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Abstract We present a duality procedure that relates con-
ventional four-dimensional matter-coupled N = 1 super-
gravities to dual formulations in which auxiliary fields are
replaced by field strengths of gauge three-forms. The duality
promotes specific coupling constants appearing in the super-
potential to vacuum expectation values of the field strengths.
We then apply this general duality to type IIA string compact-
ifications on Calabi–Yau orientifolds with RR fluxes. This
gives a new supersymmetric formulation of the correspond-
ing effective four-dimensional theories which includes gauge
three-forms.
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1 Introduction

The physical role of gauge three-forms in four-dimensional
field theories has been studied for several decades. For
instance, constant four-form fluxes of these fields may effect
the value of the cosmological constant directly or via cou-
plings of the three-forms to membranes (see e.g. [1–15]). A
possible role of three-forms in the solution of the strong CP
problem was discussed e.g. in [16–21] and in inflationary
models in [22–27]. In the context of four-dimensional global
and local supersymmetric theories, three-form gauge fields
can be naturally incorporated as auxiliary fields of supermul-
tiplets, as e.g. in [8,12–15,28–41].

Furthermore, effective field theories with gauge three-
forms can find a natural application in the context of string
compactifications [25,42–44]. In particular, the effective
four-dimensional theories describing flux compactifications
of type IIA and IIB string theories should allow for a super-
symmetric formulation including gauge three-forms, whose
field strengths are dual to the fluxes threading the internal
compactified space. In [25] it was suggested that three-forms
coming from the dimensional reduction of type II supergrav-
ities could be associated with auxiliary fields of chiral and
gravity multiplets. However, this idea does not seem to be
realizable within any of the four-dimensional supersymmet-
ric models constructed so far.

This problem motivated us to revisit the role of gauge
three-forms in four-dimensional rigid and local supersym-
metry, focusing on the minimal N = 1 case and looking for
supergravity-matter models in which the results of [25] could
fit. More specifically, we will address the following general
question, suggested by the somewhat universal structure of
the four-dimensional effective theories describing string flux
compactifications. Consider a supersymmetric theory with
a set of chiral superfields �A and a superpotential of the
form

W = eA�A + mAGAB(�)�B + Ŵ (�), (1.1)
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where eA and mA are real constants, and Ŵ (�) and
GAB(�) are arbitrary holomorphic functions which, even
if not explicitly indicated, can possibly depend on addi-
tional chiral superfields. The question is then: does there
exist an alternative supersymmetric formulation of the
effective theory with a set of pairs of gauge three-forms
(AA

3 , Ã3A) in which the coupling constants eA and mB

are promoted to vacuum expectation values of the field
strengths F A

4 = dAA
3 and F̃4A = d Ã3A? Note that this

procedure is a certain kind of duality transformation that
trades coupling constants for gauge three-forms, which do
not carry propagating degrees of freedom in four dimen-
sions.

In this paper we will provide a positive answer to this ques-
tion. The new formulation will be obtained by a supersym-
metric duality transformation, which modifies the structure
of the chiral multiplets �A, substituting their scalar complex
auxiliary fields F A or just the real parts thereof with a com-
bination of the field strengths F A

4 and F̃4A. Furthermore, this
procedure naturally generalizes to the locally supersymmet-
ric case when one of the scalar superfields �A (e.g. �0) is
considered to be the compensator of the super-Weyl-invariant
formulation of supergravity. After gauge-fixing the super-
Weyl symmetry, the duality transformation involves also the
auxiliary field of the old minimal supergravity multiplet.

Before arriving at the detailed discussion of the general
dualization procedure outlined above, we will first consider
the simpler subcases in which GAB is constant. In these sub-
cases, our dualization explicitly relates the three known types
of chiral multiplets: the conventional one with the complex
scalar as the auxiliary field, the single three-form multiplet
in which the complex auxiliary field is a sum of a real scalar
and the Hodge dual of the field strength of a real gauge three-
form, and the double three-form multiplet in which the auxil-
iary field is the field strength of a complex gauge three-form.
In particular, the single three-form multiplets arise when the
matrix ImGAB is degenerate, as for instance in the extreme
case ImGAB ≡ 0.

In the case of constant GAB the relation between the con-
ventional chiral and the dual three-form multiplet is linear.
This is no longer true for a general GAB(�) in which case
the duality relation is non-linear and might not allow for a
general explicit superfield solution. However, it turns out to
be tractable if we assume that GAB(�) is identified with the
second derivative of a homogeneous “prepotential” G(�) of
degree 2. In fact, this is what happens in string flux compact-
ifications.

In the course of the study of the dual formulations with
three-form multiplets we will encounter a subtlety regard-
ing the presence of boundary terms in the Lagrangian. The
necessity to take into account appropriate boundary terms in
the theories with gauge three-forms, either supersymmetric
or not, is well known (see e.g. [4,6,7,38]). As we will show,

our dualization procedure automatically produces the correct
boundary terms, which then do not need to be introduced by
hand.

As a concrete non-trivial example, we will perform the
duality transformation of the supersymmetric effective the-
ory associated with type IIA orientifold string compactifi-
cations on Calabi–Yau spaces with Ramond–Ramond (RR)
fluxes. This effective theory has a superpotential of the form
(1.1) with GAB(�) = ∂A∂BG(�) and G(�) being homoge-
neous of degree 2. In this superpotential the constants eA and
mB are identified with the quanta of the internal RR fluxes
threading the compactification space and �A with a combi-
nation of the Kähler moduli and the super-Weyl compensator
superfields. As we will see, the field strengths F A

4 and F̃4A

produced by the duality procedure perfectly match the field
strengths obtained by direct dimensional reduction of the IIA
RR field strengths in [25]. For simplicity, we will work under
the assumption that the internal NSNS flux vanishes, which
allows us to ignore the tadpole cancellation condition. For
more general type IIA, as well as type IIB flux compacti-
fications, the tadpole condition must be appropriately taken
into account. Furthermore, the dual formulation with gauge
three-forms should allow for a natural incorporation of the
open-string sector into the effective theory, as in [42–44]. We
leave these interesting developments for the future.

The paper is organized as follows. In Sect. 2 we intro-
duce the duality procedure in rigid supersymmetric theories.
We first discuss simpler cases with constant GAB , review-
ing the structure of the corresponding known types of chi-
ral three-form multiplets. We then generalize the dualization
procedure to a general GAB(�), which leads to a non-linear
duality relation.

In Sect. 3 we extend the duality procedure to supergrav-
ity. We first apply it to pure old minimal N = 1 supergravity
in its super-Weyl-invariant formulation, producing the three-
form formulations thereof. In particular, this shows how the
different formulations are related to each other by duality
transformations of the corresponding super-Weyl compen-
sators. Then we consider models with chiral multiplets cou-
pled to supergravity and apply to them the non-linear dual-
ity transformation put forward in the rigid case. The duality
acts simultaneously on matter superfields and the super-Weyl
compensator. In the resulting dual formulation the auxiliary
fields of the chiral and gravity multiplets are expressed in
terms of the gauge three-forms and the scalar fields.

In Sect. 4 we apply the duality transformation to the effec-
tive four-dimensional theory associated with orientifold type
IIA string compactifications with RR fluxes. We also pro-
vide the explicit relation between field strengths of the four-
dimensional theory and the ten-dimensional RR fields.

In Appendix A we give the component content of the dif-
ferent four-dimensional N = 1 superfields which are used
in the main text. In Appendix B we show how the dualiza-

123



Eur. Phys. J. C (2017) 77 :602 Page 3 of 19 602

tion procedure works for a simple bosonic field theory and
then consider an instructive example which explains how the
bosonic boundary terms can be obtained as components of a
superspace defined Lagrangian. Appendix C contains useful
expressions for the applications to type IIA flux compactifi-
cations.

We mainly use notation and conventions of [45].

2 Three-form multiplets in supersymmetry

In this section we explain how the dualization procedure
works in the case of rigid N = 1 supersymmetric theories.
In the simplest case of constant GAB in (1.1), it will produce
known variants of off-shell chiral multiplets, whose auxil-
iary fields are replaced by the field strength of one or two
gauge three-forms. We will refer to these chiral multiplets
as single and double three-form multiplets, respectively. As
we will see, in the case of generic GAB(�), the dualization
will provide a generalization of these off-shell three-form
multiplets.

2.1 Single three-form multiplets

Consider a rigid supersymmetric theory for a set of chiral
superfields

�A = ϕA + √
2θψ A + θ2F A, (2.1)

with a superpotential of the form (1.1) in the simplest case in
which ImGAB = 0. In such a case, sinceGAB is holomorphic,
ReGAB is necessarily constant and then the Lagrangian takes
the form

L =
∫

d4θK (�, �̄) +
( ∫

d2θ
[
rA�A + Ŵ (�)

] + c.c.
)
,

(2.2)

where rA ≡ eA + mBReGAB are real constants.
To dualize the Lagrangian (2.2), we promote the constants

rA to chiral superfields XA and introduce real scalar super-
fieldsU A as Lagrange multipliers. The Lagrangian (2.1) gets
substituted by

L′ =
∫

d4θ K (�, �̄) +
( ∫

d2θ XA�A + c.c.
)

+ i
∫

d4θ(XA − X̄ A)U A +
( ∫

d2θ Ŵ (�) + c.c.
)
.

