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One-loop off-shell contributions to the three-gluon vertex are calculated, in an arbitrary covariant gaug
in arbitrary space-time dimensions, including quark-loop contributions~with massless quarks!. It is shown how
one can get the results for all on-shell limits of interest directly from the general off-shell expression.
corresponding general expressions for the one-loop ghost-gluon vertex are also obtained. They allow
check of consistency with the Ward-Slavnov-Taylor identity.@S0556-2821~96!05818-3#
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I. INTRODUCTION

The three-gluon coupling is perhaps the most obvio
manifestation of the non-Abelian aspect of quantum chrom
dynamics@1# ~see also the reviews@2,3#!. Implicitly, it has
been studied experimentally through the observed running
the coupling constant@4#. The associated Casimir invarian
has even been measured directly in studies of four-jet eve
at the CERNe1e2 collider LEP@5#, the SU~3! group being
consistent with the data.

Apart from being a standard object of consideration
textbooks on quantum field theory and QCD~see, e.g.,
@6–8#!, the perturbative corrections to gluonic vertices a
also very important in real physical calculations, such
multijet production at the hadron colliders~see, e.g.,@9,3#
and references therein!. At the present level of accuracy, on
needs to perform not only calculations with on-shell extern
particles; there are also contributions where general off-sh
results are needed.

One of the original reasons the three-gluon vertex w
studied was the belief that its infrared properties might sh
light on the mechanism of confinement. In these studies, d
ferent approaches were used, some of which are discusse
the review@10# ~and references therein!.

For special cases, the one-loop results for the three-glu
coupling have been known for many years. Celmaster a
Gonsalves~CG! presented in 1979@11# the one-loop result
for the vertex, for off-shell gluons, restricted to the symme
ric case,p1

25p2
25p3

3, in an arbitrary covariant gauge.1 Ball
and Chiu~BC! then in 1980 considered the general off-she
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case, but restricted to the Feynman gauge@13#. Later, various
on-shell results were also given, by Brandt and Frenkel~BF!
@14#, restricted to the infrared-singular parts only~in an ar-
bitrary covariant gauge!, and by Nowak, Praszałowicz, and
Słomiński ~NPS! @15#, who also gave the finite parts for the
case of two gluons being on shell~in the Feynman gauge!.
An overview of these results is given in Table I.

From Table I one can see that, even if we consider t
results in~or around! four dimensions, there are still severa
‘‘white spots.’’ They correspond not only to the most gener
case~the lower left corner!, but also to some other case
when the results are missing, either for quark loop contrib
tions or for the finite parts. The aim of the present paper is
coverall such remaining spots~for the case when massles
quarks are considered!. Moreover, we present results which
are valid for anarbitrary value of the space-time dimension
Apart from the three-gluon vertex itself, we also consider t
ghost-gluon vertex and two-point functions, to be able
check that all these expressions obey the Ward-Slavn
Taylor identity for the three-gluon vertex.

At the one-loop level, the simple and well-known Lorent
structure of the lowest-order coupling gets modified. In th
general case, six tensor structures~and their permutations!
are needed to decompose the three-gluon vertex@13#. Thus,
six scalar functions multiplying these tensor structures are
be calculated. These scalar functions depend on the ga
parameter, the space-time dimension, and the kinematical
variants (p1

2, p2
2, p3

2).
There are several reasons why the one-loop results ca

lated in arbitrary gauge and dimensionn are of special inter-
est: ~i! Knowing the results in arbitrary gauge, one can e
plicitly keep track of gauge invariance for physica
quantities;~ii ! if one is interested in the two-loop calculation
of the three-gluon coupling, one should know one-loop co
tributions in more detail;~iii ! results in arbitrary dimension
make it possible to consider all on-shell limits~when some
pi
250) directly from these expressions~see Sec. IV!, and

this is impossible if one only has the results valid aroun
four dimensions;~iv! QCD is also a theory of interest in
three and two dimensions~see, e.g.,@16# and the review
@17#!; and~v! as we shall see, the results for arbitrary dime
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FIG. 1. One-loop three-gluo
vertex diagrams.
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sion are not much more cumbersome than those conside
around four dimensions~in some respects, they are eve
more transparent and instructive!.

We note that in several papers the one-loop three-glu
vertex in axial-type gauges~including the light-cone gauge!
was considered@18# ~mainly divergent parts and special lim-
its have been studied!. The three-gluon vertex in the back
ground field formalism was considered in Ref.@19#, while
the gauge-invariant vertex was studied in Ref.@20#. More-
over, there were some lattice calculations of the three-glu
vertex; see, e.g., Ref.@21#. We shall not address these issue
here, but concentrate instead on thestandardvertex in an
arbitrarycovariantgauge.

The paper is organized as follows. In Sec. II, we introdu
the notation for the two- and three-point functions to be co
sidered, and discuss their decomposition in terms of sca
functions as well as the corresponding Ward-Slavnov-Tay
identity. In Sec. III, we present the most general off-she
results for the three-gluon vertex. Section IV contains th
corresponding expressions for all on-shell limits of interes
In Sec. V, we conclude with a summary and a discussion
the results. Then, we have several appendixes where so
further results and technical details are presented, such as
formulas used to decompose the three-gluon vertex~Appen-
dix A!, relevant results for the scalar integrals involved~Ap-
pendix B!, results for the self-energies~Appendix C! and the
ghost-gluon vertex~Appendix D!, expressions for the on-
red
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shell limit p3
250 in an arbitrary gauge~Appendix E!, and

also some results forp1
25p2

250 ~Appendix F!.

II. PRELIMINARIES

The Yang-Mills term of the QCD Lagrangian yields th
following well-known expression for the lowest-order three
gluon vertex:

2 ig f a1a2a3@gm1m2
~p12p2!m3

1gm2m3
~p22p3!m1

1gm3m1
~p32p1!m2

#, ~2.1!

wherep1 , p2, andp3 are the momenta of the gluons, all o
which are ingoing,p11p21p350. In Eq. ~2.1!, the f a1a2a3
are the totally antisymmetric color structures correspondi
to the adjoint representation of the gauge group.2 They can
be extracted from the general three-gluon vertex by definin3

2Although the standard QCD Lagrangian corresponds to t
SU(3) group, our results are valid for an arbitrary semisimp
gauge group.
3In fact, also completely symmetric color structuresda1a2a3 might

be considered, but they do not appear in the perturbative calcula
of QCD three-point vertices at the one-loop level.
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TABLE I. Kinematics and gauges considered in other studies.

All momenta off-shell Some momenta on-shell

General case p1
25p2

25p3
2 p3

250 p1
25p2

250

Feynman
gauge

BC @13#,
Eq. ~3.3!
no quarks

special case
of CG @11#

special case
of BF @14#

NPS @15#,
Appendix B

Arbitrary
covariant
guage

CG @11#,
Eq. ~14!

BF @14#,
Eq. ~25!,
no quarks,

no finite parts

BF @14#,
Eq. ~30!,
no quarks,

no finite parts
u
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Gm1m2m3

a1a2a3 ~p1 ,p2 ,p3![2 ig f a1a2a3Gm1m2m3
~p1 ,p2 ,p3!.

~2.2!

Since the gluons are bosons, and since the color struct
f a1a2a3 are antisymmetric,Gm1m2m3

(p1 ,p2 ,p3) must also be
antisymmetricunder any interchange of a pair of gluon m
menta and the corresponding Lorentz indices.

The lowest-order gluon propagator is

da1a2
1

p2
S gm1m2

2j
pm1

pm2

p2
D , ~2.3!

wherej is the gauge parameter corresponding to a gen
covariant gauge, defined such thatj50 is the Feynman
gauge. Here and henceforth, a causal prescription is un
stood, 1/p2→1/(p21 i0).
i
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-
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When one calculates radiative corrections to the thr
gluon vertex~the corresponding one-loop diagrams are p
sented in Fig. 1!, other tensor structures arise, in addition
the lowest-order expression~2.1!, and the general tensor de
composition should be considered. If we take into acco
momentum conservation~only two of the external momenta
are independent!, 14 independent tensor structures carrying
Lorentz indices exist, and in generalGm1m2m3

can be written
as a sum of these tensors multiplied by scalar functions~see
Appendix A!. This decomposition is useful for extracting th
corresponding scalar functions from the result of a calcu
tion. Although bosonic symmetry of the vertex puts som
conditions on the corresponding scalar functions, the exp
symmetry of the expression is broken, because one of
momenta was substituted in terms of two others.

To avoid this, one can use a more symmetric decomp
tion of the general three-gluon vertex, proposed by Ball a
Chiu4 @13#:
Gm1m2m3
~p1 ,p2 ,p3!5A~p1

2 ,p2
2 ;p3

2!gm1m2
~p12p2!m3

1B~p1
2 ,p2

2 ;p3
2!gm1m2

~p11p2!m3
2C~p1

2 ,p2
2 ;p3

2!@~p1p2!gm1m2

2p1m2
p2m1

#~p12p2!m3
1 1

3 S~p1
2 ,p2

2 ,p3
2!~p1m3

p2m1
p3m2

1p1m2
p2m3

p3m1
!1F~p1

2 ,p2
2 ;p3

2!

3@~p1p2!gm1m2
2p1m2

p2m1
#@p1m3

~p2p3!2p2m3
~p1p3!#1H~p1

2 ,p2
2 ,p3

2!$2gm1m2
@p1m3

~p2p3!

2p2m3
~p1p3!#1 1

3 ~p1m3
p2m1

p3m2
2p1m2

p2m3
p3m1

!%

1$cyclic permutations of~p1 ,m1!,~p2 ,m2!,~p3 ,m3!%. ~2.4!
s

-

Here, theA, C, andF functions are symmetric in the firs
two arguments, theH function is totally symmetric, and the
B function is antisymmetric in the first two arguments, wh
the S function is antisymmetric with respect to interchan
of any pair of arguments. Note that the contribution conta
ing theF andH functions is totally transverse; i.e., it give
zero when contracted with any ofp1m1

, p2m2
, or p3m3

.

Now, before proceeding further, we introduce some no
tion. For a quantityX ~e.g., any of the scalar functions con
tributing to the propagators or the vertices!, we shall denote

4Another general decomposition of the three-gluon vertex w
considered in Ref.@22#.
t
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-

the zero-loop-order contribution asX(0) and the one-loop-
order contribution asX(1). In this paper, as a rule,

X~1!5X~1,j!1X~1,q!, ~2.5!

whereX(1,j) denotes a contribution of gluon and ghost loop
in a general covariant gauge~2.3! ~in particular,X(1,0) corre-
sponds to the Feynman gauge,j50), whileX(1,q) represents
the contribution of the quark loops.

For example, from Eq.~2.1! one can see that at the ‘‘zero
loop’’ level all the scalar functions involved in Eq.~2.4!
vanish, except theA function, which is

A~0!51. ~2.6!
as
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FIG. 2. ~a! Gluon polarization
operator diagrams and~b! ghost
self-energy diagram.
an
in
ll

e-
m

n

e
p
tri-
In what follows, we shall also need to use some oth
QCD Green functions, including those involving the
Faddeev-Popov ghosts. As in Eq.~2.4! we define the corre-
sponding scalar structures following the notation of Re
@13#.

The gluon polarization operator is defined as

Pm1m2

a1a2 ~p![2da1a2~p2gm1m2
2pm1

pm2
!J~p2!, ~2.7!

while the ghost self-energy is

P̃a1a2~p2!5da1a2p2G~p2!. ~2.8!

The lowest-order results areJ(0)5G(0)51. The one-loop
contributions toPm1m2

a1a2 (p) and P̃a1a2(p2) are presented in

Fig. 2 and can easily be calculated. The results~in arbitrary
space-time dimension! can be found, e.g., in Ref.@8#. For
completeness, we collect the relevant formulas in Append
C.

