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Three hematologic/immune system-speci�c 
expressed genes are considered as the potential 
biomarkers for the diagnosis of early 
rheumatoid arthritis through bioinformatics 
analysis
Qi Cheng1,2, Xin Chen1,2, Huaxiang Wu1* and Yan Du1* 

Abstract 

Background: Rheumatoid arthritis (RA) is the most common chronic autoimmune connective tissue disease. How-

ever, early RA is difficult to diagnose due to the lack of effective biomarkers. This study aimed to identify new biomark-

ers and mechanisms for RA disease progression at the transcriptome level through a combination of microarray and 

bioinformatics analyses.

Methods: Microarray datasets for synovial tissue in RA or osteoarthritis (OA) were downloaded from the Gene Expres-

sion Omnibus (GEO) database, and differentially expressed genes (DEGs) were identified by R software. Tissue/organ-

specific genes were recognized by BioGPS. Enrichment analyses were performed and protein–protein interaction (PPI) 

networks were constructed to understand the functions and enriched pathways of DEGs and to identify hub genes. 

Cytoscape was used to construct the co-expressed network and competitive endogenous RNA (ceRNA) networks. 

Biomarkers with high diagnostic value for the early diagnosis of RA were validated by GEO datasets. The ggpubr pack-

age was used to perform statistical analyses with Student’s t-test.

Results: A total of 275 DEGs were identified between 16 RA samples and 10 OA samples from the datasets GSE77298 

and GSE82107. Among these DEGs, 71 tissue/organ-specific expressed genes were recognized. Gene Ontology (GO) 

and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that DEGs are mostly enriched 

in immune response, immune-related biological process, immune system, and cytokine signal pathways. Fifteen 

hub genes and gene cluster modules were identified by Cytoscape. Eight haematologic/immune system-specific 

expressed hub genes were verified by GEO datasets. GZMA, PRC1, and TTK may be potential biomarkers for diagno-

sis of early RA. NEAT1-miR-212-3p/miR-132-3p/miR-129-5p-TTK, XIST-miR-25-3p/miR-129-5p-GZMA, and TTK_hsa_

circ_0077158- miR-212-3p/miR-132-3p/miR-129-5p-TTK might be potential RNA regulatory pathways to regulate the 

disease progression of early RA.
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Background
Rheumatoid arthritis (RA) is a common chronic autoim-

mune connective tissue disease that mainly involves the 

joints. �e incidence of RA is 5 to 10 per 1000 people 

[1]. With the progression of the disease and the continu-

ation of synovial inflammation, the involved joint tissue 

is gradually eroded. Eventually, RA leads to irreversible 

damage to the joint, which is a very large burden on indi-

viduals and society. However, early diagnosis and treat-

ment of RA can effectively prevent disease progression, 

joint damage, and other complications in 90% of patients 

[2]. �erefore, the earlier a patient with RA is diagnosed, 

the less burden will be placed on the patient and soci-

ety. At present, serum biomarkers used in the diagnosis 

of established RA are rheumatoid factor and anti-cyclic 

citrullinated peptide antibody [3]. However, early RA 

especially serum RF and anti-CCP antibody-negative is 

difficult to diagnose due to the lack of effective biomark-

ers. Studies have reported that some biomarkers, such as 

14–3-3η autoantibodies and calprotectin, may be effec-

tive in the diagnosis of early RA [4–7]. However, because 

these biomarkers are not validated in prospective cohorts 

or the clinical relevance of them are unclear, they have 

not been used in clinical diagnosis. �erefore, it is vital to 

identify new and effective biomarkers for the early diag-

nosis and treatment of RA.

Currently, transcriptomic and microarray analyses 

have been widely used in a variety of diseases, including 

a variety of tumours and RA, to identify new biomarkers 

to improve diagnosis and treatment [8–12]. In addition, 

competitive endogenous RNA (ceRNA) networks can 

elucidate a new mechanism for promoting the develop-

ment of the disease in a transcriptional regulatory net-

work [13]. �rough the combination of microarray and 

bioinformatics analyses, it is possible to explore potential 

key genes and pathway networks that are closely related 

to the development of diseases.

In the present study, we first downloaded microar-

ray datasets for synovial tissue in RA or OA from the 

GEO database. After pre-processing and normalizing 

the data by the Robust Multiarray Average (RMA) 

method in R language, we identified DEGs based 

on the screening criteria and obtained the tissue/

organ-specific expressed genes by the online tool 

BioGPS. Next, GO and KEGG enrichment analyses 

were performed by the Gene Set Enrichment Analysis 

(GSEA) software, R software clusterProfiler package, 

and online tool KEGG Orthology-Based Annotation 

System (KOBAS) 3.0. PPI network was constructed 

using the online tool STRING, and Cytoscape was 

used to identify cluster modules and hub genes related 

to RA. Then, target microRNAs (miRNAs) of selected 

hub genes were predicted by five online miRNA data-

bases, and a co-expressed network was constructed 

with Cytoscape. Subsequently, we validated the 

selected hub genes using GEO datasets, and ceRNA 

networks were constructed based on prediction 

results of long noncoding RNAs (lncRNAs) and circu-

lar RNAs (circRNAs). This work provides insight into 

the mechanisms of disease development in RA at the 

transcriptome level and explores potential biomarkers 

for the early diagnosis and treatment of RA.