(2.3)

Integrating out U A by imposing its equations of motion one
gets

XA − X̄ A = 0. (2.4)

The chirality of XA (D̄α̇XA = 0 = Dα X̄ A) then implies
that XA = rA, with rA being real constants. Plugging this
solution back into (2.3) we get the initial Lagrangian (2.2).

To find the formulation of the theory in terms of three-
form multiplets we vary (2.3) with respect to XA subject to
the boundary conditions

δXA|bd = 0, (2.5)

which gives

�A = Y A, (2.6)

with

Y A ≡ i

4
D̄2U A. (2.7)

The superfields Y A differ from ordinary chiral superfields
only in their θ2-components

Y A = yA + √
2θχ A + θ2(∗F A

4 + i DA), (2.8)

where DA are real auxiliary scalar fields and

F A
4 = dAA

3 . (2.9)

Hence the real-part of the ordinary scalar auxiliary fields is
substituted by the field strengths F A

4 of the gauge three-form
AA

3 , which are part of the U A multiplets (see Appendix A).
The three-form fields appear only inside their field strengths
because of the invariance of (2.7) under the gauge transfor-
mations

U A → U A + L A, (2.10)

where LA are arbitrary real linear superfields D2L A =
D̄2L A = 0. This superspace gauge symmetry incorporates
the bosonic gauge symmetry

AA
3 → AA

3 + d
A
2 , (2.11)

and mods out the redundant components of U A, which do
not survive the chiral projection i

4 D̄
2.

We will refer to the chiral superfields Y A as single three-
form multiplets. This kind of scalar multiplet was introduced
in [31] and studied in detail in [38]. For instance [38], studied
the relation of these multiplets with other multiplets, in par-
ticular, with conventional chiral multiplets. The above sim-
ple duality argument explicitly shows how the conventional
chiral multiplets and three-form multiplets are related in a
manifestly supersymmetric way.

To complete the dualization procedure, we should also
take into account the equations of motion of �A obtained
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from (2.3) with δ�A subject to the boundary condition
δ�A|bd = 0. These give the expression for XA in terms
of Y A

XA = 1

4
D̄2KA(Y ) − ŴA(Y ), (2.12)

where KA ≡ ∂AK and WA ≡ ∂AW .
Upon plugging (2.6) and (2.12) into (2.3) we get the dual

Lagrangian describing the dynamics of the superfields Y A

L̂ =
∫

d4θ K (Y, Ȳ )+
( ∫

d2θ Ŵ (Y )+c.c.
)

+Lbd, (2.13)

where

Lbd = i
∫

d2θ

(∫
d2θ̄ + 1

4
D̄2

) ((
1

4
D̄2KA − ŴA

)
U A

)
+ c.c.

(2.14)

is a total derivative and hence a boundary term. Notice that
in (2.13) there is no rA�A term in the superpotential. Fur-
thermore, in general the boundary term (2.14) gives a non-
vanishing contribution to the Lagrangian and hence cannot
be neglected.1

The Lagrangian (2.13) has been studied at length in ref-
erence [38], to which we refer for further details. In [38]
the boundary term has been identified by requiring a con-
sistent variational principle (for previous discussions in non-
supersymmetric settings see e.g. [4,6]). On the other hand,
the boundary term is automatically produced by our dual-
ity procedure, once we fix the form of the Lagrangian (2.3).
The only apparent ambiguity, related to the choice of the
form i

∫
d4θ(XA − X̄ A)U A of the Lagrange multiplier term

in (2.3), is completely fixed by the following criterion: (2.4)
must be produced without having to impose specific bound-
ary conditions for the gauge superfield U A. Combined with
the boundary condition δ�A|bd = 0, this implies that in the
dual theory (2.13) we need only impose the gauge-invariant
boundary condition

δY A
∣∣
bd = i

4

(
D̄2δU A

)∣∣
bd = 0. (2.15)

As a simple consistency check of the equivalence between
the Lagrangians (2.13) and (2.2) we calculate the variation
of (2.13) with respect to U A, which results in an equation of
motion of the form

Im

(
−1

4
D̄2KA + ŴA

)
= 0. (2.16)

1 Note that the Lagrangians (2.3) and (2.13) are gauge invariant under
(2.10) provided XA satisfy the boundary conditions XA|bd = rA, where
rA are (at least, classically) arbitrary real constants which characterize
the asymptotic vacuum of the theory. From (2.12) these boundary con-
ditions translate into corresponding boundary conditions for Y A.

Combining this equation with the (anti)chirality of its com-
ponents, it follows that

−1

4
D̄2KA + ŴA = rA, (2.17)

where rA can be identified with the real constants appearing
in (2.2).

Finally, let us present the explicit form of the bosonic
sector of the dual Lagrangian:

Lbos = KAB̄

(
DA − i∂m AmA

) (
DB + i∂n A

nB
)

+
[
i ŴA

(
DA − i∂m AAm

)
+ c.c.

]
+ Lbos

bd , (2.18)

with

Lbos
bd = −∂m

[
i AmA (

KB Ā − KAB̄

)
DB

+AmA (
KB Ā + KAB̄

)
∂n A

Bn
]

−∂m

(
AmAŴA + AmA ¯̂WĀ

)
, (2.19)

where AAm ≡ 1
3!ε

mnlp AA
nlp = (∗AA

3 )m . Notice that the
boundary term automatically guarantees a consistent vari-
ational principle.

2.2 Double three-form multiplets

Let us now consider the dualization of a Lagrangian with a
slightly more general superpotential (1.1) in which GAB is
a generic constant matrix and its imaginary part is invert-
ible, det(ImGAB) �= 0. Hence we can introduce the arbitrary
complex constants

cA ≡ eA + GABm
B, (2.20)

and rewrite the Lagrangian in the form

L =
∫

d4θ K (�, �̄) +
( ∫

d2θ
[
cA�A + Ŵ (�)

] + c.c.
)
.

(2.21)

As in Sect. 2.1, we can promote the constants to chiral
superfields XA by adding appropriate Lagrange multiplier
terms to the Lagrangian. The modified Lagrangian is

L′ =
∫

d4θ K (�, �̄) +
( ∫

d2θ
[
XA�A + 1

4
D̄2(X̄ Ā� Ā)

]

+
∫

d2θ Ŵ (�) + c.c.
)

(2.22)

where � Ā are complex linear multiplets, i.e. complex scalar
superfields satisfying the constraint

D̄2� Ā = 0; (2.23)
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see Eq. (A.12) for the component expansion of �. This con-
straint is explicitly solved in terms of a general Weyl spinor
superfield 
 A

α as

� Ā = D̄
̄ Ā. (2.24)

By integrating out 
 A
α from (2.22) we get the condition

DαXA = 0, which, combined with the chirality of XA,
implies that

XA = cA, (2.25)

where cA are arbitrary constants. Inserting (2.25) into (2.22)
one gets back the Lagrangian (2.21). On the other hand, we
can integrate out XA by imposing their equations of motion
and get

�A = SA ≡ −1

4
D̄2�̄A, (2.26)

where SA are chiral superfields with the following θ -
expansion:

SA = s A + √
2θλA + θ2 ∗GA

4 . (2.27)

Here ∗GA
4 are Hodge duals2 of the field strengths

GA
4 = dCA

3 , (2.28)

of complex 3-form gauge fields CA
3 . The Hodge duals of

CA
3 are complex vector components of the complex linear

superfields �A (see Appendix A).
We call the chiral superfields SA double three-form multi-

plets. These kinds of multiplets were introduced in [32] and
considered in more detail in [36] but, in contrast to the sin-
gle three-form multiplets Y A of Sect. 2.1, they have attracted
much less attention in the literature. The bosonic gauge trans-
formation CA

3 → CA
3 + d
A

2 (where 
A
2 is a complex two-

form) are part of the gauge superfield transformation

�A → �A + L A
1 + i L A

2 , (2.29)

where L A
1 and L A

2 are real linear superfields.
It is easy to see that (2.29) leaves SA invariant. The coun-

terparts of the gauge transformations (2.29) acting on the
‘prepotential’ 
α are


 A
α → 
 A

α + 
A
α + Dβ
A

βα, (2.30)

where D̄β̇
A
α = 0 and 
A

βα = 
A
αβ .

2 In our conventions, the four-dimensional Hodge dual of a p-form ω

is defined by (∗ω)m1...m4−p = 1
p! εm1...m4−pn1...n pω

n1...n p , where ε0123 =
−ε0123 = 1.