The ghost-gluon vertex can be represented as

G̃m3

a1a2a3~p1 ,p2 ;p3![2 ig f a1a2a3p1
mG̃mm3

~p1 ,p2 ;p3!,

~2.9!

wherep1 is the out-ghost momentum,p2 is the in-ghost mo-
mentum, andp3 andm3 are the momentum and the Lorentz
index of the gluon~all momenta are ingoing!. For G̃mm3

we
adopt the following decomposition, also used in@13#:

G̃mm3
~p1 ,p2 ;p3!5gmm3

a~p3 ,p2 ,p1!2p3mp2m3
b~p3 ,p2 ,p1!

1p1mp3m3
c~p3 ,p2 ,p1!

1p3mp1m3
d~p3 ,p2 ,p1!

1p1mp1m3
e~p3 ,p2 ,p1!. ~2.10!
er

f.

ix

At the ‘‘zero-loop’’ level,

G̃mm3

~0! 5gmm3
, ~2.11!

and therefore all the scalar functions involved in Eq.~2.10!
vanish at this order, except one,a(0)51. We shall also need
the one-loop-order results for the ghost-gluon vertex in
arbitrary gauge~the corresponding diagrams are presented
Fig. 3!. We have calculated one-loop contributions to a
scalar functions occurring on the right-hand side~RHS! of
Eq. ~2.10!; they are presented in Appendix D.

We needG̃mm3
with two Lorentz indices, because this is

what enters the Ward-Slavnov-Taylor identity for the thre
gluon vertex, which, in the covariant gauge, has the for
~see, e.g., in@2,13#!

p3
m3Gm1m2m3

~p1 ,p2 ,p3!52J~p1
2!G~p3

2!~gm1

m3p1
2

2p1m1
p1

m3!G̃m3m2
~p1 ,p3 ;p2!

1J~p2
2!G~p3

2!~gm2

m3p2
2

2p2m2
p2

m3!G̃m3m1
~p2 ,p3 ;p1!.

~2.12!

It is easy to see that theF andH functions from the three-
gluon vertex~2.4!, as well as thec ande functions from the
ghost-gluon vertex~2.10! do not contribute to this identity.
Below, we are going to use Eq.~2.12! as a nontrivial check
on the results for the longitudinal part of the three-gluo
vertex.

To conclude this section, we would like to present th
notation we use for the integrals occurring in the one-loo
calculations. We define the integral corresponding to the
angle diagram as
-
FIG. 3. One-loop ghost-gluon vertex dia
grams.
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J~n1 ,n2 ,n3![E dnq

@~p22q!2#n1@~p11q!2#n2~q2!n3
,

~2.13!

wheren5422« is the space-time dimension~in the frame-
work of dimensional regularization5 @23#!. A brief overview
of relevant results for such integrals inn dimensions is pre-
sented in Appendix B. It should be noted that all such int
grals occurring in the present calculation can be algebraica
reduced to one nontrivial integral

J~1,1,1!5 ipn/2hw~p1
2 ,p2

2 ,p3
2!, ~2.14!

wherew(p1
2 ,p2

2 ,p3
2)[w is a totally symmetric function~see

Appendix B for details!, and three two-point integrals
J(0,1,1),J(1,0,1), andJ(1,1,0), which can be expressed i
terms of a powerlike function

k~pi
2![k i52

2

~n23!~n24!
~2pi

2!~n24!/2

5
1

«~122«!
~2pi

2!2« ~2.15!

as, e.g.,

J~1,1,0!5 ipn/2hk~p3
2!, ~2.16!

and similarly for J(0,1,1) andJ(1,0,1), where, instead of
k(p3

2)5k3, we should usek(p1
2)5k1 and k(p2

2)5k2, re-
spectively. In Eqs.~2.14! and~2.16!, h denotes a factor con-
structed ofG functions,

h[
G2~n/221!

G~n23!
GS 32

n

2D5
G2~12«!

G~122«!
G~11«!.

~2.17!

III. OFF-SHELL RESULTS

The set of Feynman diagrams yielding one-loop contrib
tions to the three-gluon vertex is presented in Fig. 1.

When calculating the diagrams, we used the stand
technique of tensor decomposition6 @24#, reducing the result
to combinations of scalar integrals multiplying the tens
structures constructed from the external momenta~see Ap-
e-
lly

n

u-

ard

or

pendix A!. In the Feynman gauge, the basic set of sca
integrals ~2.13! includes the four integralsJ(1,1,1),
J(0,1,1), J(1,0,1), andJ(1,1,0) only, since massless int
grals with two nonpositive powersn i vanish in dimensiona
regularization@23#. For arbitraryj, we also get integrals with
some of the powers of the denominators equal to 2; see
~2.3!. However, with the help of the integration-by-par
technique@27# these integrals can be algebraically reduced
the above basic set~see Ref.@28#!. While performing the
calculations, theREDUCEsystem@29# was heavily employed

Before presenting the results, let us define two tota
symmetric combinations of the invariants formed from t
external momenta:

Q[~p1p2!1~p1p3!1~p2p3!52 1
2 ~p1

21p2
21p3

2!,
~3.1!

K[p1
2p2

22~p1p2!
25p1

2p3
22~p1p3!

25p2
2p3

22~p2p3!
2

5~p1p2!~p1p3!1~p1p2!~p2p3!1~p1p3!~p2p3!

52 1
4 @~p1

2!21~p2
2!21~p3

2!222p1
2p2

222p1
2p3

222p2
2p3

2#.

~3.2!

From the last line of Eq.~3.2!, one can recognize the stru
ture 24K as the Ka¨llen function of p1

2 , p2
2, and p3

2; see,
e.g., Ref.@30#.

A. Results in the Feynman gauge

Let us consider the one-loop contributions to the thr
gluon vertex~2.4! in the Feynman gauge (j50), without the
quark loops~the results for the latter are presented in S
III C !. We shall use the standard notationCA for the Casimir
constant,

f acdf bcd5CAdab @CA5N for the SU~N! group#,
~3.3!

whereas the factorh occurring in the results is defined b
Eq. ~2.17!.

The one-loop results for the scalar functions~2.4!, for
arbitrary value of the space-time dimensionn, are
zed
be
ec. III E
A~1,0!~p1
2 ,p2

2 ;p3
2!5

g2h

~4p!n/2
CA

1

4~n21!K $~n21!@p3
213~p1p2!#@p3

2~p1p2!w1~p1p3!k11~p2p3!k21p3
2k3#

14~n21!K@~p1p2!w1k3#2~3n22!K@k11k2#%, ~3.4!

B~1,0!~p1
2 ,p2

2 ;p3
2!52

g2h

~4p!n/2
CA

1

4~n21!K ~p1
22p2

2!H ~n21!@~p1p3!~p2p3!w1~p1p3!k11~p2p3!k21p3
2k3#

5For simplicity, we put the dimensional-regularization scalemDR51. Otherwise, all one-loop expressions for dimensionally regulari
quantities should have been multiplied by (mDR)

2«. In the final results, expanded aroundn54 and renormalized, this scale can easily
restored by insertingmDR in all nondimensionless arguments of the logarithms, in order to make them dimensionless. See also S
where the renormalization is discussed.
6An alternative way to decompose triangle integrals~2.13! with tensor numerators was used in@25#. It was based on a formula from@26#.
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1~4n23!K
k12k2

p1
22p2

2 J , ~3.5!

C~1,0!~p1
2 ,p2

2 ;p3
2!5

g2h

~4p!n/2
CA

1

4~n21!K H 3~n21!@p3
2~p1p2!w1~p1p3!k11~p2p3!k21p3

2k3#22 ~4n23!K
k12k2

p1
22p2

2 J ,
~3.6!

S~1,0!~p1
2 ,p2

2 ,p3
2!50, ~3.7!

F ~1,0!~p1
2 ,p2

2 ;p3
2!5

g2h

~4p!n/2
CA

1

4~n21!K3 H 2@~n221!~p1p2!~p1p3!~p2p3!12~n22!p3
2K2~n27!~p1p2!K#

3@p3
2~p1p2!w1~p1p3!k11~p2p3!k21p3

2k3#12K@~n11!~n24!~p1p3!~p2p3!2~5n211!K#

3@~p1p2!w1k3#12p3
2K@~n11!~p1p3!~p2p3!1~n23!K#w1~4n27!K2@k11k2#1K$2~n11!

3~p1p2!~p1
22p2

2!21~4n23!K@p1
21p2

222~p1p2!#%
k12k2

p1
22p2

2 J , ~3.8!

H ~1,0!~p1
2 ,p2

2 ,p3
2!5

g2h

~4p!n/2
CA

1

2~n21!K3 „~n
221!~p1p2!~p1p3!~p2p3!@~p1p2!~p1p3!~p2p3!w1~p1p2!~p1p3!k1

1~p1p2!~p2p3!k21~p1p3!~p2p3!k3#23~n21!~p1p2!~p1p3!~p2p3!K@Qw1k11k21k3#

12~n21!K3w1~n22!K$p1
2@p1

2~p2p3!1~p1p2!~p1p3!#k11p2
2@p2

2~p1p3!1~p1p2!~p2p3!#k2

1p3
2@p3

2~p1p2!1~p1p3!~p2p3!#k3%…. ~3.9!

When expanded aroundn54, these formulas coincide7 with the results presented in@13#. We shall see that the result
S50 is valid also in an arbitrary gauge. It should be noted that presenting the results in arbitrary dimension does not sp
compactness, as compared with the formulas expanded aroundn54.

B. Results in arbitrary covariant gauge

In an arbitrary gauge, the results for the scalar functions of the three-gluon vertex~2.4! are obviously less compact than
those in the Feynman gauge. We list them below, also for arbitrary value of the space-time dimension:

A~1,j!~p1
2 ,p2

2 ;p3
2!5

g2h

~4p!n/2
CA

1

32K2p1
2p2

2 F „p12p22K$@824j2~n22!~n23!j2#p3
212@1214~n23!j1~n23!j2#~p1p2!%

1j@~n24!j14#KQ@~n23!~p1p2!Q2~n24!K#1j@~n23!j12#~n21!p1
2p2

2p3
2~p1p2!Q…@p32~p1p2!w

1~p1p3!k11~p2p3!k21p3
2k3#2K„@~n24!j14#K$@~n24!j28#p1

2p2
21jQ@~n22!p3

222~n23!

3~p1p2!#%2j@~n23!j12#~n22!p1
2p2

2p3
2Q…@~p1p2!w1k3#1Kw„j@~n24!j14#K$~2n27!p1

2p2
2p3

2

1Q@p1
2~p1p3!1p2

2~p2p3!#%1j@~n23!j12#p1
2p2

2p3
2@p3

2Q22~n24!K#…2
K

n21
$p1

2p2
2K@8~3n22!

14~n21!~5n217!j23~n21!~n24!j2#1j@~n24!j14#~n21!KQ2

1j@~n23!j12#~n21!p1
2p2

2p3
2Q%@k11k2#G , ~3.10!

7Up to the definition of the renormalization scheme constantC in @13#, which we find to beC52g2 lnp12 rather thanC52g2 lnp.
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B~1,j!~p1
2 ,p2

2 ;p3
2!5

g2h

~4p!n/2
CA

1

32K2p1
2p2

2p3
2 ~p1

22p2
2!F „2p1

2p2
2p3

2K@8212j2~n12!~n23!j2#1j@~n24!j14#KQ$~n

22!K1~n23!~p1p2!@p3
21~p1p2!#%1j@~n23!j12#p1

2p2
2$2KQ1~n21!p3

2~p1p2!@p3
21~p1p2!#%…

3@p3
2~p1p2!w1~p1p3!k11~p2p3!k21p3

2k3#1~n24!K$j@~n24!j14#K~p3
2Q1p1

2p2
2!1j@~n23!j

12#p1
2p2

2p3
2@p3

21~p1p2!#%2Kp32w$p1
2p2

2K@814~n25!j2~3n210!j2#1j@~n24!j14#KQ22j@~n

23!j12#p1
2p2

2p3
2@p3

21~p1p2!#%2
K

n21

k12k2

p1
22p2

2 $p1
2p2

2p3
2K@8~4n23!14~n21!~5n219!j2~n21!

