y(x) = 0 , (F.17)

so that the transverse fluctuations of the membrane look ‘frozen’. Nevertheless, the su-

permembrane equations can still be obtained from the action in this gauge. They appear

as self-consistency conditions of the supergravity (and matter) field equations (see [68, 70]

and [80] for discussion and more references). A particular manifestation of this effect is

that the membrane equations (6.40) are satisfied identically due to the consequence (6.41)

of the flow equations (6.9).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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[19] S. Bielleman, L.E. Ibáñez and I. Valenzuela, Minkowski 3-forms, Flux String Vacua, Axion

Stability and Naturalness, JHEP 12 (2015) 119 [arXiv:1507.06793] [INSPIRE].

[20] E. Dudas, Three-form multiplet and Inflation, JHEP 12 (2014) 014 [arXiv:1407.5688]

[INSPIRE].

[21] I. Valenzuela, Backreaction Issues in Axion Monodromy and Minkowski 4-forms, JHEP 06

(2017) 098 [arXiv:1611.00394] [INSPIRE].

[22] G. Dvali, Three-form gauging of axion symmetries and gravity, hep-th/0507215 [INSPIRE].

[23] G. Dvali, Large hierarchies from attractor vacua, Phys. Rev. D 74 (2006) 025018

[hep-th/0410286] [INSPIRE].

[24] G. Dvali, A Vacuum accumulation solution to the strong CP problem, Phys. Rev. D 74

(2006) 025019 [hep-th/0510053] [INSPIRE].

[25] G. Dvali, S. Folkerts and A. Franca, How neutrino protects the axion, Phys. Rev. D 89

(2014) 105025 [arXiv:1312.7273] [INSPIRE].

[26] G. Dvali and L. Funcke, Small neutrino masses from gravitational θ-term, Phys. Rev. D 93

(2016) 113002 [arXiv:1602.03191] [INSPIRE].

[27] G. Dvali and L. Funcke, Domestic Axion, arXiv:1608.08969 [INSPIRE].

– 44 –

https://doi.org/10.1088/1126-6708/2000/06/006
https://arxiv.org/abs/hep-th/0004134
https://inspirehep.net/search?p=find+EPRINT+hep-th/0004134
https://doi.org/10.1016/S0550-3213(01)00097-9
https://arxiv.org/abs/hep-th/0005276
https://inspirehep.net/search?p=find+EPRINT+hep-th/0005276
https://doi.org/10.1016/j.physletb.2007.12.019
https://doi.org/10.1016/j.physletb.2007.12.019
https://arxiv.org/abs/0709.3314
https://inspirehep.net/search?p=find+EPRINT+arXiv:0709.3314
https://doi.org/10.1016/j.nuclphysb.2011.03.010
https://arxiv.org/abs/1011.1818
https://inspirehep.net/search?p=find+EPRINT+arXiv:1011.1818
https://doi.org/10.1088/1742-6596/343/1/012012
https://arxiv.org/abs/1107.3232
https://inspirehep.net/search?p=find+EPRINT+arXiv:1107.3232
https://doi.org/10.1007/JHEP08(2012)140
https://doi.org/10.1007/JHEP08(2012)140
https://arxiv.org/abs/1205.5885
https://inspirehep.net/search?p=find+EPRINT+arXiv:1205.5885
https://doi.org/10.1007/JHEP06(2016)120
https://arxiv.org/abs/1605.07631
https://inspirehep.net/search?p=find+EPRINT+arXiv:1605.07631
https://doi.org/10.1103/PhysRevLett.102.121301
https://doi.org/10.1103/PhysRevLett.102.121301
https://arxiv.org/abs/0811.1989
https://inspirehep.net/search?p=find+EPRINT+arXiv:0811.1989
https://doi.org/10.1088/1475-7516/2011/03/023
https://doi.org/10.1088/1475-7516/2011/03/023
https://arxiv.org/abs/1101.0026
https://inspirehep.net/search?p=find+EPRINT+arXiv:1101.0026
https://doi.org/10.1007/JHEP09(2014)184
https://doi.org/10.1007/JHEP09(2014)184
https://arxiv.org/abs/1404.3040
https://inspirehep.net/search?p=find+EPRINT+arXiv:1404.3040
https://doi.org/10.1007/JHEP12(2015)119
https://arxiv.org/abs/1507.06793
https://inspirehep.net/search?p=find+EPRINT+arXiv:1507.06793
https://doi.org/10.1007/JHEP12(2014)014
https://arxiv.org/abs/1407.5688
https://inspirehep.net/search?p=find+EPRINT+arXiv:1407.5688
https://doi.org/10.1007/JHEP06(2017)098
https://doi.org/10.1007/JHEP06(2017)098
https://arxiv.org/abs/1611.00394
https://inspirehep.net/search?p=find+EPRINT+arXiv:1611.00394
https://arxiv.org/abs/hep-th/0507215
https://inspirehep.net/search?p=find+EPRINT+hep-th/0507215
https://doi.org/10.1103/PhysRevD.74.025018
https://arxiv.org/abs/hep-th/0410286
https://inspirehep.net/search?p=find+EPRINT+hep-th/0410286
https://doi.org/10.1103/PhysRevD.74.025019
https://doi.org/10.1103/PhysRevD.74.025019
https://arxiv.org/abs/hep-th/0510053
https://inspirehep.net/search?p=find+EPRINT+hep-th/0510053
https://doi.org/10.1103/PhysRevD.89.105025
https://doi.org/10.1103/PhysRevD.89.105025
https://arxiv.org/abs/1312.7273
https://inspirehep.net/search?p=find+EPRINT+arXiv:1312.7273
https://doi.org/10.1103/PhysRevD.93.113002
https://doi.org/10.1103/PhysRevD.93.113002
https://arxiv.org/abs/1602.03191
https://inspirehep.net/search?p=find+EPRINT+arXiv:1602.03191
https://arxiv.org/abs/1608.08969
https://inspirehep.net/search?p=find+EPRINT+arXiv:1608.08969


J
H
E
P
0
7
(
2
0
1
8
)
0
2
8

[28] F. Farakos, S. Lanza, L. Martucci and D. Sorokin, Three-forms in Supergravity and Flux

Compactifications, Eur. Phys. J. C 77 (2017) 602 [arXiv:1706.09422] [INSPIRE].

[29] F. Carta, F. Marchesano, W. Staessens and G. Zoccarato, Open string multi-branched and

Kähler potentials, JHEP 09 (2016) 062 [arXiv:1606.00508] [INSPIRE].
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[73] M. Cvetič, Extreme domain wall - black hole complementarity in N = 1 supergravity with a

general dilaton coupling, Phys. Lett. B 341 (1994) 160 [hep-th/9402089] [INSPIRE].

[74] P. Claus, R. Kallosh, J. Kumar, P.K. Townsend and A. Van Proeyen, Conformal theory of

M2, D3, M5 and D1-branes + D5-branes, JHEP 06 (1998) 004 [hep-th/9801206] [INSPIRE].

[75] L. Girardello, M. Petrini, M. Porrati and A. Zaffaroni, Novel local CFT and exact results on

perturbations of N = 4 superYang-Mills from AdS dynamics, JHEP 12 (1998) 022

[hep-th/9810126] [INSPIRE].

[76] D.Z. Freedman, S.S. Gubser, K. Pilch and N.P. Warner, Renormalization group flows from

holography supersymmetry and a c theorem, Adv. Theor. Math. Phys. 3 (1999) 363

[hep-th/9904017] [INSPIRE].
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