Note that the Lagrange multiplier term in (2.22) is singled
out by a criterion analogous to the one introduced at the end
of Sect. 2.1. Namely, it leads to (2.25) without the need for
any specific boundary condition on the gauge superfield 
 A

α

and it directly gives back the original Lagrangian, without
involving possible boundary terms. As a consequence, the
dual Lagrangian describing the dynamics of the superfields
SA is also completely fixed, including the appropriate bound-
ary term. Indeed, by plugging (2.26) back into (2.22), we get
the dual Lagrangian

L̂ =
∫

d4θ K (S, S̄)+
( ∫

d2θ Ŵ (S)+ c.c.
)

+Lbd, (2.31)

where the boundary term is given by the following total
derivative contribution to the Lagrangian:

Lbd = 1

4

(∫
d2θ D̄2 −

∫
d2θ̄D2

)(
X̄ Ā� Ā

)
+ c.c. (2.32)

In (2.32) XA should be replaced by its expression obtained
from (2.22) as the equation of motion of �A, namely

XA = 1

4
D̄2KA − WA. (2.33)

An example of the component field form of the boundary
term which one gets from (2.32) is given in Appendix B.3

Let us now turn to the case of constant GAB with non-
invertible imaginary part ImGAB. If A, B = 1, . . . , n, then
the matrix ImGAB has a rank r < n. This implies that there
are n − r > 0 vectors uA

a , a = 1, . . . , n − r , such that
ImGAB uB

a = 0. We can complete them with r vectors vA
q ,

q = 1, . . . , r , which together with uA
a form a basis of Rn .

We can use this basis to re-organize the chiral superfields as
follows:

�A = �auA
a + �qvA

q . (2.34)

and, analogously, mA = mauA
a + mpvA

p . Then the superpo-
tential (1.1) takes the form

W = ra�
a + cp�

p + W̃ (�), (2.35)

where

ra ≡ (eA + mBReGAB)uA
a , cp ≡ eAvA

p + mqvA
q GABvB

p

(2.36)

3 The free Lagrangian L̂free = ∫
d4θ SS̄ was briefly discussed in [32].

The component form of (2.31) with K = δAB̄ S
A S̄ B̄ and Ŵ (S) =

mAB SASB + gABC SASB SC but without the boundary term was con-
sidered in [36].
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are, respectively, arbitrary real and complex constants and

W̃ ≡ Ŵ + mauA
a GABvB

p �p. (2.37)

We can then proceed by dualizing �a to single three-form
multiplets Ya as in Sect. 2.1 and �q to double three-form
multiplets Sq as in the present section.4

2.3 Double three-form multiplets and non-linear
dualization

We are now ready to consider the more general case of non-
constant holomorphic matrixGAB(�), still in the case of rigid
supersymmetry. Even though not explicitly indicated, the fol-
lowing discussion allows for the inclusion of additional chiral
multiplets in the theory, which can enter GAB(�) and Ŵ (�)

in (1.1), but which are not subject to the dualization proce-
dure. For instance, extra chiral multiplets T p will explicitly
appear in Sect. 4, in which we will apply our construction to
type IIA flux compactifications.

For convenience we define the matrices

NAB = ReGAB, MAB = ImGAB. (2.38)

We will assume that, for generic values of the chiral fields
�A, the matrixMAB is invertible. We will briefly come back
to the degenerate case det(MAB) = 0 at the end of the sec-
tion. Furthermore, for simplicity, we assume that GAB(�) is
symmetric, although most of the discussion holds for non-
symmetricGAB(�). This symmetry is automatic if we regard
GAB(�) as the second derivative of a holomorphic prepoten-
tial G(�), as we will assume in the local supersymmetry
case.

Our starting point is the Lagrangian

L =
∫

d4θ K (�, �̄)

+
(∫

d2θ
[
eA�A + mAGAB(�)�B+Ŵ (�)

]
+c.c.

)
.

(2.39)

The strategy followed in the previous sections is then gener-
alized by replacing (2.39) with the following Lagrangian:

L′′ =
∫

d4θ K (�, �̄)+
(∫

d2θ
[
XA�B+Ŵ (�)

]
+ c.c.

)

−1

4

(∫
d2θ D̄2

[
�A MAB(XA−X̄ A)

]
+c.c.

)
(2.40)

4 Notice that the choice of the vectors uA
a is not unique, as we could

redefine vA
q → vA

q + αa
q u

A
a with αa

q being arbitrary real constants. This
ambiguity induces the redefinitions �a → �a − αa

q�q and cq →
cq + αa

q ra , which mix the two kinds of dual three-form multiplets.

where MAB is the inverse of MAB and �A = D̄
̄A are
complex linear superfields defined by Eqs. (2.23) and (2.24).

The extremization of (2.40) with respect to 
α
A gives

Dα(MAB ImXB) = 0. (2.41)

Notice that the variation of (2.40) with respect to 
 A does
not involve any boundary terms and the Lagrange multiplier
term in (2.40) satisfies the criterion discussed in the previous
sections. The general solution of (2.41) is

XA = eA + GAB(�)mB, (2.42)

with eA and mB being arbitrary real constants.5 Hence, by
plugging (2.42) back into (2.40) one obtains the original
Lagrangian (2.39).

Alternatively, we get the dual description by integrating
out XA in (2.39). This results in the following expression for
the chiral superfields �A:

�A = SA, (2.43)

where

SA ≡ 1

4
D̄2

[
MAB(�B − �̄B)

]
. (2.44)

The chiral superfields SA provide a generalization of the dou-
ble three-form multiplets encountered in Sect. 2.2. Note that,
once we impose (2.43), MAB depends on SA. Then, in gen-
eral, Eq. (2.44) is non-linear and cannot be explicitly solved
for SA as a function of �A. However, this does not necessarily
create complications in specific applications, as for instance
to type IIA flux compactifications discussed in Sect. 4.

The above formulation in terms of �A, which contains
gauge three-forms, is invariant under the following gauge
transformations which generalize (2.29):

�A → �A + L̃ A + GAB L
B, (2.45)

where L̃ A and LB are arbitrary real linear superfield param-
eters. This gauge symmetry guarantees that the gauge three-
forms enter (2.43) via their gauge-invariant field strengths
only. We will discuss the component structure of the relation
(2.44) in the supergravity case in Sect. 3.2.

If we substitute the solution (2.43) back into the Lagran-
gian (2.40) we obtain

L̂ =
∫

d4θ K (S, S̄) +
( ∫

d2θ Ŵ (S) + c.c.
)
+Lbd, (2.46)

5 Indeed, from (2.41) and its complex conjugate one getsMAB ImXB =
mA, with mA being arbitrary real constants. We can then write XA =
ReXA + iIm GAB mB ≡ Re(XA − GABmB) + GABmB . This equa-
tion is compatible with the chirality of XA and GAB only if Re(XA −
GABmB) = eA are constant. We thus arrive at (2.42).
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where the boundary term is now given by the total derivative
contribution

Lbd =
∫

d2θ

(∫
d2θ̄+1

4
D̄2

) (
XAMAB(�B−�̄B)

)
+c.c.,

(2.47)

in which XA is expressed via �A on account of the equation
of motion of �A, as in Sect. 2.2. We will give the explicit
expression of the boundary term in the supergravity case in
the next section.

The Lagrangian (2.31) provides us with the dual for-
mulation of the considered theory in terms of the double
three-form multiplet (2.44), with the ‘reduced’ superpoten-
tial Ŵ (S) and the appropriate boundary term. The informa-
tion as regards the form of the matrix GAB(�) appearing in
the superpotential of the original theory is encoded in the
form of the matrix MAB which enters the definition (2.44)
of the double three-form multiplet. On the other hand, as in
the previous sections, the constant parameters eA and mA got
dualized into the expectation values of the field strengths of
the gauge three-forms.

Before passing to the locally supersymmetric case, let us
briefly discuss the situation in which Im GAB , with A, B =
1, . . . , n, is degenerate of rank r < n. Then there should
exist n − r > 0 real vectors uA

a , a = 1, . . . , n − r , such that
Im GAB(�)uB

a = 0 and hence GAB(�)uB
a = ḠAB(�̄)uB

a .
Taking into account the holomorphicity of GAB(�), this con-
dition is quite strong and puts strong constraints on the form
of GAB(�). Suppose, for instance, that the vectors uA

a are
constant, as at the end of Sect. 2.2. This would imply that
GAB(�)uA

a is constant too. We could then proceed as in Sect.
2.2, rewriting the superpotential as follows:

W = ra�
a + [

ep + mqGqp(�)
]
�p + Ŵ ′(�), (2.48)

where ea ≡ eAuA
a , Gqp ≡ uA

q GABuB
p , ra is as in (2.36) and

Ŵ ′ is as in (2.37). One can then dualize �a to single three-
form multiplets Ya and �p to double three-form multiplets
S p. We expect similar combinations of different dualizations
to be possible in more general cases.

3 Three-form multiplets inN = 1 supergravity

We now extend the duality procedure described in Sect. 2 for
rigid supersymmetry to matter-coupled N = 1 supergrav-
ity. The extension is rather natural if we use a super-Weyl-
invariant approach [46]. Before proceeding let us recall that
the old minimal formulation of supergravity [28] describes
the interactions of the gravitational multiplet

ema , ψα
m, ba, M. (3.1)

The physical fields are the vielbein ema and the gravitino ψα
m ,

whereas the auxiliary fields are the real vector ba and the
complex scalar M .