3~5n218!j2#1j@~n24!j14#~n21!KQ@p1
2~p1p3!1p2

2~p2p3!#

2j@~n23!j12#~n21!p1
2p2

2~p1
22p2

2!2@p3
21~p1p2!#%G , ~3.11!

C~1,j!~p1
2 ,p2

2 ;p3
2!5

g2h

~4p!n/2
CA

1

16K2p1
2p2

2p3
2 S $2p1

2p2
2p3

2K@61~2n25!j1~n23!j2#1j@~n24!j14#

3QK@K1~n23!p3
2~p1p2!#1j@~n23!j12#~n21!p1
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2~p1p2!w1~p1p3!k1
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2k3#1~n24!Kp32$j@~n24!j14#KQ1j@~n23!j12#p1

2p2
2p3

2%@~p1p2!w1k3#

1Kp32w$j@~n24!j14#K~p1
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22Q2!1j@~n23!j12#p1
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2~p3
2!2%2

K
n21

k12k2

p1
22p2

2

3$2p1
2p2

2p3
2K@4~4n23!12~n21!~5n218!j2~n21!~2n27!j2#1j@~n24!j14#~n21!

3KQ@p1
2~p1p3!1p2

2~p2p3!#2j@~n23!j12#~n21!p1
2p2

2p3
2~p1

22p2
2!2% D , ~3.12!

S~1,j!~p1
2 ,p2

2 ,p3
2!50, ~3.13!

F ~1,j!~p1
2 ,p2

2 ;p3
2!5

g2h

~4p!n/2
CA

1

32~n21!K3p1
2p2

2p3
2 H 2„p12p22p32$~p1p2!~p1p3!~p2p3!~n21!@8~n11!18~n23!j

1~3n2238n163!j22~n23!~7n213!j3#22KQ@8~n22!18~n21!j1~n21!~3n214!j2
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1~p2p3!k21p3
2k3#12K„p12p22p32$~p1p3!~p2p3!~n24!@8~n11!18~n21!j1~n21!~3n223!j2

25~n21!~n23!j3#2K@8~5n211!14~n21!~5n211!j1~n21!~n214n210!j21n~n21!

3~n23!j3#%2j@~n24!j14#~n21!~n24!$@~n23!j12#~p1p2!~p1p3!
2~p2p3!

21K~p1p2!~p1p3!

3~p2p3!23K2~p1p2!%…@~p1p2!w1k3#12Kw„p1
2p2

2~p3
2!2$K~n21!@16116j1~5n232!j226

3~n23!j3#1p3
2~p1p2!@8~n11!18~n21!j1~n21!~3n223!j225~n21!~n23!j3#%2j@~n24!j

14#~n21!~p1p3!~p2p3!$@~n23!j12#p3
2~p1p2!~p1p3!~p2p3!1@~n23!j13#Kp32~p1p2!

1j~n24!K2%…1K2p1
2p2

2p3
2@8~4n27!14~n21!~5n211!j1~n21!~13n230!j212~n21!~n22!

3~n23!j3#@k11k2#1K
k12k2

p1
22p2

2 F p12p22p32„K@p3
224~p1p2!#@8~4n23!14~n21!~5n217!j

2~n21!~3n210!j2#12~p1p2!~p1
22p2

2!2~n11!$82~n21!j2@~n23!j13#%…

22j@~n24!j14#~n21!K$K@p1
2~p1p3!1p2

2~p2p3!#2@~n23!j12#~p1p3!~p2p3!~p1
22p2

2!2%G J ,
~3.14!
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H ~1,j!~p1
2 ,p2

2 ,p3
2!5

g2h

~4p!n/2
CA

1

16K3p1
2p2

2p3
2 F „p12p22p32~p1p2!~p1p3!~p2p3!@8~n11!114~n21!j14~n21!~n27!j2

25~n21!~n23!j3#2j@~n24!j14#$~n21!@~n23!j13#~p1p2!
2~p1p3!

2~p2p3!
213~n24!K3%

2~n21!j~22j!~p1
2!2~p2

2!2~p3
2!2…@~p1p2!~p1p3!~p2p3!w1~p1p2!~p1p3!k11~p1p2!~p2p3!k2

1~p1p3!~p2p3!k3#1K$2p1
2p2

2p3
2~p1p2!~p1p3!~p2p3!@24138j14~3n216!j229~n23!j3#

13j@~n24!j14#@~n23!j13#~p1p2!
2~p1p3!

2~p2p3!
21j~22j!~p1

2!2~p2
2!2~p3

2!2%@Qw1k11k21k3#

1K3w$p1
2p2

2p3
2@1614~3n28!j2~n22!j22~n22!j3#2j2@~n24!j14#~n24!~p1p2!~p1p3!~p2p3!%

1
K

n21
$2p1

2p2
2p3

2@4~n22!16~n21!j1~n21!~2n29!j22~n21!~n23!j3#2j@~n24!j14#

3@~n23!j13#~n21!~p1p2!~p1p3!~p2p3!%$p1
2@p1

2~p2p3!1~p1p2!~p1p3!#k11p2
2@p2

2~p1p3!1~p1p2!

3~p2p3!#k21p3
2@p3

2~p1p2!1~p1p3!~p2p3!#k3%G . ~3.15!
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One of the main technical problems we met in this cal
lation was how to bring the results for arbitraryj to a rea-
sonably short form. The originalREDUCE output for the nu-
merators of the scalar functions~2.4! was really huge. Then
the problem was how to organize the result and which ba
to choose. The first basis we needed was one in the ‘‘spa
of the scalar functionsw and k i . It was possible to get a
better factorization of the coefficients by considering n
these functions themselves but certain linear combinatio
Moreover, not all ‘‘convenient’’ combinations happened
be the same for the different functions; see Eqs.~3.10!–
~3.15!. Then, the coefficients multiplying these combinatio
of w and k i are polynomials inj, n, and the momentum
invariants. Trying to write the latter only asp1

2 , p2
2 , and

p3
2, we were still getting rather long expressions. The n

idea was to try to use in some cases also the scalar prod
(p1p2), (p1p3), and (p2p3), together with the notation~3.1!
and ~3.2! for symmetric combinations. These tricks~as well
as looking for proper combinations ofj andn) allowed us to
write the expressions in a much shorter form. However,
part of the work could not be completely automatized sin
pi
2 and the scalar products (pipj ) are linearly dependent.
There are some special values of the gauge paramej

we would like to point out. First of all, we see that the term
u-

,
ses
ce’’

ot
ns.
to

ns

ext
ucts

his
ce

er
s

containingp1
2 , p2

2, or p3
2 in the denominator disappear no

only if we put j50 ~Feynman gauge!, but also in a ‘‘singu-
lar’’ ~in four dimensions! gauge,8 j524/(n24). Having no
pi
2 in the denominator is especially convenient when on

considers on-shell limits, i.e., when some of the external m
menta squared vanish; otherwise, one needs to expand
scalar integrals in the vanishing momenta squared~see Sec.
IV !. Second, many terms vanish forj522/(n23), which
could be considered ann-dimensional generalization of the
Fried-Yennie gauge@31# ~see also Ref.@32# and Appendix
D!.

C. Contributions of the quark loops

Let us consider the quark loop contributions to the fun
tions ~2.4!. We assume that there areNf quarks which are all
massless, and we define

TR5 1
8 Tr~ I !5 1

2 @ if Tr ~ I !54#, ~3.16!

whereI is the ‘‘unity’’ in the space of Dirac matrices.
The quark loop contributions do not depend onj. The

results of the calculation are
A~1,q!~p1
2 ,p2

2 ;p3
2!5

g2h

~4p!n/2
NfTR

n22

n21
@k11k2#, ~3.17!

B~1,q!~p1
2 ,p2

2 ;p3
2!5

g2h

~4p!n/2
NfTR

n22

n21
@k12k2#, ~3.18!

C~1,q!~p1
2 ,p2

2 ;p3
2!5

g2h

~4p!n/2
2NfTR

n22

n21

k12k2

p1
22p2

2 , ~3.19!

8It is not clear whether the second choice could be of use in realistic calculations, since a singularity ofj in four dimensions requires extra
care in renormalizing, etc.
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S~1,q!~p1
2 ,p2

2 ,p3
2!50, ~3.20!

F ~1,q!~p1
2 ,p2

2 ;p3
2!52

g2h

~4p!n/2
NfTR

1

~n21!~n22!K3 S 2@~n221!~p1p2!~p1p3!~p2p3!12~n22!p3
2K2~n27!~p1p2!K#

3@p3
2~p1p2!w1~p1p3!k11~p2p3!k21p3

2k3#12~n11!~n24!Kp32~p1p2!@~p1p2!w1k3#

12p3
2Kw@~n11!~p1p3!~p2p3!1~n23!K#1n~n24!K2@k11k2#1K

k12k2

p1
22p2

2

3$2~n11!~p1p2!~p1
22p2

2!21~n22!2K@p1
21p2

222~p1p2!#% D , ~3.21!

H ~1,q!~p1
2 ,p2

2 ,p3
2!52

g2h

~4p!n/2
2NfTR

1

~n21!~n22!K3„~n
221!~p1p2!~p1p3!~p2p3!@~p1p2!~p1p3!~p2p3!w1~p1p2!

3~p1p3!k11~p1p2!~p2p3!k21~p1p3!~p2p3!k3#23~n21!~p1p2!~p1p3!~p2p3!K@Qw1k11k21k3#

1~n21!~n22!K3w1~n22!K$p1
2@p1

2~p2p3!1~p1p2!~p1p3!#k11p2
2@p2

2~p1p3!1~p1p2!~p2p3!#k2

1p3
2@p3

2~p1p2!1~p1p3!~p2p3!#k3%…. ~3.22!

D. Symmetric limit and comparison

Now, we would like to compare to our results with those by Celmaster and Gonsalves@11#. For their study of
renormalization-prescription dependence of Green functions, they evaluated the three-gluon vertex function to one loo
symmetric point:

p1
25p2

25p3
2[p252M2. ~3.23!

In this case, we get (p1p2)5(p1p3)5(p2p3)52 1
2 p

25 1
2 M

2. At the symmetric point, the vertex function simplifies consid
erably. First of all, because of their antisymmetry, theB andS functions~2.4! must be zero,

B~p2,p2;p2!5S~p2,p2,p2![0. ~3.24!

Furthermore, in this limit, the number of independent tensor combinations in the three-gluon vertex reduces to 3, a
vertex function can be written, in the notation used in@11#, as9

Gm1m2m3
~p1 ,p2 ,p3!5G0~p

2!@gm1m2
~p12p2!m3

1gm2m3
~p22p3!m1

1gm3m1
~p32p1!m2

#2G1~p
2!~p22p3!m1

~p32p1!m2
~p1

2p2!m3
1G2~p

2!~p1m3
p2m1

p3m2
2p1m2

p2m3
p3m1

!, ~3.25!

with the threeGi functions related to the scalar functions in Eq.~2.4! through

G0~p
2!5A~p2,p2;p2!1 1

2 p
2C~p2,p2;p2!1 1

4 ~p2!2F~p2,p2;p2!1 1
2 p

2H~p2,p2,p2!, ~3.26!

G1~p
2!5C~p2,p2;p2!1 1

2 p
2F~p2,p2;p2!, ~3.27!

G2~p
2!5C~p2,p2;p2!1 1

2 p
2F~p2,p2;p2!1H~p2,p2,p2!. ~3.28!

We note that two of these relations may be expressed more compactly as

G2~p
2!5G1~p

2!1H~p2,p2,p2!, G0~p
2!5A~p2,p2;p2!1 1

2 p
2G2~p

2!. ~3.29!

From our results, we obtain the following expressions for theGi functions~in arbitrary gauge and dimension!:

G0
~1,j!~p2!5

g2h

~4p!n/2
CA

1

288
$p2w@8112j~14n251!16j2~n2218n160!2j3~n24!~n212!#26k@32136j~2n27!