We will construct three-form matter-coupled supergravity
by dualizing a super-Weyl-invariant formulation. The curved
superspace super-vielbeins transform as follows under the
super-Weyl transformations [46]:

Ea
M → eϒ+ϒ̄ Ea

M ,

Eα
M → e2ϒ̄−ϒ

(
Eα
M − i

4
Ea
Mσαα̇

a D̄α̇ϒ̄

)
, (3.2)

where (a, α) are flat superspace indices, M = (m, μ) are
curved indices and ϒ is an arbitrary chiral superfield param-
eterizing the super-Weyl transformation. We will focus on a
theory for n + 1 chiral multiplets Z A, A = 0, . . . , n, that
transform as follows under super-Weyl transformations:

Z A → e−6ϒZ A. (3.3)

The chiral superfields Z A comprise, in a democratic way, a
super-Weyl compensator and n physical multiplets.

The ordinary old minimal formulation of supergravity
is obtained by choosing a super-Weyl compensator Z , e.g.
Z ≡ Z0, and subject it to a gauge-fixing condition using the
super-Weyl invariance. On the other hand, we will perform
the duality transformation of the conventional chiral mul-
tiplets Z A to three-form multiplets before gauge-fixing the
super-Weyl invariance. In this way, the procedure will work
exactly as in the rigid supersymmetry case, but will involve
the super-Weyl compensator in addition to the physical chi-
ral superfields. Gauge-fixing the super-Weyl symmetry after-
wards will produce a Lagrangian describing the coupling of
three-form multiplets to a supergravity multiplet with one or
two gauge fields substituting the scalar auxiliary fields.

In the next section we will focus on pure supergravity and
its three-form variants. The inclusion of additional physical
chiral multiplets and a general superpotential of the form
(1.1) will be considered in Sect. 3.2. The following discus-
sion can include additional ‘spectator’ matter or gauge mul-
tiplets, which will not be explicitly indicated for notational
simplicity.

3.1 Variant minimal supergravities from duality

We start by considering the minimal theory, in which the old
minimal supergravity multiplet is coupled just to the super-
Weyl compensator Z , which transforms as in (3.3). Then,
up to a complex constant rescaling of Z , the most general
super-Weyl-invariant Lagrangian has the form

L = −3
∫

d4θ E (Z Z̄)
1
3 +

(
c
∫

d2� 2E Z + c.c.

)
, (3.4)
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in which E denotes the Berezinian super-determinant of the
super-vielbein, d2� 2E is a chiral superspace measure [45]
and c is an arbitrary complex number which gives rise to the
gravitational cosmological constant and the gravitino mass.
Under (3.2), the superspace measures rescale as

E → e2(ϒ+ϒ̄) E, d2� E → e6ϒ d2� E . (3.5)

Hence the super-Weyl invariance of the supergravity Lagra-
ngian is manifest. We can now follow Sect. 2, distinguishing
two cases.

3.1.1 Single three-form supergravity

We first proceed along the lines of Sect. 2.1, setting c ≡ ir ,
with real r , and promoting r to a chiral multiplet X by adding
an appropriate Lagrange multiplier.6 Consider the modified
Lagrangian

L′ = −3
∫

d4θ E (Z Z̄)
1
3

+
(∫

d2� 2E
[
X Z+1

8

(
D̄2 − 8R

) {
U (X+X̄)

}] +c.c.

)
,

(3.6)

where U is a scalar real superfield and R is the chiral super-
field curvature whose leading component is the auxiliary field
M = − 1

6R| of the gravity multiplet. Notice that (3.6) is
super-Weyl invariant if we impose the requirement that

U → e−2(ϒ+ϒ̄)U, (3.7)

under super-Weyl transformations, since D̄2 − 8R →
e−4ϒ(D̄2 − 8R)e2ϒ̄ .

Integrating U out of (3.6) by imposing its equation of
motion implies that X must be an arbitrary real constant r
and then one goes back to (3.4). Instead, integrating out X
gives

Z ≡ Y, (3.8)

where the chiral superfield

Y ≡ −1

4

(
D̄2 − 8R

)
U (3.9)

is the natural generalization of the rigid single three-form
multiplets discussed in Sect. 2.1. In particular, the bosonic
three-form A3 is contained in the component

6 We choose a purely imaginary c in order to obtain the single three-
form supergravity in its most common form, as used for instance in
[8,13–15,32,33,35]. Clearly, by a simple redefinition Z → −i Z one
can make c purely real.

−1

8
σ̄ α̇α
m [Dα, D̄α̇]U ∣∣≡ (∗A3)m , (3.10)

of U . The bosonic gauge transformation A3 → A3 + d
2

is contained in the superfield gauge transformation U →
U + L , where L is an arbitrary linear multiplet. This gauge
invariance allows one to write the superfield U in an appro-
priate WZ gauge U | = 0, which we have already used in
(3.10).

By integrating out Z one gets the equation

X = −1

4

(
D̄2 − 8R

) [
Z− 2

3 Z̄
1
3

]
, (3.11)

and by plugging (3.8) and (3.11) back into (3.6) one obtains
the dual Lagrangian

L̂ = −3
∫

d4θ E (Y Ȳ )
1
3 + Lbd, (3.12)

where

Lbd = 1

8

∫
d2� 2E

(
D̄2 − 8R

) {
U (X − X̄)

}+c.c. (3.13)

Note that Lbd is indeed a total derivative. Y transforms as Z
under super-Weyl transformations (Y → e−6ϒY ) and plays
the role of the super-Weyl compensator.

It is well known that different off-shell formulations of
four-dimensional N = 1 supergravity can be obtained
from its superconformal version by choosing different com-
pensator fields [47–49]. Here the use of Y as a compen-
sator in the super-Weyl-invariant formulation leads, as was
shown in [35], to the three-form minimal supergravity [8,13–
15,32,33], in which the imaginary part of the old minimal
auxiliary field M is substituted by the Hodge dual of a real
field strength F4 = dA3.

In order to see this, we can use the super-Weyl symmetry
to set

Y = 1. (3.14)

By recalling the definition of Y given in (3.9) and its expan-
sion (2.8) and skipping the dependence on the fermions, the
lowest component of this equation gives Y | = 1 while the
highest component − 1

4D2Y | = 0 gives ImM +∗dA3 = 0, so
that the conventional scalar auxiliary field of the supergravity
multiplet has the form M = ReM− i∗F4, as proposed in [32]
and discussed in detail in [8]. Hence, the component fields
of the supergravity multiplet of this formulation are

ema , ψα
m, ba, M0, A3 , (3.15)

where M0 ≡ ReM is a real scalar.
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3.1.2 Double three-form supergravity

In order to arrive at the minimal double three-form super-
gravity [28] we must promote the entire arbitrary constant c
to a dynamical chiral field X and proceed as in the previous
examples. This can be done by starting from the Lagrangian

L′ = −3
∫

d4θ E (Z Z̄)
1
3

+
(∫

d2� 2E
[
X Z+1

4

(
D̄2−8R

) {
X̄�

}]+c.c.

)
,

(3.16)

where � = D̄
̄ is a complex linear superfield, the locally
supersymmetric generalization of the complex linear super-
field introduced in Sect. 2.2. The components of � in the
appropriate WZ gauge are

�| = 0,

D2�| = −4s̄,
1

2
σ̄ α̇α
m [Dα, D̄α̇]�| = −iCm,

D2D̄2�̄| = 8 ∗Ḡ4 + 16M̄s, (3.17)

with G4 ≡ dC3 and Cm ≡ (∗C3)m . One can go to this gauge
because of the invariance of the construction under the super-
field gauge transformation of the form (2.29)–(2.30).

The action (3.16) is invariant under super-Weyl transfor-
mations if 
α , and eventually �, transform as follows [48]:


α → e−3ϒ
α, � → e−2(ϒ+ϒ̄)�. (3.18)

As in the previous examples, by integrating out 
α one gets
back (3.4). On the other hand, by integrating out X and Z
one finds

Z = S ≡ −1

4

(
D̄2 − 8R

)
�̄,

X = −1

4

(
D̄2 − 8R

) [
Z− 2

3 Z̄
1
3

]
. (3.19)

After inserting these expressions into the Lagrangian one
arrives at the dual description

L̂ = −3
∫

d4θ E (SS̄)
1
3

+1

4

[∫
d2� 2E

(
D̄2 − 8R

) {
X̄� − X�̄

} + c.c.

]
,

(3.20)

where S is a double three-form multiplet which plays the role
of the super-Weyl compensator. Note that X and S in (3.20)
are given by (3.19), and that the second term in (3.20) is the
boundary term.

One can then gauge-fix the super-Weyl invariance by
putting S = 1 and find that

M = −1

2
∗G4. (3.21)

Hence the supergravity multiplet in this formulation becomes

ema , ψα
m, bm, C3, (3.22)

where C3 is a complex three-form. Therefore we refer to this
formulation as double three-form supergravity. The bosonic
sector of this minimal supergravity theory follows from the
Lagrangian (3.20) and has the following form:

e−1L̂= − 1

2
R + 1

3
bmbm − 1

12

∣∣∗G4
∣∣2 + 1

12
Dm

(
Cm ∗Ḡ4 + c.c.