16j2~n24!~n26!2j3~n24!~n23!#%, ~3.30!

9The counterterm contribution is omitted.
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G1
~1,j!~p2!52

g2h

~4p!n/2
CA

1

3456p2 H p2w@64~n220!2144j~7n226!224j2~n2218n150!1j3~n3224n21200n2384!#

26k
n24

n21
@64~n22!2144j~n21!212j2~n21!~2n27!1j3~n21!~n23!~n220!#J , ~3.31!

G2
~1,j!~p2!5

g2h

~4p!n/2
CA

1

144p2 H p2w@12816j~29n2114!16j2~n2218n160!2j3~n24!~n212!#

26k
n24

n21
@8130j~n21!16j2~n21!~n25!2j3~n21!~n23!#J , ~3.32!

G0
~1,q!~p2!52

g2h

~4p!n/2
NfTR

2~3n28!

9~n22!
$2p2w23k%, ~3.33!

G1
~1,q!~p2!52

g2h

~4p!n/2
NfTR

4

27p2 H 4p2w13k
n24

n21 J , ~3.34!

G2
~1,q!~p2!52

g2h

~4p!n/2
NfTR

4

9~n22!p2 H 2p2w~3n28!23k
n24

n21 J , ~3.35!
r
r

e

e
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wherew5w(p2,p2,p2) andk5k(p2). Expanding these re-
sults aroundn54 and keeping the divergent and finite~in
«5(42n)/2) terms only, we arrive atexactly the same re-
sults as Celmaster and Gonsalves; see Eqs.~14a!, ~14b!, and
~14c! of @11#.10

In Ref. @33# the QCD renormalization has been consid
ered at an asymmetric point:

p1
25p2

2[p252M2, p3
254zp2524zM2. ~3.36!

In particular, the three-gluon vertex was studied at th
point, including quark loop contributions~with massive
quarks!. The tensor structures used to decompose the thr
gluon vertex are presented in Eqs.~2! and ~4! of @33#. Of
the scalar functions multiplying the seven tensor structu
defined by Eq.~5! of @33#, an explicit result is presented fo
the functionF0 only; see Eq.~6! of @33#.11 In terms of the
scalar functions ~2.4!, one finds the correspondenc
F0↔2A(p2,4zp2;p2)2B(p2,4zp2;p2).

Calculating this combination of theA andB functions for
the case~3.36!, we find coincidence of thej and j2

10Their transcendental constantI is nothing but our
p2w(p2,p2,p2)un54 @see Eq.~B10!# which can be expressed in
terms of Clausen’s function as (4/A3) Cl2(p/3).
11We note some misprints in@33#: ~i! In the definition of thew

function @Eq. ~8!#, x in the denominator of the expression under th
square root should readz; ~ii ! before Eq.~7!, the definition of 1/«̂
should read 1/«̂52/(D24)1g1 ln@Q2/(4pn2)# ~the sign before the
logarithm should be changed!.
-

is

ee-

es

contributions,12 as well as the quark loop contibutions in th
massless limit. However, our result for the Feynman-ga
part is different. So we donot confirm Eq.~6! of @33#.

E. Renormalization

In the limit n→4 («→0), the only function which may
have an ultraviolet singularity is theA function, since this is
the only function which does not vanish at the ‘‘zero-loop
level; see Eq.~2.6!. In arbitrary gauge, the ultraviolet
singular part of theA function follows from Eq.~3.10!,

A~1, UV!5
g2h

~4p!22«@2CA~ 2
3 1 3

4 j!1 4
3 NfTR#k~UV!,

~3.37!

wherek (UV)51/«1••• is the ultraviolet-singular part of the
k function ~2.15!. Therefore, the divergent part of the cou
terterm contribution should be equal to minus the RHS
Eq. ~3.37!. This counterterm contribution can be written as13

A~1,CT!5
ḡ2

~4p!2
@CA~ 2

3 1 3
4 j!2 3

4 NfTR#S 1« 1RD
5

g2h

~4p!22«@CA~ 2
3 1 3

4 j!2 3
4 NfTR#S 1« 1RD1O~«!,

~3.38!

e

12In @33#, b is the same as ourj. The integralI (0,z) from @33# is
related, in the limit ~3.36!, to our J(1,1,1) as
I (0,z)52( ip2)21M2J(1,1,1).
13In commonly used notation, expression~3.38! corresponds to

(Z121) at the one-loop order.
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where R is a constant corresponding to the choice
renormalization scheme, whereasḡ2[g2e2g«(4p)«

5g2exp$«@2g1ln(4p)#% is the ‘‘rescaled’’ coupling con-
stant. Such a redefinition ofg2 is usually performed in the
context of the modified minimal subtraction (MS) renormal-
ization scheme@34# which corresponds to the choiceR50
@for R50, Eq. ~3.38! corresponds to Eq.~15! of Ref. @11##.
The second line of Eq.~3.38! is more convenient for dealing
with the expressions obtained in the present paper, since
can keepg2h/(4p)n/2 as an overall factor. Here, we hav
used the fact that

h5e2g«@12 1
12p2«21O~«3!#. ~3.39!

The «2 term in Eq.~3.39! is not relevant for the ultraviolet
renormalization at theone-loop level. However, it yields fi-
nite contributions when one has 1/«2 infrared~on-shell! sin-
gularities~see Sec. IV C!.

If we now recall the existence of the dimensiona
regularization scale parametermDR ~which we usually put
equal to 1; see footnote at the end of Sec. II!, we shall see
that, as opposed to other one-loop-order contributions,
counterterm~3.38! should not be multiplied by the factor
(mDR)

2«; see also in Ref.@11#.
Examining Eq.~3.37!, it is interesting to note that for

jun54[j05
8
9 S 2NfTR

CA
21D , ~3.40!

we do not have any ultraviolet singularity in the one-loo
contribution to the three-gluon vertex. If we substitu

Nf56, CA53, andTR5 1
2 , we getj05

8
9 .

IV. ON-SHELL LIMITS

There are two main on-shell cases of interest: when one
two of the external momenta squared are zero. However,
also instructive to consider, as a separate case, the limit w
one external momentum~not only its square! vanishes.

A. One external momentum squared is zero,p3
250

In this case, we should substitute in the expressions for
scalar functions
of

one
e

l-

the

p
te

or
it is
hen

all

p3
250, ~p1p2!52 1

2 ~p1
21p2

2!,

~p1p3!52 1
2 ~p1

22p2
2!,

~p2p3!5 1
2 ~p1

22p2
2!. ~4.1!

Note that now we should consider the scalar function
A, B, C, andF from Eq.~2.4! with permuted arguments as
well.

The result for the triangle integral~2.14! simplifies in this
limit:

J~1,1,1!up
3
2505 ip22«hw~p1

2 ,p2
2,0!

5 ip22«h
1

«2
~2p1

2!2«2~2p2
2!2«

p1
22p2

2 , ~4.2!

whereh is defined by Eq.~2.17!. Moreover, in the frame-
work of dimensional regularization@23#,

J~1,1,0!up
3
25050, ~4.3!

while the results forJ(1,0,1) and J(0,1,1) remain un-
changed. As to the factor 1/«2 in Eq. ~4.2!, one power of« is
canceled by the expansion of the numerator, while anoth
power of « survives and corresponds to the infrared~on-
shell! singularity which arises in the scalar integral in th
limit p3

250.
For the Feynman gaugej50 @and also for the singular

gaugej524/(n24)#, it is enough to perform the above
substitutions to get the answer. In the case of arbitraryj,
however, the situation is more tricky, due to the presence
p3
2 in the denominators of the scalar functions. Here, in ord

to get a correct answer, one needs to expand the integ
J(1,1,1) inp3

2 and keep the term of orderp3
2:
J~1,1,1!up
3
2→05 ip22«h

1

«2H ~2p1
2!2«2~2p2

2!2«

p1
22p2

2 2
p3
2

~11«!~p1
22p2

2!2

3F ~12«!@~2p1
2!2«1~2p2

2!2«#12
~2p1

2!12«2~2p2
2!12«

p1
22p2

2 G J 1O„~p3
2!2…. ~4.4!
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To present the results obtained for the scalar functio
~2.4! in this limit, it is convenient to introduce

d12[
p1
22p2

2

p1
21p2

2 . ~4.5!

In this section, we present such results for the three-glu
scalar functions in the Feynman gauge, and also for
quark loop contributions. The expressions for an arbitra
covariant gauge are listed in Appendix E. We present t
results for theA, B, C, andF functions of the arguments
ns

on
the
ry
he

(p1
2 ,p2

2 ;0) and (0,p1
2 ;p2

2). The results for the third set o
arguments corresponding to the cyclic permutations in E
~2.4!, (p2

2,0;p1
2), can be obtained from the functions o

(0,p1
2 ;p2

2) by using the symmetry~for theA, C, andF func-
tions! or antisymmetry~for the B function! with respect to
the first two arguments, and interchangingp1

2↔p2
2. TheH

function with permuted arguments does not change, wh
theS function is zero~at one loop!.

The results for the gluon and ghost contributions to t
three-gluon scalar functions in the Feynman gauge are
A~1,0!~p1
2 ,p2

2 ;0!52
g2h

~4p!n/2
CA

1

4~n21!~n24!
$~n24!~3n22!@k11k2#2n~n21!~d12!

21@k12k2#%, ~4.6!

A~1,0!~0,p1
2 ;p2

2!52
g2h

~4p!n/2
CA

1

4~n21!~n24!~p1
22p2

2!
$~n24!k1@~2n21!p1

22~4n23!p2
2#22~n21!~d12!

21@k12k2#

3~2p1
223p2

2!%, ~4.7!

B~1,0!~p1
2 ,p2

2 ;0!52
g2h

~4p!n/2
CA

1

4~n21!~n24!
~4n2221n114!@k12k2#, ~4.8!

B~1,0!~0,p1
2 ;p2

2!52
g2h

~4p!n/2
CA

1

4~n21!~n24!~p1
22p2

2!2
$2~n24!~p1

22p2
2!k1@~6n25!p1

22~4n23!p2
2#

12~n21!p1
2@k12k2#@~n23!p1

22~n25!p2
2#%, ~4.9!

C~1,0!~p1
2 ,p2

2 ;0!52
g2h

~4p!n/2
CA

1

2~n21!~p1
22p2

2!
n@k12k2#, ~4.10!

C~1,0!~0,p1
2 ;p2

2!52
g2h

~4p!n/2
CA

1

2~n21!~n24!p1
2~p1

22p2
2!2

$~n24!~p1
22p2

2!k1@np1
22~4n23!p2

2#

16~n21!p1
2p2

2@k12k2#%, ~4.11!

F ~1,0!~p1
2 ,p2

2 ;0!52
g2h

~4p!n/2
CA

1

~n21!~n24!~p1
22p2

2!2
~4n27!$~n24!@k11k2#22~d12!

21@k12k2#%, ~4.12!

F ~1,0!~0,p1
2 ;p2

2!52
g2h

~4p!n/2
CA

1

~n21!~n24!p1
2~p1

22p2
2!2

$~n24!~p1
22p2

2!k1@~3n11!2~n12!~d12!
2126~d12!

22#

12p1
2@k12k2#@~n

2212n117!14~n24!~d12!
2116~d12!

22#%, ~4.13!

H ~1,0!~p1
2 ,p2

2 ;0!52
g2h

~4p!n/2
CA

1

~n21!~n24!~p1
22p2

2!
$3~n24!~d12!

21@k11k2#1@k12k2#@~n
222n22!26~d12!

22#%.

~4.14!

The quark loop contributions in the limitp3
250 are

A~1,q!~p1
2 ,p2

2 ;0!5
g2h

~4p!n/2
NfTR

n22

n21
@k11k2#, ~4.15!

A~1,q!~0,p1
2 ;p2

2!5
g2h

~4p!n/2
NfTR

n22

n21
k1 , ~4.16!