)
.

(3.23)

The equations of motion of C3 have general solution

∗G4 = 6 c. (3.24)

If we integrate out C3 by inserting (3.24) into the Lagrangian
(3.23) we find the standard supergravity theory with a neg-
ative cosmological constant. Notice that (3.23) has a well-
defined variation with respect to C3 thanks to the presence
of the boundary term. As in the previous sections, this is
guaranteed by our duality procedure once one appropriately
chooses the form of the Lagrange multiplier term in (3.16).

3.2 Three-form matter-coupled supergravities

In the previous section we obtained known minimal three-
form supergravities with the use of the locally supersymmet-
ric counterpart of the duality procedure described in Sect. 2.
We now pass to the considerably more general case outlined
at the beginning of this section. We consider a super-Weyl-
invariant supergravity theory coupled to n + 1 chiral super-
fields Z A which transform as in (3.3). We stress once again
that, even if not explicitly indicated for notational simplic-
ity, additional spectator chiral and vector multiplets may be
included without difficulties (as in the example discussed in
Sect. 4).

The general form of the super-Weyl-invariant Lagrangian
is

L = −3
∫

d4θ E �(Z, Z̄) +
∫

d2� 2E W(Z), (3.25)

where the kinetic potential �(Z, Z̄) and the superpotential
W(Z) have the following homogeneity properties:

�(λZ, λ̄Z̄) = |λ| 2
3 �(Z, Z̄), W(λZ) = λW(Z). (3.26)
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Before discussing the duality procedure, let us briefly recall
how this formulation is related to the more standard super-
gravity formulation. First, one singles out a super-Weyl com-
pensator Z as follows:

Z A = ZZ A
0 (�), (3.27)

where Z A
0 (�) is a set of functions of the physical chiral

multiplets �i (i = 1, . . . , n), which are inert under the super-
Weyl transformations. Clearly, the split (3.27) has a large
arbitrariness and one may redefine

Z → e− f (�)Z , Z A
0 (�) → e f (�)Z A

0 (�). (3.28)

The kinetic potential �(Z, Z̄) can be written as follows:

�(Z, Z̄) = |Z | 2
3 e− 1

3 K (�,�̄), (3.29)

where K (�, �̄) ≡ −3 log �(Z0(�), Z̄0(�̄)) is the ordi-
nary Kähler potential. Note that the possibility of making the
redefinition (3.28) corresponds to the invariance under Käh-
ler transformations K (�, �̄) → K (�, �̄) − f (�) − f̄ (�̄).
The conventional superpotential W (�) is singled out by
using the split (3.27) and defining

W(Z) = Z W (�), (3.30)

where W (�) ≡ W(Z0(�)). Under the redefinition (3.28) W
transforms as follows: W (�) → e f (�)W (�). The conven-
tional formulation can then be obtained by gauge-fixing the
super-Weyl invariance, e.g. by putting

Z = 1. (3.31)

In order to perform the duality procedure, let us come back
to the super-Weyl-invariant Lagrangian (3.25) and consider
the superpotential of the form

W(Z) ≡ eAZ A + mBGBA(Z)Z A + Ŵ(Z). (3.32)

The homogeneity condition (3.26) requires that GAB(λZ) =
GAB(Z) and Ŵ(λZ) = λŴ(Z). Though the construction
under consideration can be applied to generic GAB , we will
restrict ourselves to the case in which

GAB(Z) ≡ ∂A∂BG(Z), (3.33)

with G(Z) being a (possibly locally defined) homogeneous
prepotential of degree 2 G(λZ) = λ2G(Z) defining a local
special Kähler space parametrized by homogeneous coordi-
nates Z A, A = 0, 1, . . . , n.7 As we will see, string flux com-

7 The minimal supergravities considered in Sect. 3.1 correspond to the
simplest subcases with n = 0, Z0 = Z and c ≡ e0 +G00m0, where G00

pactifications have superpotentials of this kind with (eA,mB)

representing appropriately quantized units of fluxes.
We would like to make the 2n + 2 constants (eA,mA) in

(3.32) dynamical, i.e. to replace them with the field strengths
of 2n+2 three-forms. This is achieved by dualizing the chiral
fields Z A, easily adapting the procedure introduced in Sect.
2.3 for the rigid supersymmetric case. As in that section, we
assume that MAB defined as in (2.38) is invertible. (The
case of degenerate MAB can be addressed as outlined in
Sect. 2, combining dualizations to single and double three-
form multiplets.) First, we substitute the chiral superspace
integral of the superpotential term (3.32) with

LX = 2
∫

d2� E
(
XAZ A − 1

4

(
D̄2 − 8R

)

×
[
MAB (

XA − X̄ A
)
�B

]
+ Ŵ(Z)

)
, (3.34)

where, as in the rigid supersymmetry case, MAB is inverse
of MAB = Im GAB , XA are chiral superfields and �A are
complex linear superfields �A ≡ D̄α̇
̄α̇

A. Upon integrating
out 
α

A one gets back (3.25). On the other hand, by integrating
out XA and Z A one finds

Z A = SA, (3.35)

where the chiral superfields SA are double three-form mul-
tiplets, defined by the generalization of (2.44),

SA = 1

4
(D̄2 − 8R)

[
MAB(�B − �̄B)

]
, (3.36)

XA = −ŴA + 1

4
(D̄2 − 8R)

×
[
�A + ∂MBC

∂SA

(
XB − X̄ B

) (
�C − �̄C

)]
. (3.37)

The Lagrangian then reads

L̂ = − 3
∫

d4θ E �(S, S̄) +
(∫

d2� 2E Ŵ(S) + c.c.

)
+ Lbd,

(3.38)

in which the boundary term is given by the X -dependent
part of (3.34) once one replaces Z A with SA and XA with
(3.37). Note that, as in the rigid supersymmetry case, the
dual Lagrangian does not have the part of the superpotential
that depended on eA and mA. We thus end up with a theory
in which the only independent superfields are the complex
linear multiplets �A.

Footnote 7 continued
is necessarily constant by homogeneity. In particular, the single three-
form minimal supergravity of Sect. 3.1.1 is obtained by setting G00 = 0
and redefining Z → i Z .
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The double three-form multiplets SA are defined by (3.36),
in which MAB should be considered as a function of SA and
S̄ A. Hence (3.36) is non-linear and so is not generically solv-
able for SA as functions of �A. However, it turns out to be
tractable for superfield components. For simplicity, we will
restrict ourselves to the bosonic ones setting the fermionic
components equal to zero. Using the local symmetry (2.45)
we can impose the Wess–Zumino gauge in which, in partic-
ular, �A| = 0. Then the remaining bosonic components of
�A are

D2�A| = −4s̄A,

1

2
σ̄ α̇α
m [Dα, D̄α̇]�A| = − ÃAm − GAB AB

m,

D2D̄2�̄A| = 8i Dm

(
Ãm
A + ḠAB ABm

)
+ 16M̄sA,

(3.39)

where AA
m ≡ (∗AA

3 )m and ÃAm ≡ (∗Ã3A)m .
From (3.36) it follows that the scalar component sA, with

lower indices, appearing in (3.39) is related to s A ≡ SA|,
with upper indices, by the inverse metric MAB . Since SA| ≡
Z A| ≡ zA, we can use zA instead of s A and write this relation
as follows:

zA = MAB(z, z̄) sB . (3.40)

In general it is not possible to explicitly invert the above
expression and express zA in terms of the scalar fields sA
of the complex linear superfield �̄A. Hence, in what follows
it will be more convenient to use zA as independent scalar
fields in the component Lagrangians which we will shortly
present. The θ2-component of (3.36) is then

F A
S ≡ −1

4
D2SA| = M̄zA + i

2
MAB

×
( ∗F̃4B + ḠBC

∗FC
4 + 2Re

[
ḠBCD F̄

D
S z̄C

])
, (3.41)

where F̃4A = d Ã3A, F A
4 = dAA

3 and GABC ≡ ∂AGBC . Now,
taking into account that zAGABC = 0 by homogeneity, we
reduce Eq. (3.41) to

F A
S = M̄zA + i

2
MAB

( ∗F̃4B + ḠBC
∗FC

4

)
. (3.42)

To fix the super-Weyl invariance it turns out to be convenient
to choose one of the superfields SA (A = (0, i)), say S0, as
the super-Weyl compensator and impose

S0 = 1. (3.43)

The superspace condition (3.43) implies the component field
conditions z0 = 1 and F0

S = 0. The bosonic relations (3.42)

split as follows:

M̄ = − i

2
M0B(z, z̄)

[ ∗F̃4B + ḠBC (z̄) ∗FC
4

]
,

Fi
S = M̄zi + i

2
Mi B(z, z̄)

[ ∗F̃4B + ḠBC (z̄) ∗FC
4

]
, (3.44)

where zi ≡ Si | and Fi
S ≡ − 1

4D2Si | are the lowest and
highest scalar components of the three-form multiplets Si

(i = 1, . . . , n).
After having gauge-fixed the super-Weyl symmetry, the

Lagrangian describing the coupling of the Si superfields to
supergravity takes the form

L̂ = −3
∫

d4θ E e−3K (S,S̄)

+
(∫

d2� 2E Ŵ (S) + c.c.

)
+ Lbd. (3.45)

Note that in this Lagrangian the scalar auxiliary fields of the
gravity and matter multiplets are defined by (3.44) (ignoring
fermions).

4 Application to type IIA flux compactifications

As an application of the above dualization procedure, we will
now consider an example of type IIA flux compactifications
of string theory on a Calabi–Yau three-fold CY3 in the pres-
ence of O6-planes. In particular, we will focus on the effective
theory obtained by turning on RR fluxes in the internal CY3

space. For simplicity, we will also set the internal NSNS flux
H3 to zero, so that the tadpole condition just requires that the
O6 charge is canceled by the presence of D6-planes, without
involving the RR fluxes.

We will focus on the closed string scalar spectrum. The
relevant terms in the effective N = 1 supergravity for these
kinds of compactifications can be found in [50]. The closed
string moduli vi (x) and bi (x), i = 1, . . . , h1,1

− (CY3), are
obtained by expanding the Kähler form J and the NSNS
two-form B2 in a basis of orientifold-odd integral harmonic
2-forms ωi ∈ H2−(X;Z)

J = viωi , B2 = biωi . (4.1)

These moduli, together with their supersymmetric partners,
combine into n ≡ h1,1

− (CY3) chiral superfields �i with low-
est components

�i | = ϕi = vi − ibi . (4.2)

Furthermore, the complex structure, the dilaton, the internal
RR three-form moduli and the associated supersymmetric
partners combine into additional chiral superfields T q , q =
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1, . . . , h2,1(CY3) + 1. The effective supergravity theory is
characterised by the following Kähler potential 8:

K(�, �̄, T, T̄ ) = K (�, �̄) + K̂ (T, T̄ ). (4.3)

In the following we will not need the explicit form of
K̂ (T, T̄ ), but we will just use the fact that it satisfies the
condition

K̂ r̄q K̂q K̂r̄ = 4, (4.4)

where K̂q ≡ ∂ K̂
∂T q , K̂qr̄ ≡ ∂2 K̂

∂T q∂ T̄ q̄ , …, and K̂ r̄q is the

inverse of the Kähler metric K̂qr̄ . Similarly, Ki ≡ ∂K
∂�i ,

Ki j̄ ≡ ∂2K
∂�i ∂�̄j̄ , …, and K j̄ i is the inverse of the Kähler

metric Ki j̄ .
The Kähler potential K (�, �̄) is given by

K (�, �̄) = − log

[
1

3!ki jk(Re�i )(Re� j )(Re�k)

]
, (4.5)

where ki jk are the intersection numbers

ki jk =
∫

CY3

ωi ∧ ω j ∧ ωk . (4.6)

Notice that K (�, �̄) depends only on the real combinations
�i + �̄i , so that we can make the identification Ki ≡ Kı̄ .
We will also use the fact that K (�, �̄) satisfies the no-scale
condition

K j̄ i Ki K j̄ − 3 = 0. (4.7)

The flux-induced superpotential is of the form introduced in
[51–53] and depends only on the chiral superfields �i 9

W = e0+iei�
i − 1

2
ki jkm

i� j�k+ i

6
m0ki jk�

i� j�k, (4.8)

where e0, ei ,mi andm0 represent the flux quanta of the inter-
nal RR fields.

4.1 Dualization to the three-form effective theory

The effective theory described above has exactly the same
structure as the theories considered in Sect. 3.2, up to the
explicit presence of a spectator sector given by the chiral
fields T r . In order to make this similarity manifest, we rewrite

8 The formulas of [50] are valid in the large volume and constant warp-
ing approximation, which then neglects the back-reaction of the fluxes
and branes on the underlying Calabi–Yau geometry. The back-reaction
of fluxes and branes is expected to break the split structure of (4.3).
9 In what follows we will tend to use notation close to that of [25,44].

this theory in a super-Weyl-invariant form by adding a super-
Weyl compensator Z and combining it with the chiral fields
�i into n + 1 chiral superfields Z A = (Z0,Z i ) such that

Z0 ≡ Z (4.9)

and

Z i ≡ i Z�i , (4.10)

which transform as in (3.3) under the super-Weyl transfor-
mations. Then it is easy to see that the superpotential (4.8)
gets transformed into (3.30) of the form

W(Z) = eAZ A + 1

2Z0 m
iki jkZ jZk − 1

6(Z0)2 m
0ki jkZ iZ jZk .

(4.11)

This clearly satisfies the homogeneity condition (3.26) and
can be written in the form (3.32) with Ŵ(Z) = 0 and GAB =
∂A∂BG(Z), where

G(Z) = 1

6Z0 ki jkZ iZ jZk . (4.12)

We are now in a position to apply the duality transforma-
tion described in Sect. 3.2. After dualization and gauge-fixing
the super-Weyl symmetry by setting

Z = S0 = 1, (4.13)

the final result is a Lagrangian of the form (3.45) with Ŵ = 0
and a Kähler potential which is modified by a contribution
of the ‘spectators’ T r

L = −3
∫

d4θ E e−3K (S,S̄)−3K̂ (T,T̄ ) + Lbd. (4.14)

Moreover, the superpotential has completely disappeared
from the dual effective theory, since it is now encoded in
the structure of the constrained superfields (3.36).

Notice that because of the definition (4.10), after dual-
ization and gauge-fixing we have �i = −i Si and we can
identify the lowest components as follows:

Si | ≡ zi = iϕi . (4.15)

In the following it will also be convenient to use

Fi ≡ −i Fi
S (4.16)

instead of Fi
S , such that − 1

4D2�i = Fi .
Upon setting to zero the fermions, the independent bosonic

components of these superfields are given by (3.40) and
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(3.44). The latter take the following form in the case under
consideration10

Re M = 1

2
∗F0

4 ,

Im M = −2eK ∗F̃40 − 1

2
Ki

∗F i
4,

Re Fi = 1

4
∗F0

4 vi − eK (Ki j − 2viv j ) ∗F̃4 j ,

Im Fi = 2eK ∗F̃40 vi + 1

2
( ∗F i

4 + vi K j
∗F j

4 ), (4.17)

where the four-forms F A
4 and F̃4A are defined in terms of the

field strengths F A
4 = dAA

3 and F̃4A = d Ã3A as follows:

F0
4 = −F0

4 , F i
4 = −Fi

4 + bi F0
4 ,

F̃4i = F̃4i + ki jkb
j Fk

4 − 1

2
ki jkb

j bk F0
4 ,

F̃40 = F̃40 + bi F̃4i + 1

2
ki jkb

i b j Fk
4 − 1

6
ki jkb

i b j bk F0
4 .

(4.18)

Note that the four-forms F A
4 and F̃4A have exactly the same

structure as the four-forms obtained in [25,44] upon dimen-
sional reduction of the type IIA RR field strengths,11 which
is quite encouraging. To convince ourselves that this is not
a mere coincidence, in the following section we will com-
pute the on-shell values of (4.18) by solving the equations
of motion of AA

3 and Ã3A, which follow from the dual
Lagrangian (4.14). As we will see, these on-shell values
perfectly match those obtained by ten-to-four-dimensional
reduction [25,44].

The bosonic part of the dual Lagrangian (4.14) can be
computed by setting to zero fermionic component fields, inte-
grating over the Grassmann variables and integrating out the
supergravity auxiliary vector field. Finally, one can go to the
Einstein frame by performing a Weyl rescaling of the viel-
beins, the dual four-form field strengths and the component
fields in (4.17) as follows:

eam → eame
1

6
(K + K̂ ), M → M e−2

3
(K + K̂ ),

Fi → Fi e−2

3
(K+K̂ ), Fq

T → Fq
T e−2

3
(K+K̂ ). (4.19)

The result is the following bosonic Lagrangian:

e−1Lbos = −1

2
R − Ki j̄ (ϕ, ϕ̄) ∂ϕi∂ϕ̄j̄ − K̂qr̄ (t, t̄) ∂tq∂ t̄ r̄

+e−1 L3-form, (4.20)

10 To arrive at these relations we have used the specific form of the
Kähler and superpotenional associated to the type IIA compactification
in question given in Appendix C.
11 The structure of these field strengths reflects the B2-twisting of the
ten-dimensional RR-fields in the so called A-basis of the democratic for-
mulation of [54], which provides a duality-symmetric description of the
type IIA supergravity theory, whose E11 origin was revealed in [55,56].

in which tq ≡ T q | andL3-form contains the three-form sector
encoded in M and Fi as in (4.17) and the auxiliary fields Fq

T
of the T q multiplets

e−1L3-form = e−KKi j̄ F
i F̄ j̄ + e−K K̂qr̄ F

q
T F̄

r̄
T

−1

3
e−K (

M + Kı̄ F̄
ı̄ + K̂q̄ F̄

q̄
T

)

×
(
M̄ + Ki F

i + K̂q F
q
T

)
+ Lbd. (4.21)

where we recall thatK ≡ K+K̂ . With the help of the no-scale
condition (4.4), we can easily integrate out the auxiliary fields
Fq
T by solving their equations of motion, whose solution is