B~1,q!~p1
2 ,p2

2 ;0!5
g2h

~4p!n/2
NfTR

n22

n21
@k12k2#, ~4.17!
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B~1,q!~0,p1
2 ;p2

2!52
g2h

~4p!n/2
NfTR

n22

n21
k1 , ~4.18!

C~1,q!~p1
2 ,p2

2 ;0!5
g2h

~4p!n/2
2NfTR

n22

n21

k12k2

p1
22p2

2 , ~4.19!

C~1,q!~0,p1
2 ;p2

2!5
g2h

~4p!n/2
2NfTR

n22

n21

k1

p1
2 , ~4.20!

F ~1,q!~p1
2 ,p2

2 ;0!5
g2h

~4p!n/2
4NfTR

n

~n21!~n22!~p1
22p2

2!2
$~n24!@k11k2#22~d12!

21@k12k2#%, ~4.21!

F ~1,q!~0,p1
2 ;p2

2!5
g2h

~4p!n/2
4NfTR

1

~n21!~n22!~n24!p1
2~p1

22p2
2! H ~n24!k1@~n

225n18!2~d12!
21~n12!26~d12!

22#

116
p1
2p2

2

~p1
22p2

2!3
@k12k2#@~n21!p1

22~n24!p2
2#J , ~4.22!

H ~1,q!~p1
2 ,p2

2 ;0!5
g2h

~4p!n/2
4NfTR

1

~n21!~n22!~n24!~p1
22p2

2!
$3~n24!~d12!

21@k11k2#1@~n22!~n225n17!

26~d12!
22#@k12k2#%. ~4.23!

We note that there is an interesting relation between the one-loop contributions to theA andB functions of permuted
arguments:14

~p1
21p2

2!A~1!~p1
2 ,p2

2 ;0!2p1
2A~1!~0,p1

2 ;p2
2!2p2

2A~1!~0,p2
2 ;p1

2!1p1
2B~1!~0,p2

2 ;p1
2!1p2

2B~1!~0,p1
2 ;p2

2!50. ~4.24!

This relation is also satisfied by the expressions for arbitraryj given in Appendix E.
The infrared 1/« singularities of the results for gluon and ghost contributions~also in arbitrary gauge; see Appendix E! have

been compared with the results given in@14#, Eqs. ~24!–~25!. The functionsGj defined in @14# are proportional to our
functionsZi jk ~see Appendix A! which can be represented as linear combinations of the scalar functions~2.4!, including those
with permuted arguments. To get renormalized results, the counterterm~3.38! was added to allA functions. In theMS scheme,
the obtained results coincide15 with those presented in Ref.@14#, Eq. ~25!.

B. One external momentum is zero,p350

In this case,p152p2[p (p1
25p2

25p2), and the proper limit of Eq.~4.2! yields

J~1,1,1!up3505 ip22«h
1

«
~2p2!212«. ~4.25!

Actually, we get some powers of (p1
22p2

2) in the denominator from theK’s, Eq. ~3.2!, sinceK52 1
4(p1

22p2
2)2 in this limit.

Therefore, we should be careful taking the limitp2
2→p1

2 and expand the numerator up to higher powers of

d128 [
p1
22p2

2

p1
2 5

2d12
11d12

. ~4.26!

Starting from the result for the casep3
250, we need to expressk2 ask1 times an expansion ind128 . This can easily be done

using

J~1,0,1!5J~0,1,1!S p22p12D
2«

5J~0,1,1!(
j50

`
~«! j
j !

~d128 ! j . ~4.27!

14This is also valid for the zero-loop functions, sinceA(0)51 andB(0)50.
15Up to a misprint in Eq.~25g! of @14# where, in the term proportional tol ~their l is nothing but ourj), the contribution

l (11 11/412 f 2) should readl (11 11/4 f12 f 2).
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In practice, we need the terms up to (d128 )
3 only. It is interesting that in this special case we do not need thep3

2 term of the
expansion ofJ(1,1,1) @like in Eq. ~4.4!# since it cancels in all contributions.

In this limit, there are only three independent tensor structures left, and the coefficients multiplying these structures
expressed in terms of the ‘‘surviving’’ scalar functions as16

Gm1m2m3
~p,2p,0!52gm1m2

pm3
@A~p2,p2;0!1p2C~p2,p2;0!#2~gm1m3

pm2
1gm2m3

pm1
!@A~0,p2;p2!2B~0,p2;p2!#

22pm1
pm2

pm3
C~p2,p2;0!. ~4.28!

The one-loop contributions to the scalar functions appearing in Eq.~4.28! are

@A~1,j!~p2,p2;0!1p2C~1,j!~p2,p2;0!#52
g2h

~4p!n/2
CAk

32~n21!
$8~3n24!112j~n21!~n224n12!

2j2~n21!~n24!~n12!%, ~4.29!

@A~1,j!~0,p2;p2!2B~1,j!~0,p2;p2!#5A~1,j!~p2,p2;0!5
g2h

~4p!n/2
CAk

8~n21!
$2~n227n14!22j~n21!~4n213!

1j2~n21!~n24!%, ~4.30!

C~1,j!~p2,p2;0!52
g2h

~4p!n/2
CA~n24!k

32~n21!p2
$8n14j~n21!~3n28!2j2~n21!~n22!%, ~4.31!

@A~1,q!~p2,p2;0!1p2C~1,q!~p2,p2;0!#5
g2h

~4p!n/2
NfTR

~n22!2

n21
k, ~4.32!

@A~1,q!~0,p2;p2!2B~1,q!~0,p2;p2!#5A~1,q!~p2,p2;0!5
g2h

~4p!n/2
2NfTR

n22

n21
k, ~4.33!

C~1,q!~p2,p2;0!5
g2h

~4p!n/2
NfTR

~n24!~n22!

n21

k

p2
, ~4.34!

wherek[k(p2).
We note that, according to Eqs.~4.30! and ~4.33!, the following relation holds for the zero-momentum case:

A~1!~p2,p2;0!2A~1!~0,p2;p2!1B~1!~0,p2;p2!50. ~4.35!

This also follows from Eq.~4.24!. The relation~4.35! is valid for arbitrary values ofn andj. Using Eq.~4.35!, we can reduce
the number of tensor structures in Eq.~4.28! from 3 to 2: namely,17

Gm1m2m3

~1! ~p,2p,0!5~2gm1m2
pm3

2gm1m3
pm2

2gm2m3
pm1

!A~1!~p2,p2;0!12pm3
~p2gm1m2

2pm1
pm2

!C~1!~p2,p2;0!,

~4.36!
q
r

o
a
-

c-
where the results for the scalar functions are given in E
~4.30!, ~4.31!, ~4.33!, and ~4.34!. Note that the first tenso
structure on the RHS of Eq.~4.36! coincides with the ‘‘zero-
loop’’ vertex structure, given by Eq.~2.1!.

To make the complete comparison of our expressi
~4.29!–~4.31! @contributing to the three-gluon vertex
p350, Eq. ~4.28!# with Eq. ~20! of @14#, we need to renor
malize our coefficients~4.29! and~4.30! by adding the coun-
terterm~3.38! to all A functions involved and puttingn54.
Performing this in theMS scheme~i.e., atR50), we find
that our results give the same as Eq.~20! of @14#.

16This corresponds to the decomposition used in Ref.@14#, Eq.
~20!.
s.

ns
t

We have also compared the renormalized~in the MS
scheme! version of Eq.~4.36! with the one-loop results pre-
sented in Ref.@35#, Eq. ~A10!. According to Eq.~4.36! there
should be the following correspondence between the fun
tionsT1 andT2 used in@35# andA(1) andC(1):

T1~p
2!↔A~1!~p2,p2;0!, T2~p

2!↔22p2C~1!~p2,p2;0!.
~4.37!

RenormalizingA(1)(p2,p2;0) @given by the sum of Eqs.
~4.30! and ~4.33!# and puttingn54, we arrive at the same

17This corresponds to the decomposition used in Ref.@35#, Eq.
~A2!.
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result forT1 as given in Eq.~A10! of Ref. @35#.18 The result
for T2 is finite asn→4 and should correspond to the sum
our Eqs.~4.31! and~4.34! taken atn54. However, our resul
for T2 is different from the one given in Eq.~A10! of @35#.19

C. Two external momenta squared are zero,p1
25p2

250

In this case, we substitute

p1
25p2

250, p3
2[p2, ~p1p2!5 1

2 p
2, ~p1p3!5~p2p3!

52 1
2 p

2, ~4.38!

J~1,1,1!up
1
25p

2
2505 ip22«hw~0,0,p2!

52 ip22«h
1

«2
~2p2!212«,

~4.39!

J~1,0,1!up
1
25p

2
2505J~0,1,1!up

1
25p

2
25050, ~4.40!

while the result forJ(1,1,0) remains unchanged, Eq.~2.16!.
Note that now, when two external lines are on shell,
infrared singularity inJ(1,1,1) is stronger and gives 1/«2,
Eq. ~4.39!.

Again, it is enough to make the above substitutions to
the result in the Feynman gauge (j50) and in the singular
gauge@j524/(n24)#, but the situation is more tricky fo
arbitraryj since we havep1

2 andp2
2 in the denominators o

the scalar functions. To solve this problem, we need to c
sider the expansion ofJ(1,1,1) inp1

2 andp2
2.

Two independent ways were used to get the results for
scalar functions in this limit.

~i! We take the expressions for one of the mome
squared equal to zero~see Sec. IV A!, and put the secon
f

he

et

n-

the

ta

momentum squared equal to zero. In the corresponding
pressions~see Appendix E!, all pi

2 occurring in the denomi-
nators are always accompanied by the correspond
k i[k(pi

2) in the numerator, which should be put equal
zero whenpi

2 vanishes.
~ii ! First, we putJ(1,0,1)5J(0,1,1)50. Since the result-

ing expressions did not have singularities forp1
25p2

2, the
next step was to putp1

25p2
2[p0

2. Then, the integral
J(1,1,1) was expanded inp0

2/p2, keeping the terms up to
(p0

2/p2)2. And, finally, the limit p0
2→0 was taken. The fol-

lowing formula was used to expandJ(1,1,1):

J~1,1,1!up
1
25p

2
2[p

0
252

ip22«

~2p2!11«h
1

«2 2F1S 1,12 1«

112«
U4p02p2 D ,

~4.41!

2F1S 1,12 1«

112«
U4p02p2 D 5(

j50

` S 4p02p2 D j
~ 1
2 1«! j

~112«! j
5112

p0
2

p2

14
n27

n26 S p02p2D 21•••. ~4.42!

The results obtained in these two ways coincide, and
expressions obtained for the scalar functions~2.4! are pre-
sented below. Because of the symmetry properties, the fu
tionsA, C, andF of the arguments (0,p2,0) are equal to the
corresponding functions of the arguments (p2,0,0), while the
B function with these arguments permuted changes sign.
H function is the same for all permutations.

The resulting one-loop contributions~without quark
loops! to the scalar functions~2.4! in arbitrary gauge are
f

e

esult
A~1,j!~0,0;p2!5
g2h

~4p!n/2
CA

1

32~n24!
k$4828j~n23!~n26!1j2~n24!2%, ~4.43!

A~1,j!~p2,0;0!52
g2h

~4p!n/2
CA

1

64~n21!~n24!
k$16~2n2213n18!14j~n21!~2n29!~5n216!25j2~n21!~n24!2%,

~4.44!

B~1,j!~0,0;p2!50, ~4.45!

B~1,j!~p2,0;0!52
g2h

~4p!n/2
CA

1

64~n21!~n24!
k$16~4n2221n114!14j~n21!~10n2279n1152!25j2~n21!~n24!2%,

~4.46!