K̂qr̄ F̄
r̄
T = −

(
M + Kı̄ F̄

ı̄
)
K̂q . (4.22)

Substituting it back into the Lagrangian (4.21) and using
(4.17) we obtain the following Lagrangian for the gauge
three-forms:

eK̂ e−1L3-form = e−K

16

( ∗F0
4

)2 + eK K i j ∗F̃4i
∗F̃4 j

+e−K

4
Ki j

∗F i
4

∗F j
4 + 4eK

( ∗F̃40

)2 + Lbd, (4.23)

with the boundary term

Lbd = −2∂m

[
e Ãm

0 4eK−K̂ ∗F̃40 + e Ãm
i eK−K̂

(
K i j ∗F̃4 j + 4bi ∗F̃40

)]

+2∂m

[
e Ami e−K̂

(
1

4
e−K Ki j

∗F j
4 − ki jkb

jeK Kkl ∗F̃4l

−2ki jkb
j bk ∗F̃40

)]

+2∂m

[
e Am0 e−K̂

(
1

16
e−K ∗F0

4 + eK

2
ki jkb

j bk K il ∗F̃4l

− e−K

4
bi Ki j

∗F j
4 + 2

3
ki jkb

i b j bk eK ∗F̃40

)]
, (4.24)

where we recall that AA
m ≡ (∗AA

3 )m and ÃAm ≡ (∗ Ã3A)m .
This boundary term is directly extracted by writing the super-
space Lagrangian (3.34) in components.

The Lagrangian (4.20)–(4.24) provides a non-trivial exam-
ple of the effect of the non-linear dualization procedure put
forward in this paper. We explicitly see that it does not
depend on the constants eA and mA appearing in the orig-
inal Lagrangian and does not contain any potential for the
scalar fields. Rather, as we will discuss in the next section, it
is generated dynamically by the gauge three-forms AA

3 and
Ã3A.

4.2 Back to the original theory

Let us show how the bosonic Lagrangian of the original the-
ory is reproduced from the bosonic Lagrangian (4.20). This is
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done by integrating out the gauge three-forms AA
3 and Ã3A,

which enter F A
4 and F̃4A as defined in (4.18). Indeed, the

integration of the equations of motion which follow from
(4.23) produces the following expressions involving 2n + 2
integration constants which, for obvious reasons, we call eA
and mA:

− 4e−K̂ eK ∗F̃40 = m0,

−e−K̂ eK K i j ∗F̃4 j = mi − mbi ≡ pi ,

−1

4
e−(K+K̂ ) Ki j

∗F j
4 = ei + ki jkb

jmk − 1

2
ki jkb

j bk m0 ≡ ρi ,

− 1

16
e−(K+K̂ ) ∗F0

4 = e0 + bi ei + 1

2
ki jkb

i b jmk

−1

6
ki jkb

i b j bkm0 ≡ ρ0. (4.25)

These are exactly (modulo some conventions) the on-shell
values of the four-forms obtained in [25,44] by dimension-
ally reducing the ten-dimensional Hodge duality relations
between the type IIA RR field strengths.

Substituting (4.25) back into the bosonic Lagrangian
(4.23) and (4.24), one obtains the scalar potential of the orig-
inal theory which coincides with the well-known form of the
type IIA RR flux potential [50,57],

V = −e−1 L3-form|on-shell

= eK̂
[
16eK ρ2

0 + 4eK K i jρiρ j

+e−K Ki j p
i p j + 1

4
(m0)2e−K

]
. (4.26)

Note that upon this substitution the term (4.24) is no more
a total derivative. Without the contribution of this term, the
effective scalar potential would have a wrong (negative) sign.
This is why we have kept track of the boundary terms in our
construction all the time.

Note also that, if we substitute the on-shell values (4.25)
of the four-forms F A

4 and F̃4A into the boundary Lagrangian
(4.24), while still keeping the potentials AmA and Ãm

A off-
shell, upon some algebra we get

L̂bd = 2e
(
ρ0

∗F0
4 + ρi

∗F i
4 + pi ∗F̃4i + m0 ∗F̃40

)

= 2∂m

(
e

(
mA Ãm

A − eA AAm
))

. (4.27)

This boundary term is the same as the linear term of
the effective Lagrangian obtained in [25] by the dimen-
sional reduction of the democratic type IIA pseudo-action
of [54]. It is a total derivative because of the use of the
ten-dimensional Hodge duality relations between the lower-
and higher-form RR field strengths, which, as we have
already mentioned, are equivalent to the on-shell expressions
(4.25) for the four-forms (see [25] for details). To perform
the off-shell dimensional reduction one could use the full-
fledged duality-symmetric action of type IIA supergravity
constructed in [58]. In this way, in principle, one should get

the four-dimensional Lagrangian (4.23) with the boundary
term (4.24), which produces the constants eA and mA after
one integrates out the 3-forms.

5 Conclusion

In this paper we have shown how to construct globally and
locally supersymmetric models with gauge three-forms, by
dualizing more conventional theories with standard chiral
multiplets and a superpotential of the form (1.1). In the dual-
ization process, the coupling constants eA,mB are promoted
to (appropriate combinations of) expectation values of the
field strengths F A

4 = dAA
3 , F̃A4 = d ÃA3 associated with

the three-form gauge fields AA
3 , ÃA3. The dual theory is

manifestly supersymmetric and is constructed in terms of
three-form multiplets which contain a complex scalar and
one or two gauge three-forms as bosonic components, the lat-
ter replacing scalar auxiliary fields of the conventional chiral
multiplets.

As an application, we applied our duality procedure to
the four-dimensional effective theory describing the closed
string sector of type IIA orientifold compactifications on
Calabi–Yau three-folds with RR fluxes. In particular, we dis-
cussed the explicit form of the bosonic action for the scalar
and three-form fields. By solving the equations of motion
for the three-form fields we found the same on-shell values
of their field strengths as those obtained by direct dimen-
sional reduction [25] and the correct potential for the scalar
fields [50].

Even though our approach is quite general, the applica-
tion to more general string compactifications requires further
work. First of all, in the type IIA models considered in Sect.
4 the tadpole condition does not directly concern the internal
fluxes that are involved in the dualization. In more general
IIA compactifications, for instance with a non-trivial H3-flux,
the tadpole condition would become relevant for the dual-
ization procedure. The same is true for type IIB orientifold
compactifications, which have a flux-induced superpotential
[51–53,59,60] compatible with our general framework too.
Also in these cases a non-trivial tadpole condition should be
appropriately taken into account.

Another aspect that deserves further study is the inclusion
of the open-string sector in the effective theory, which may be
naturally incorporated in a three-form formulation [42–44].
It would be interesting to revisit this point in the manifestly
supersymmetric framework provided in the present paper.
Related questions concern its applications to M-theory and F-
theory compactifications, which can be considered as strong
coupling limits of type IIA and IIB compactifications with
back-reacting branes; see for instance [61,62] for reviews.

In four dimensions, gauge three-forms couple to mem-
branes that appear as domain-walls generating jumps of the
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value of the corresponding field strength, as e.g. in [4]. In
the context of string/M-theory compactifications, these mem-
branes correspond to higher-dimensional branes wrapping
various cycles in the internal space and are crucial for the
mechanisms of dynamical relaxation of the cosmological
constant discussed, for instance, in [9,10]. Our formulation
should be the starting point for revisiting these aspects at
the level of a four-dimensional effective theory with mani-
fest linearly realized supersymmetry, generalizing the results
of [8,12–14]. Furthermore, in this same context and in the
presence of spontaneously broken supersymmetry, our for-
mulation should be related, at low energies, to models with
non-linearly realized local supersymmetry as the ones intro-
duced in [15]. It would be interesting to elucidate this rela-
tion. More generically, it would be worth using this general
framework to construct and study supersymmetric extensions
of various models based on gauge three-forms, as for instance
those discussed in [1,3–7,11,16–19,22–26].
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A Component structure of N = 1 superfields

In this appendix we collect some useful formulas on the com-
ponent structure of the multiplets considered in the present
paper. We mostly follow notation and conventions of [45].