18The gauge parameter used in@35# corresponds to our 12j. To avoid confusion, we shall call their parameterjBL512j. Their constant
T corresponds to ourNfTR . The results presented in@35# are taken atp252m2, wherem2 corresponds to ourmDR

2 ~see the discussion in
Sec. II!. Thus, puttingp252m2 formally corresponds to omitting the terms containing ln(2p2) @which appear due to the expansion o
k(p2) in «# in the renormalized expressions.
19Their result forT2 is proportional to@(2

5
31jBL)CA1

4
3 T#, whereas our expressions yield@(2 37

241
3
4 jBL1

1
8 jBL

2 )CA1
4
3 T#. So the

quark contribution is the same while the sum of gluon and ghost contributions toT2 is different. Note that in the Feynman gaug

(jBL51) our results coincide and yield@2
2
3 CA1

4
3 T#. Thus the disagreement does not influence the one-loop part of the two-loop r

presented in the Feynman gauge, Eq.~B4! of @35#.



4102 54A. I. DAVYDYCHEV, P. OSLAND, AND O. V. TARASOV
C~1,j!~0,0;p2!5
g2h

~4p!n/2
CA

1

4~n24!~n26!p2
k$12~n26!12j~n2211n136!2j2~n23!~n28!%, ~4.47!

C~1,j!~p2,0;0!52
g2h

~4p!n/2
CA

1

32~n21!~n24!p2
k$16n~n24!14j~n21!~6n2241n172!23j2~n21!~n24!2%,

~4.48!

F ~1,j!~0,0;p2!5
g2h

~4p!n/2
CA

1

2~n21!~n24!~n26!~p2!2
k$4~n23!~n26!~n213!22j~n21!~3n2220n118!1j2~n21!

3~n3216n2174n278!2j3~n21!~n23!~n28!%, ~4.49!

F ~1,j!~p2,0;0!52
g2h

~4p!n/2
CA

1

16~n21!~n24!~n26!~p2!2
k$16~n26!2~4n27!14j~n21!~n26!~10n2287n1152!

1j2~n21!~5n3294n21504n2624!28j3~n21!~n23!~n28!%, ~4.50!

H ~1,j!~0,0,p2!52
g2h

~4p!n/2
CA

1

16~n21!~n24!~n26!p2
k$16~n24!~n26!~n15!124j~n21!~n26!~n226n112!

2j2~n21!~7n32110n21532n2696!14j3~n21!~n23!~n28!%. ~4.51!

The quark loop contributions yield

A~1,q!~0,0;p2!5B~1,q!~0,0;p2!5C~1,q!~0,0;p2!50, ~4.52!

A~1,q!~p2,0;0!5B~1,q!~p2,0;0!5
g2h

~4p!n/2
NfTR

n22

n21
k, ~4.53!

C~1,q!~p2,0;0!5
g2h

~4p!n/2
2NfTR

n22

n21

k

p2
, ~4.54!

F ~1,q!~0,0;p2!5
g2h

~4p!n/2
64NfTR

1

~n21!~n22!

k

~p2!2
, ~4.55!

F ~1,q!~p2,0;0!5
g2h

~4p!n/2
4NfTR

n~n26!

~n21!~n22!

k

~p2!2
, ~4.56!

H ~1,q!~0,0,p2!5
g2h

~4p!n/2
4NfTR

n223n18

~n21!~n22!

k

p2
. ~4.57!

Since in the limitp1
25p2

250 the scalar functions may depend onp3
2[p2 only, the independent tensor structures~expressed

in terms ofp1 and p2) can be chosen antisymmetric with respect to the permutation (p1 ,m1)↔(p2 ,m2). The three-gluon
vertex can in this limit be written as

Gm1m2m3
~p1 ,p2 ,p3!up

1
25p

2
2505gm1m2

~p12p2!m3
U1~p

2!1@gm1m3
p1m2

2gm2m3
p2m1

#U2~p
2!

1@gm1m3
p2m2

2gm2m3
p1m1

#U3~p
2!1p1m1

p2m2
~p12p2!m3

U4~p
2!

1p1m2
p2m1

~p12p2!m3
U5~p

2!1@p1m1
p1m2

p1m3
2p2m1

p2m2
p2m3

#U6~p
2!

1@p1m1
p1m2

p2m3
2p2m1

p2m2
p1m3

#U7~p
2!. ~4.58!
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This decomposition is analogous to Eq.~29! of @14#, and the
functionsUi are proportional to the functionsF j used in@14#
~we have different numbering; see in Appendix F!.

The following representations of theUi functions in terms
of scalar functions corresponding to the decomposition~2.4!
can be derived in this limit:

U1~p
2!5A~0,0;p2!2 1

2 p
2C~0,0;p2!2 1

4 ~p2!2F~0,0;p2!

1 1
2 p

2H~0,0,p2!, ~4.59!

U2~p
2!522A~p2,0;0!2p2C~p2,0;0!, ~4.60!

U3~p
2!52A~p2,0;0!2B~p2,0;0!2 1

2 p
2C~p2,0;0!

1 1
4 ~p2!2F~p2,0;0!1 1

2 p
2H~0,0,p2!, ~4.61!

U4~p
2!5C~p2,0;0!2 1

2 p
2F~p2,0;0!, ~4.62!

U5~p
2!52C~p2,0;0!1C~0,0;p2!1 1

2 p
2F~0,0;p2!

2H~0,0,p2!, ~4.63!

U6~p
2!52C~p2,0;0!, ~4.64!

U7~p
2!52C~p2,0;0!1 1

2 p
2F~p2,0;0!1H~0,0,p2!.

~4.65!

The explicit results for theUi functions are presented in
Appendix F. The infrared-divergent contributions were su
cessfully compared with Eq.~30! of @14#, where the corre-
sponding contributions toF j are presented. Note tha
U4 , U5 , U6, andU7 can be directly compared with@14#,
while the expressions forU1 , U2, andU3 ~containing the
A function! should be renormalized by adding the conterte
contribution~3.38! to all A functions involved.

The result for the three-gluon vertex in the Feynm
gauge~for p1

25p2
250) is available in Appendix B of Ref.

@15#. It is expanded aroundn54, and the divergent and finite
~in «) parts are presented. In this limit, our expressions yi
the same as the results of@15#.

V. CONCLUSIONS

In this paper, we have presented results for the one-l
three-gluon vertex valid for arbitrary values of the spac
time dimension,n, and the covariant-gauge parameter,j. We
have considered the general off-shell case~arbitrary
p1
2 , p2

2 , andp3
2; see Sec. III!, as well as all on-shell cases o

interest~Sec. IV!. Moreover, having the results in arbitrar
dimension, it was possible to get all on-shell expressions
by considering the corresponding limits of the general~off-
shell! results. This would be impossible if one started fro
the off-shell results expanded aroundn54, because in this
case the infrared~on-shell! divergences would appear a
c-

t

rm

an

eld

oop
e-

f
y
just

m

s

logarithms of vanishing momenta squared. The only restri
tion we used in our calculations was that in the quark loo
contributions the quarks were taken to be massless.20

To calculate the vertex, we used the decomposition~2.4!
~adopted from Ref.@13#! and considered the six scalar func
tionsA, B, C, S, F, andH, which completely define the
three-gluon vertex. One of these functions, namely, theS
function, was found to be identically zero at the one-loo
order,21 see Eqs.~3.13! and ~3.20!. We have also checked
thatS50 when massive quarks are considered. It is not cle
whether it vanishes also at the two-loop level. For the fiv
remaining functionsA, B, C, F, andH, the general off-
shell results are given in Eqs.~3.4!–~3.9! ~Feynman gauge!,
Eqs.~3.10!–~3.15! ~arbitrary gauge!, and Eqs.~3.17!–~3.22!
~quark loop contributions!. They involve only one nontrivial
function w(p1

2 ,p2
2 ,p3

2) @see Eq.~2.14! and Appendix B#,
which is related to the scalar one-loop triangle diagram. F
special cases, we have successfully compared our res
with those from Refs.@11,13# ~for details, see Sec. III!.

Starting from general expressions and putting some ext
nal momenta squared equal to zero, we considered the
shell casesp3

250 ~Sec. IV A!, p350 ~Sec. IV B!, and
p1
25p2

250 ~Sec. IV C!. For all these cases, the results in
arbitrary gauge and dimension were presented; see Sec.
and Appendixes E and F. For special cases, our results h
been compared with those presented in Refs.@14,15#. Thus,
we can see that Table I from the Introduction is complete
filled in. Moreover, all results are valid for an arbitrary value
of the space-time dimension. Thus, the only thing which
the one-loop level is left for the future is to allow for nonzero
quark masses in the quark loops.

Furthermore, we have obtained general results for t
ghost-gluon vertex~2.10!; see Eqs.~D7!–~D11! in Appendix
D. Employing these results, together with two-point contr
butions listed in Appendix C, we have checked that th
Ward-Slavnov-Taylor identity~2.12! for the three-gluon ver-
tex is exactly ~i.e., for arbitraryn and j) satisfied by the
expressions obtained, as it has to. This was another nontriv
check on the longitudinal part of the vertex (A, B, C and
S functions!.

We note that techniques have recently become availa
@36,37# to study the off-shell massless vertices at the two
loop level, at least in the Feynman gauge. Here, the ma
difficulty is integrals with higher powers of irreducible nu-
merators@37#.

In the future, the one-loop quark-gluon vertex can also b
considered in a similar way. For the case of massless quar
one can use the same approach as in this paper. For mas
quarks, one should study in more detail what the correspon
ing scalar integrals in arbitrary dimension are.22We note that

20This restriction does not affect any of the results for the gluo
and ghost loop contributions@the functions marked (1,j)# which are
indeed the most general ones.
21In the Feynman gauge and four dimensions, this result was o

tained in@13#.
22This is also the reason why we did not consider massive qua

loops in this paper.
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some results for the quark-gluon vertex~and also for the
QED vertex which formally corresponds to one of the tw
diagrams contributing to the quark-gluon vertex! can be
found, e.g., in@38,35#.
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APPENDIX A:
DECOMPOSITION OF THREE-GLUON VERTEX

If we expressp3 in terms of the two other momenta
p352p12p2, we get the following decompostion of th
three-gluon vertex~2.2!:
Gm1m2m3
~p1 ,p2 ,p3!5gm1m2

p1m3
Z0011gm1m3

p1m2
Z0101gm2m3

p1m1
Z1001gm1m2

p2m3
Z0021gm1m3

p2m2
Z0201gm2m3

p2m1
Z200

1p1m1
p1m2

p1m3
Z1111p2m1

p2m2
p2m3

Z2221p1m1
p1m2

p2m3
Z1121p1m1

p2m2
p1m3

Z121

1p2m1
p1m2

p1m3
Z2111p1m1

p2m2
p2m3

Z1221p2m1
p1m2

p2m3
Z2121p2m1

p2m2
p1m3

Z221, ~A1!
whereZjkl are scalar functions depending onp1
2 , p2

2, and
p3
2.
Comparison with the decomposition~2.4! used in @13#

gives the following representations ofZ’s in terms of the
functions~2.4! used by Ball and Chiu@13#:

Z0015A~p1
2 ,p2

2 ;p3
2!2~p1p2!C~p1

2 ,p2
2 ;p3

2!1B~p1
2 ,p2

2 ;p3
2!

1~p1p2!~p2p3!F~p1
2 ,p2

2 ;p3
2!2~p2p3!H, ~A2!

Z00252A~p1
2 ,p2

2 ;p3
2!1~p1p2!C~p1

2 ,p2
2 ;p3

2!1B~p1
2 ,p2

2 ;p3
2!

2~p1p2!~p1p3!F~p1
2 ,p2

2 ;p3
2!1~p1p3!H, ~A3!

Z1005A~p2
2 ,p3

2 ;p1
2!2~p2p3!C~p2

2 ,p3
2 ;p1

2!2B~p2
2 ,p3

2 ;p1
2!

1~p1p2!~p2p3!F~p2
2 ,p3

2 ;p1
2!2~p1p2!H, ~A4!

Z20052A~p2
2 ,p3

2 ;p1
2!22~p2p3!C~p2

2 ,p3
2 ;p1

2!

2p1
2~p2p3!F~p2

2 ,p3
2 ;p1

2!1p1
2H, ~A5!

Z010522A~p3
2 ,p1

2 ;p2
2!12~p1p3!C~p3

2 ,p1
2 ;p2

2!

1p2
2~p1p3!F~p3

2 ,p1
2 ;p2

2!2p2
2H, ~A6!

Z02052A~p3
2 ,p1

2 ;p2
2!1~p1p3!C~p3

2 ,p1
2 ;p2

2!2B~p3
2 ,p1

2 ;p2
2!

2~p1p2!~p1p3!F~p3
2 ,p1

2 ;p2
2!1~p1p2!H, ~A7!

Z11152C~p3
2 ,p1

2 ;p2
2!1p2

2F~p3
2 ,p1

2 ;p2
2!, ~A8!

Z222522C~p2
2 ,p3

2 ;p1
2!2p1

2F~p2
2 ,p3

2 ;p1
2!, ~A9!

Z11252C~p2
2 ,p3

2 ;p1
2!1~p1p2!F~p2

2 ,p3
2 ;p1

2!1H2S,
~A10!

Z1215C~p3
2 ,p1

2 ;p2
2!2~p1p2!F~p3

2 ,p1
2 ;p2

2!, ~A11!

Z12252C~p2
2 ,p3

2 ;p1
2!1~p1p2!F~p2

2 ,p3
2 ;p1

2!, ~A12!
Z2115C~p1
2 ,p2

2 ;p3
2!12C~p3

2 ,p1
2 ;p2

2!2~p2p3!F~p1
2 ,p2

2 ;p3
2!

1p2
2F~p3

2 ,p1
2 ;p2

2!2H2S, ~A13!

Z21252C~p1
2 ,p2

2 ;p3
2!22C~p2

2 ,p3
2 ;p1

2!

1~p1p3!F~p1
2 ,p2

2 ;p3
2!2p1

2F~p2
2 ,p3

2 ;p1
2!1H2S,

~A14!

Z2215C~p3
2 ,p1

2 ;p2
2!2~p1p2!F~p3

2 ,p1
2 ;p2

2!2H2S,
~A15!

whereH[H(p1
2 ,p2

2 ,p3
2) andS[S(p1

2 ,p2
2 ,p3

2).
Solving these equations we get the following results for

the scalar functions~2.4!, including those with permuted ar-
guments, in terms ofZ’s:

S~p1
2 ,p2

2 ,p3
2!5 1

2 $2Z1121Z1211Z1222Z221%, ~A16!

H~p1
2 ,p2

2 ,p3
2!5 1

2 $Z1121Z1212Z1222Z221%, ~A17!

A~p1
2 ,p2

2 ;p3
2!5 1

2 $ ~p1p2!@2Z1111Z2221Z2112Z212#

1Z0012Z0022~p1
21p2

2!H%, ~A18!

A~p2
2 ,p3

2 ;p1
2!5 1

2 $2~p2p3!Z2221Z2002p1
2H%,

~A19!

A~p3
2 ,p1

2 ;p2
2!5 1

2 $~p1p3!Z1111Z0102p2
2H%, ~A20!

B~p1
2 ,p2

2 ;p3
2!5 1

2 $p1
2@Z1122Z122#1p2

2@2Z1211Z221#

2~p1p2!@Z1111Z2222Z2112Z212#1Z001

1Z0021p3
2S%, ~A21!
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B~p2
2 ,p3

2 ;p1
2!5 1

2 $2~p2p3!~Z22222Z122!1Z20022Z100

1~p2
22p3

2!H%, ~A22!

B~p3
2 ,p1

2 ;p2
2!5 1

2 $2~p1p3!~Z11122Z121!1Z01022Z020

1~p3
22p1

2!H%, ~A23!

C~p1
2 ,p2

2 ;p3
2!5

1

p1
22p2

2 $~p1p3!@Z1112Z2112Z1211Z221#

1~p2p3!@Z2221Z1122Z1222Z212#%,

~A24!

C~p2
2 ,p3

2 ;p1
2!5

1

p2
22p3

2 $~p1p2!Z2221p1
2Z122%, ~A25!

C~p3
2 ,p1

2 ;p2
2!5

1

p3
22p1

2 $~p1p2!Z1111p2
2Z121%, ~A26!

F~p1
2 ,p2

2 ;p3
2!5

1

p1
22p2

2 $Z1111Z2221Z1122Z1212Z2112Z122

2Z2121Z221%, ~A27!

F~p2
2 ,p3

2 ;p1
2!5

1

p2
22p3

2 $Z22222Z122%, ~A28!

F~p3
2 ,p1

2 ;p2
2!5

1

p3
22p1

2 $Z11122Z121%. ~A29!

APPENDIX B: SCALAR INTEGRALS

As mentioned in Sec. II, the results for the scalar fun
tions occurring in Eqs.~2.4! and~2.10! can be represented in
terms of the following Feynman integrals, corresponding to
scalar one-loop triangle diagram:

J~n1 ,n2 ,n3![E dnq

@~p22q!2#n1@~p11q!2#n2~q2!n3
,

~B1!

wheren5422« is the space-time dimension.
When we perform calculations in the Feynman gauge a

express the scalar numerators in terms of the denominat
the powers of the denominators,n i , can be 1, 0, or even
negative. In an arbitrary gauge, the integrals may have po
ers ofn i equal to 2, due to the presence of (p2)22 in the j
term of the gluon propagator, Eq.~2.3!. Nevertheless, by
using the integration-by-parts technique@27# these integrals
can be reduced to those withn ’s equal to 1 or 0. The corre-
sponding algorithm for the integrals~B1! is described in de-
tail in @28#.23

Then, if two or threen ’s are nonpositive integers, the
dimensionally regularized integral~B1! vanishes@23#, since
it corresponds to a massless tadpole. When one of then ’s is

23The main formula to be used is Eq.~3.4! of @28#. Some explicit
results for the integrals withn i52 are also presented in@28#.
c-

a

nd
ors,

w-

0, the integral~B1! corresponds to a two-point function.
Therefore, it is proportional to a power of the external mo
mentum squared times someG functions with arguments in-
volving n and n ’s. We mainly need the result for two re-
mainingn ’s equal to 1@e.g.,J(1,1,0)# which is given by Eqs.
~2.15! and ~2.16!, in which case thisG factor is nothing but
h, Eq. ~2.17!.

Then, the integrals with one negativen can easily be re-
duced to integrals with the correspondingn equal to 0, for
example,

J~1,1,21!52~p1p2!J~1,1,0!, ~B2!

J~1,1,22!5
1

n21
@n~p1p2!

22p1
2p2

2#J~1,1,0!, ~B3!

J~1,1,23!52
1

n21
@~n12!~p1p2!

223p1
2p2

2#

3~p1p2!J~1,1,0!. ~B4!

Thus, the only nontrivial function which occurs in our
calculations isw which is related to the triangle integral
J(1,1,1) @cf. ~2.14!# via

J~1,1,1!5 ipn/2hw~p1
2 ,p2

2 ,p3
2!, ~B5!

whereh is defined by Eq.~2.17!.
In fact, the general results~i.e., for arbitraryn, n i , and

pi
2) for the integrals~B1! are available@39#. They can be

represented in terms of Appell’s hypergeometric function o
two variables,F4. As dimensionless variables, one can use

x[
p1
2

p3
2 and y[

p2
2

p3
2 . ~B6!

Whenn15n25n351, all theF4 functions can be reduced to
2F1 Gauss hypergeometric functions of more complicate
arguments, by using reduction formulas forF4 functions
~see, e.g., Ref.@40#!. One can also derive a one-dimensiona
integral representation@see Eq.~26! of @37## which is valid
for arbitrary«5(42n)/2 and, therefore, for arbitraryn,

J~1,1,1!52
ip22«h

~2p3
2!11«

1

«E0
1dss2«@~ys!2«2~x/s!2«#

@ys21~12x2y!s1x#12« ,

~B7!

with x andy defined by Eq.~B6!.
Another way to get the result for arbitraryn is to use the

connection@41# between massless triangle integrals and th
two-loop massive vacuum integrals,I (n1 ,n2 ,n3). In particu-
lar, according to Eq.~40! of @41#, for arbitraryn the integral
J(1,1,1) can be related~up to trivial leftovers! to the integral
I (1,1,1), in such a way that one of the integrals is taken
422« dimensions, and the other in 412« dimensions. Us-
ing this connection, and also known results forI (1,1,1) in
arbitrary dimension@42–44#, one can reproduce the result for
J(1,1,1). It can be written in terms of2F1 functions ~see,
e.g., Eq.~4.12! of @44#!.

The result forJ(1,1,1) in four dimensions is well known
@45,13# ~see also Refs.@28,36#! and can be presented in terms
of dilogarithms,
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w~p1
2 ,p2

2 ,p3
2!un545

1

p3
2l

H 2@ Li2~2rx!1 Li2~2ry!#

1 ln
y

x
ln
11ry

11rx
1 ln~rx!ln~ry!1

p2

3 J , ~B8!

where

l~x,y![A~12x2y!224xy, r~x,y![
2

12x2y1l
,

~B9!

or, in terms of the Clausen function Cl2 @see, e.g., Eq.~19!
of @41#; similar representations are also given in@42,46##. In
particular, in the symmetric case~see Sec. III D!

J~1,1,1!up
1
25p

2
25p

3
2[p2

n54

5 ip2w~p2,p2,p2!un54

5
ip2

p2
4

A3
Cl2S p

3 D ,
~B10!

producing the same constant as the one~denoted asI )
used in @11#. The transcendental number Cl2(p/3)
51.014 941 7 . . . corresponds to the maximum of Clause
integral and appears frequently in two-loop calculations w
masses~see, e.g.,@47,42#!, the connection with the massles
triangle diagrams being clear from@41#.

If one is interested in expanding in« and calculating the
integralJ(1,1,1) up to order«, one can use Eq.~29! of @37#
or Eqs.~16! and ~20! of @41#.

In three dimensions, the result for the integralJ(1,1,1) is
very simple@48# and proportional to (p1

2p2
2p3

2)21/2. To get
the result around two dimensions, Eq.~43! of @41# can be
used.24 The corresponding two-dimensional integral has
frared singularities which can be regularized by the sa
«. However, the only nontrivial function is the same as in t
four-dimensional case. The same equation~43! of @41# can
also be used to get the results for higher values ofn.

When some of the external momenta squared vanish,
integral J(1,1,1) ~considered in four dimensions! develops
infrared~on-shell! singularities. The corresponding limits a
considered in Sec. IV.

APPENDIX C: TWO-POINT FUNCTIONS

To check whether our results are consistent with
Ward-Slavnov-Taylor identity for the three-gluon verte
~2.12!, we need expressions for the functions contributing
the gluon polarization operator and the ghost self-energy

The corresponding scalar functionsJ(p2) andG(p2) are
defined in Eqs.~2.7! and ~2.8!, respectively. The lowest
order results areJ(0)5G(0)51. At the one-loop order, the
results can be found, e.g., in@8#. We present them here fo
completeness and also to show the proper normalizatio
the functions. One-loop contributions to these functions
presented in Fig. 2.

24This is a special case of a more general result presented in@49#.
n’s
ith
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The gluon and ghost loop contributions to theJ andG
function in an arbitrary covariant gauge yield

J~1,j!~p2!52
g2h

~4p!n/2
CA

8~n21!
$4~3n22!14j~n21!~2n

27!2j2~n21!~n24!%k~p2!, ~C1!

G~1,j!~p2!5
g2h

~4p!n/2
CA

4
@21j~n23!#k~p2!, ~C2!

while the quark loop contribution to theJ function is

J~1,q!~p2!5
g2h

~4p!n/2
2NfTR

n22

n21
k~p2! ~C3!

~there is no quark contribution to theG function!. The coef-
ficientsh, CA , andTR are defined by Eqs.~2.17!, ~3.3!, and
~3.16!, respectively. The functionk(p2) is given by Eq.
~2.15!.