The chiral multiplet � is defined by the condition

D̄α̇� = 0. (A.1)

Its component expansion is

� = ϕ + √
2θψ + θ2F + iθσm θ̄∂mϕ

− i√
2
θ2∂mψσm θ̄ + 1

4
θ2θ̄2�ϕ, (A.2)

where ϕ and F are complex scalar fields and ψ is a
Weyl spinor. The independent bosonic components of � are
defined as follows:

�| = ϕ,

−1

4
D2�| = F, (A.3)

where the vertical line means that the quantity is evaluated
at θ = θ̄ = 0. The real scalar multiplet U has the following
component structure:

U = u + iθχ − i θ̄ χ̄ + iθ2ϕ̄ − i θ̄2ϕ + 2θσm θ̄ Am

+iθ2θ̄

(
λ̄ + i

2
σ̄m∂mχ

)
− i θ̄2θ

(
λ + i

2
σm∂m χ̄

)

−θ2θ̄2
(
D + 1

4
�u

)
, (A.4)

where u and D are real scalar fields, ϕ is a complex scalar
field, Am is a real vector field and χ and λ are Weyl spinors.
The independent bosonic components of U are defined as
follows:

U | = u,

−1

8
σ̄ α̇α
m [Dα, D̄α̇]U | = Am,

i

4
D2U | = ϕ̄,

1

16
D2 D̄2U | = −D + i∂m Am . (A.5)

The real linear multiplet L is a real multiplet which, in addi-
tion, satisfies the condition

D2L = 0, D̄2L = 0. (A.6)

The component expansion of L has the form

L = l + iθη − i θ̄ η̄ + 1

3
θσm θ̄εmnpq∂[n
pq]

+1

2
θ2θ̄ σ̄m∂mη − 1

2
θ θ̄2σm∂m η̄ − 1

4
θ2θ̄2�l, (A.7)

where l is a real scalar, 
mn is a rank 2 antisymmetric tensor
and η is a Weyl spinor.

The bosonic components of L are defined through the
projections

L| = l,
1

2
σ̄m α̇α

[
Dα, D̄α̇

]
L| = −2

3
εmnpq∂[n
pq]. (A.8)

The complex linear multiplet � satisfies the condition

D̄2� = 0. (A.9)

Its θ -expansion is

� = σ + θψ + √
2θ̄ ρ̄ − 1

2
θσm θ̄Cm + θ2s̄ + θ2θ̄ ξ̄

− i√
2
θ̄2θσm∂m ρ̄ + θ2θ̄2

(
i

4
∂mC

m − 1

4
�σ

)
. (A.10)

Here σ and s̄ are complex scalars, ρ, ψ and ξ are Weyl
spinors and Cm is a complex vector which is Hodge dual to
the three-form
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Cm = 1

3!ε
mnpqCnpq . (A.11)

The bosonic components of � are defined by the projections

�| = σ,

1

2
σ̄m α̇α

[
Dα, D̄α̇

]
�| = Cm,

−1

4
D2�| = s̄,

1

16
D2 D̄2�| = 0,

1

16
D̄2D2�| = i

2
∂mC

m . (A.12)

B Note on three-forms, scalar potentials and boundary
terms

In this appendix we illustrate the dualization procedure with
two simple examples: first we will consider a purely bosonic
Lagrangian of a single gauge three-form and then we will
examine the case of a Lagrangian with a single complex linear
multiplet.

Let us consider a real three-form with couplings described
by the Lagrangian

L = K ′′(ϕ)

(
1

3!∂mεmnpq Anpq

)2

+W ′(ϕ)

(
1

3!∂mεmnpq Anpq

)
, (B.1)

where K ′′(ϕ) and W ′(ϕ) are real functions of the scalar fields
ϕ, denoted in this way to be reminiscent of the structure of
supersymmetric chiral field models. To further simplify the
formulas, let us replace Anpq with its Hodge-dual vector field

Am = 1

3!ε
mnpq Anpq , (B.2)

so that (B.1) becomes

L = K ′′(ϕ)
(
∂m Am)2 + W ′(ϕ)

(
∂m Am)

. (B.3)

Note that the gauge invariance of the three-form becomes
an invariance of the action under the transformation of the
one-form A1 → A1 + ∗d
2, where A1 = Amdxm .

We wish to integrate out Am to find the contribution to
the scalar potential. To perform a consistent variation of the
action with respect to the three-form, one should introduce
an appropriate boundary term of the form [4,6]

Lbd = −∂m
(
(W ′ + 2K ′′ ∂n An) Am)

. (B.4)

Then the equations of motion for the three-form (which are
unaffected by the boundary terms) give

∂m Am = −W ′ + r

2K ′′ , (B.5)

where r is a real integration constant. Substituting (B.5) into
(B.3) + (B.4) we get the following Lagrangian which provides
the potential for the scalar fields ϕ:

L = − (r + W ′)2

4K ′′ . (B.6)

There is an alternative way to integrate out the three-form
without the need to introduce the boundary terms. We can
rewrite (B.3) by using a Lagrange multiplier scalar α and an
auxiliary field F

L = K ′′F2 + W ′F + αF + Am∂mα . (B.7)

By varying α in (B.7) with the boundary condition δα|bd =
0 we get F = ∂m Am and then back (B.3). Now Am is a
Lagrange multiplier and we can consistently integrate it out
without the need of additional boundary terms thus getting

α = r, (B.8)

where r is a real constant related to the on-shell value of
F4 = d A3. Now we have

L = K ′′F2 + (r + W ′)F, (B.9)

and once we integrate out the scalar F we find (B.6), which
produces a positive definite contribution to the scalar poten-
tial (if K ′′ > 0).

On the other hand, this dualization procedure provides
a systematic way to get the boundary term (B.4), which is
necessary to make the variation of the Lagrangian (B.1) con-
sistent. To do this we should reverse the dualization proce-
dure starting from the Lagrangian (B.7). The variation of the
Lagrangian (B.7) with respect to the auxiliary field gives

δαL = δα
(
F − ∂m Am) + ∂m(Amδα),

δFL = (
2K ′′F + α + W ′) δF. (B.10)

Imposing the boundary conditions

δα|bd = 0, δF |bd = 0, (B.11)

and setting the variations to zero we get

α = −2K ′′F − W ′, F = ∂m Am . (B.12)
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Plugging (B.12) back into the Lagrangian (B.7), we get

L = K ′′(∂m Am)2 +W ′∂m Am −∂m
(
Am(W ′ + 2K ′′∂n An)

)
,

(B.13)

which reproduces the boundary term (B.4).
Let us now consider an example which shows how a

Lagrangian of the form (B.3) can be obtained by the direct
computation of the bosonic components of a superspace
Lagrangian of the form discussed in Sect. 2. Let us con-
sider the following Lagrangian for a single chiral multiplet
� (whose component structure was given in (A.3)):

L =
∫

d4θ ��̄+
(∫

d2θ (c� + W (�)) + c.c.

)
, (B.14)

with c being a complex constant. In order to make the auxil-
iary field F of � dynamical, we promote the complex con-
stant c to a chiral superfield X and add a new term which
contains the complex linear superfield �

L =
∫

d4θ ��̄ +
(∫

d2θ (X � + W (�)) + c.c.

)

+
[∫

d2θ

(
−1

4
D̄2

) (
X̄�

) + c.c.

]
. (B.15)

Using the expansions of the superfields in component fields
given in Appendix A and focusing on the bosonic compo-
nents only, we get from (B.15) the following part of the
component Lagrangian which contains the auxiliary fields
F and F̄ :

LF = F F̄ +
(
W ′F + αF + i

2
Cm ∂mα + c.c.

)
, (B.16)

where α = X | and, as usual, the vector fieldCm is the dual of
a three-form. This is a complexified version of the Lagrangian
(B.7).

To obtain the dual Lagrangian for the fields Cm we vary
(B.16) with respect to α and F , and get the equations of
motion

F = i

2
∂mC

m,

α = −F̄ − W ′. (B.17)

Plugging them back into (B.16), we get

L = 1

4

(
∂nC

n) (
∂mC̄

m) +
(
i

2
W ′∂nCn + c.c.

)
+ Lbd,

(B.18)

with the boundary term Lagrangian having the required form

Lbd = i

2
∂m

((
i

2
∂nC

n − W ′
)
Cm

)
+ c.c. (B.19)

C Properties of the Kähler potential and superpotential
of type IIA compactifications with RR fluxes

Here we give some useful expressions that we used for the
analysis of the effective four-dimensional theory associated
with the example of type IIA flux compactification in Sect. 4.

The K part (4.5) of the Kähler potential (4.3) of the model
under consideration is

K = −log 8k, (C.1)

where

k = 1

3!ki jkv
iv jvk, ki j ≡ ki jkv

k, ki ≡ ki jkv
jvk (C.2)

and ki jk is the triple intersection number of theCY3 manifold.

Defining Ki ≡ ∂K
∂ϕi and Ki j ≡ ∂2K

∂ϕi ∂ϕ̄ j , we have

Ki = − ki
4k

= −2kie
K ,

Ki j = − 1

4k

(
ki j − ki k j

4k

)
,

Ki j ≡ (
Ki j

)−1 = −4k

(
ki j − viv j

2k

)
, (C.3)

and

Ki j K j = −2vi , Ki jv
j = −1

2
Ki , Kiv

i = −3

2
. (C.4)

From (4.12), upon gauge-fixing Z0 = 1, we get the follow-
ing components of the imaginary and the real parts of the
holomorphic matrix GAB (2.38):

M00 = −2k + ki j b
i b j , M0i = −ki j b

j = −Mi j b
j ,

Mi j = ki j , (C.5)

N00 = 1

3
ki jkb

i b j b j − kib
i , N0i = 1

2

(
ki − ki jkb

j bk
)

,

Ni j = ki jkb
k . (C.6)

The inverse matrix MAB has the following components:

M00 = − 1

2k
, M0i = − 1

2k
bi , Mi j = ki j − 1

2k
bib j .

(C.7)
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