The ultraviolet divergences of Eqs.~C1!–~C3! are given
by

J~1,UV!5
g2h

~4p!22« @2CA~ 5
3 1 1

2 j!1 4
3 NfTR#k~UV!,

G~1,UV!5
g2h

~4p!22« CA
1
4 ~21j!k~UV!, ~C4!

wherek (UV)51/«1••• is the divergent part ofk(p2), Eq.
~2.15!. The corresponding counterterms are

J~1,CT!5
ḡ2

~4p!2
@CA~ 5

3 1 1
2 j!2 4

3 NfTR#S 1« 1RD
5

g2h

~4p!22«@CA~ 5
3 1 1

2 j!2 4
3 NfTR#S 1« 1RD1O~«!,

G~1,CT!52
ḡ2

~4p!2
CA

4
~21j!S 1« 1RD

52
g2h

~4p!22«

CA

4
~21j!S 1« 1RD1O~«!, ~C5!

where ḡ2[g2e2g«(4p)« and R is the renormalization-
scheme constant chosen in such a way thatR50 in the
MS scheme~see also Sec. III E!.

Note that in the Fried-Yennie gauge25 @31#, j522, the
ghost self-energy is finite asn→4. Moreover, if one chooses
the n-dimensional generalization of this gauge a
j522/(n23) @50#, then the one-loop correction to the
ghost self-energy vanishes. This is connected with the tra
versality of the gluon propagator~2.3! in the coordinate
space~at this value ofj).

The gluon polarization operator is finite when

jun54[j05
2
3 S 4NfTR

CA
25D . ~C6!

25This gauge was also used in Ref.@32#.
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For Nf56, TR5 1
2 , andCA53, this value isj052 2

3 .

APPENDIX D:
RESULTS FOR THE GHOST-GLUON VERTEX

There are two one-loop contributions to the ghost-glu
vertex which are shown in Fig. 3. Here, we present the m
general results for the scalar functions contributing to the
on
ost

ghost-gluon vertex at the one-loop level. The definition o
the ghost-gluon vertex and the decomposition in terms
scalar functions is given in Eqs.~2.9! and ~2.10!, respec-
tively. The lowest-order expression is given by Eq.~2.11!. In
one-loop expressions, we use the notation forw, k i , andh
which can be found in Eqs.~2.14!, ~2.15!, and~2.17!, respec-
tively. K andQ denote the symmetric scalar combination
constructed from the external momenta, Eqs.~3.2! and~3.1!.

At the one-loop level~in the Feynman gauge! we get
lts

cheme
G̃mm3
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For the scalar functions~2.10!, Eq. ~D1! yields
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g2h

~4p!n/2
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In the limit n→4, the expressions for all scalar functions~D2!–~D6! have been compared with the corresponding resu
presented in@13#, taking into account the erratum~which affects the results for thec, d, ande functions!. The comparison was
successful, with the exception of two minor things. One of them is related to the definition of the renormalization-s
constant and was already mentioned before; see footnote in Sec. III A. The second one is that in the erratum@13# the sign of
the termb(P1 ,P2 ,P3) in the expression for thed function is changed from minus to plus~see p. 2554 of@13#!. However, the
comparison is successful if we keep the original sign, which is minus.26

Furthermore, the results which follow from Eq.~D1! ~contracted withp1
m) for two infrared-divergent cases,~i!

p1
25p2

250 and~ii ! p2
25p3

250 have been compared with those presented in Table B.II of Ref.@15#. The latter were obtained
in the Feynman gauge and expanded in the limitn→4, keeping the finite@in «5(42n)/2# terms. To consider the limit of our
expressions, we used formulas presented in Sec. IV C. We found that our results coincide in this limit with those from@15#.

Now, we present the results for the scalar functions~2.10! in arbitrary covariant gauge:
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26These misprints were confirmed by the authors of@13#.
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From the expressions~D7!–~D11!, one can see that again, as in the three-gluon functions~3.10!–~3.15!, the valuesj50
and j524/(n24) are distinguished. Puttingj50, we get rid of the momenta squared in the denominators@only K may
remain; cf. Eqs.~D2!–~D6!#, while for j524/(n24) one of the momenta squared,p1

2, still survives in the denominators of
thec function, Eq.~D9!, and thee function, Eq.~D11!. This does not matter, since~i! thec ande functions do not contribute
to the Ward-Slavnov-Taylor identity for the three-gluon vertex, Eq.~2.12!, and~ii ! for the proper ghost-gluon vertex, Eq.~2.9!,
we get an extrap1

2 in the numerator as a result of contracting withp1
m @since the tensor structures corresponding to thec and

e functions containp1m; see Eq.~2.10!#. If one wants to put some of the momenta squared equal to zero in other gauges
should carefully consider the appropriate limit and expand the functions in the numerator, in exactly the same way as
described in Sec. IV for the case of the three-gluon vertex.

In the limit n→4, the only divergent function in the one-loop ghost-gluon vertex is thea function ~D7!, also since this is
the only function which is present at the zero-loop level, Eq.~2.11!. The ultraviolet-divergent part of thea function ~D7! is

a~1,UV!5
g2h

~4p!22« CA
1
2 ~12j!k~UV!, ~D12!

where, as in Eq.~3.37!, k (UV)51/«1••• corresponds to the divergent part of the functionk, Eq.~2.15!. Therefore, by analogy
with ~3.38!, the counterterm contribution is given by27
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ḡ2
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2
~12j!S 1« 1RD52

g2h

~4p!22«
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2
~12j!S 1« 1RD1O~«!, ~D13!

where ḡ2[g2e2g«(4p)« andR is the renormalization-scheme constant@R50 in theMS scheme, which is achieved by a
suitable extraction of the overall factor in Eq.~D13!#. In particular, there is no singularity in the one-loop ghost-gluon vert
in the Landau gauge (j51); see, e.g., Ref.@2#.

APPENDIX E: RESULTS FOR p3
250 IN ARBITRARY GAUGE

For arbitraryj, the results for the gluon and ghost loop contributions to the scalar functions~2.4! are28
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27See also the discussion ofmDR , ḡ
2, etc., in Sec. III E.

28We also consider nonequivalent permutations of the arguments.
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H ~1,j!~p1
2 ,p2

2 ,0!52
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~4p!n/2
CA
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2
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wherek i[k(pi
2) @see Eq.~2.15!#, while the coefficientsh andCA are defined by Eqs.~2.17! and ~3.3!, respectively.

APPENDIX F: RESULTS FOR p1
25p2

250 IN AN ARBITRARY GAUGE

The scalar functionsUi corresponding to the decomposition of the three-gluon vertex in this limit are defined by Eq.~4.58!.
Using the expressions for the one-loop contributions to theA, B, C, F, andH functions, Eqs.~4.43!–~4.57!, and the
representations~4.59!–~4.65!, we get the following results for the one-loop contributions to theUi functions:
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U7
~1,j!~p2!52

g2h

~4p!n/2
CA

1

16~n21!~n24!p2
k$8~5n2225n12!14j~n21!~8n2259n1112!

2j2~n21!~3n2224n140!%, ~F7!

U1
~1,q!~p2!5

g2h

~4p!n/2
2NfTR

n~n23!

~n21!~n22!
k, ~F8!

U2
~1,q!~p2!52

g2h

~4p!n/2
4NfTR

n22

n21
k, ~F9!

U3
~1,q!~p2!5

g2h

~4p!n/2
4NfTR

1

~n21!~n22!
k, ~F10!

U4
~1,q!~p2!5

g2h

~4p!n/2
4NfTR

n12

~n21!~n22!p2
k, ~F11!

U5
~1,q!~p2!52

g2h

~4p!n/2
4NfTR

n24

~n21!~n22!p2
k, ~F12!
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U6
~1,q!~p2!5

g2h

~4p!n/2
4NfTR

n22

~n21!p2
k, ~F13!

U7
~1,q!~p2!5

g2h

~4p!n/2
4NfTR

n224n16

~n21!~n22!p2
k, ~F14!

where, as usual,k[k(p2). Comparison with the definition of the functionsFi given in Eq. ~29! of @14# shows that the
functionsU1 , U2 , U3 , U4 , U5 , U6, andU7 are proportional toF2 , F3 , F1 , F6 , F5 , F4, andF7, respectively.
.
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~N.Y.! 166, 443 ~1986!.
@16# M. Teper, Phys. Lett. B289, 115 ~1992!.
@17# E. Abdalla and M. C. B. Abdalla, Phys. Rep.265, 253~1996!.
@18# M. Dalbosco, Phys. Lett.163B, 181 ~1985!; H. C. Lee, M. S.

Milgram, and A. Andras˘i, Z. Phys. C33, 107 ~1986!; A. An-
dras̆i, G. Leibbrandt, and S.-L. Nyeo, Nucl. Phys.B276, 445
~1986!; A. T. Suzuki, Z. Phys. C38, 595~1988!; E. Bagan and
C. P. Martin, Nucl. Phys.B341, 419 ~1990!.
B
tt.

r-
.

l

h,

@19# D. Z. Friedman, G. Grignani, K. Johnson, and N. Rius, Ann
Phys.~N.Y.! 219, 75 ~1992!.

@20# J. M. Cornwall and J. Papavassiliou, Phys. Rev. D40, 3474
~1989!.

@21# C. Parrinello, Phys. Rev. D50, 4247 ~1994!; D. Henty, C.
Parrinello, and C. Pittori, talk given at International Europhys-
ics Conference on High Energy Physics~HEP 95!, Brussels,
Belgium, 1995, Report No. hep-lat/9510045~unpublished!.

@22# S. K. Kim and M. Baker, Nucl. Phys.B164, 152 ~1980!.
@23# G. ’t Hooft and M. Veltman, Nucl. Phys.B44, 189 ~1972!; C.

G. Bollini and J. J. Giambiagi, Nuovo Cimento12B, 20
~1972!.

@24# L. M. Brown and R. P. Feynman, Phys. Rev.85, 231 ~1952!;
G. Passarino and M. Veltman, Nucl. Phys.B160, 151 ~1979!.

@25# B. W. Harris and J. Smith, Phys. Rev. D51, 4550~1995!.
@26# A. I. Davydychev, Phys. Lett. B263, 107 ~1991!.
@27# F. V. Tkachov, Phys. Lett.100B, 65 ~1981!; K. G. Chetyrkin

and F. V. Tkachov, Nucl. Phys.B192, 159 ~1981!.
@28# A. I. Davydychev, J. Phys. A25, 5587~1992!.
@29# A. C. Hearn, REDUCE User’s Manual~version 3.5!, RAND

publication No. CP78, Santa Monica, 1993~unpublished!.
@30# G. Källen, Elementary Particle Physics~Addison-Wesley,

Reading, MA, 1964!.
@31# H. M. Fried and D. R. Yennie, Phys. Rev.112, 1391~1958!.
@32# A. A. Abrikosov, Zh. Eksp. Teor. Fiz.30, 96 ~1956! @Sov.

Phys. JETP3, 71 ~1956!#; L. D. Soloviev, Dokl. Akad. Nauk
SSSR110, 203 ~1956! @Sov. Phys. Dokl.110, 536 ~1957!#.

@33# I. Vendramin, Nuovo Cimento A87, 295 ~1985!.
@34# W. A. Bardeen, A. J. Buras, D. W. Duke, and T. Muta, Phys

Rev. D18, 3998~1978!.
@35# E. Braaten and J. P. Leveille, Phys. Rev. D24, 1369~1981!.
@36# N. I. Ussyukina and A. I. Davydychev, Phys. Lett. B298, 363

~1993!; 305, 136 ~1993!.
@37# N. I. Ussyukina and A. I. Davydychev, Phys. Lett. B332, 159

~1994!; 348, 503 ~1995!.
@38# J. S. Ball and T.-W. Chiu, Phys. Rev. D22, 2542~1980!; L. V.

Dung, H. D. Phuoc, and O. V. Tarasov, Sov. J. Nucl. Phys.50,
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