Methods
Microarray data acquisition

�e GEO database was used to obtain microarray data 

for synovial tissue in RA or OA. Screening criteria 

included the following: (1) Homo sapiens Expression 

Profiling by array; (2) synovial tissue of RA or OA from 

joint synovial biopsies; (3) datasets contain more than 

five samples, (4) datasets contain complete information 

about the samples, (5) one biopsy sample per subject 

was analysed without replicates. Finally, two GPL570 

datasets GSE77298 and GSE82107, which included 16 

RA samples and 10 OA samples, were selected as test 

sets; three GPL96 datasets GSE55584, GSE55457, and 

GSE55235, which included 33 RA samples and 26 OA 

samples, and the GPL11154 GSE89408 dataset, which 

included 57 early RA samples, 95 established RA sam-

ples and 22 OA samples, were selected as the validation 

sets (Table 1).

Data normalization and identi�cation of DEGs

�e original files that were downloaded from the GEO 

database were pre-processed and normalized by the 

Robust Multiarray Average (RMA) method based on the 

Conclusions: This work identified three haematologic/immune system-specific expressed genes, namely, GZMA, 
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R software (version 4.0.1) affy package. �e limma pack-

age was used to conduct gene analysis of inter-sample 

differences, and multiple hypothesis testing and cor-

rection were conducted after p-value was obtained. �e 

threshold value of p-value was determined by controlling 

False Discovery Rate (FDR), and the corrected p-value 

was adjusted p value (Q value)[14,15]. �e screening cri-

teria were log2 (fold change) > 1 or < -1 and adjusted p 

value (Q value) < 0.05.

Heatmap and volcano plot analyses

To better visualize these DEGs, R software was used to 

make heatmaps and volcano plots. Heatmaps were made 

with the pheatmap package.

Identi�cation of tissue/organ-speci�c expressed genes

To understand the tissue/organ-specific expression of 

these DEGs, the online tool BioGPS (http://biogp s.org/) 

was used to analyse the tissue distribution [16]. �e 

screening criteria were as follows: (1) transcripts that 

mapped to a single organ system with an expression value 

of > 10 multiples of the median, and 2() second-most-

abundant tissue’s expression was no more than a third as 

high [17]. �e genes obtained by these criteria were con-

sidered to be tissue-specific genes.

Enrichment analysis

GSEA was used to assess the distribution trend of the 

genes of a predefined set in the gene table to determine 

their contribution to the phenotype [18]. We downloaded 

GSEA_4.1.0 and c5: GO gene sets (c5.all.v7.1.symbols.

gmt) for functional enrichment analyses. �e R soft-

ware clusterProfiler package was used to analyse the GO 

enrichment of DEGs, and a chord plot was created for the 

visualization of these enrichment results. KOBAS 3.0 is 

an online database widely used for gene/protein function 

annotation and pathway enrichment (http://kobas .cbi.

pku.edu.cn/kobas 3) [19]. KOBAS 3.0 was used for the 

KEGG pathway and Reactome enrichment analyses of 

DEGs. �e significant enriched functions and pathways 

was selected with Q < 0.05. �e Q value is the adjusted p 

value.

Construction of the PPI network

�e PPI network was constructed based on all DEGs by 

the online tool STRING (https ://strin g-db.org/) with a 

filter condition (combined score > 0.4). Next, we down-

loaded the interaction information and optimized the 

PPI network with Cytoscape software (v3.8.0) for better 

visualization. Minimal Common Oncology Data Ele-

ments (MCODE) was used to identify significant gene 

clusters and obtain cluster scores (filter criteria: degree 

cut-off = 2; node score cut-off = 0.2; k-core = 2; max 

depth = 100). CytoHubba was used to identify signifi-

cant genes in this network as hub genes [20]. We used 

five algorithms, namely Degree, Maximal Clique Cen-

trality (MCC), Maximum Neighborhood Component 

(MNC), Density of Maximum Neighborhood Compo-

nent (DMNC), and Clustering Coefficient, to calculate 

the top 30 hub genes [21,22]. Finally, all the results were 

intersected to obtain the final hub genes.

Prediction of target miRNAs

We used five online miRNA databases, namely, RNA22, 

DIANA-micro T, miRWalk, miRDB, and miRcode, 

to predict target miRNAs of hub genes and selected 

miRNAs that were found in at least four databases as 

the target miRNAs. �e messenger RNA (mRNA)-

miRNA co-expressed network based on the relationship 

between mRNAs and miRNAs was constructed by using 

Cytoscape.

Construction of ceRNA networks

StarBase (version 3.0) (http://starb ase.sysu.edu.cn/

index .php) was used to predict lncRNAs and circR-

NAs that interacted with the selected miRNAs [23]. 

Table 1 Information for selected microarray datasets

Annotation: GPL570:  [HG-U133_Plus_2] A�ymetrix Human Genome U133 Plus 2.0 Array; GPL96:  [HG-U133A] A�ymetrix Human Genome U133A Array; GPL11154: 

Illumina HiSeq 2000 (Homo sapiens); DEGs di�erentially expressed genes

GEO accession Platform Samples Source tissue Age Sex (male/female) Attribute

OA RA OA RA OA RA

GSE77298 GPL570 0 16 Synovium – – – – Test set

GSE82107 GPL570 10 0 Synovium – – – – Test set

GSE55584 GPL96 6 10 Synovium 73.7 ± 7.1 54.9 ± 12.9 0/6 3/7 Validation set

GSE55457 GPL96 10 13 Synovium 72.4 ± 5.9 60 ± 20 2/8 3/10 Validation set

GSE55235 GPL96 10 10 Synovium – – – – Validation set

GSE89408 GPL11154 22 152 (57 early and 
95 established)

Synovium 53.3 ± 19.8 55.1 ± 15 9/13 46/106 Validation set

http://biogps.org/
http://kobas.cbi.pku.edu.cn/kobas3
http://kobas.cbi.pku.edu.cn/kobas3
https://string-db.org/
http://starbase.sysu.edu.cn/index.php
http://starbase.sysu.edu.cn/index.php
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�e intersections of the predicted results were used as 

the target lncRNAs and circRNAs. CeRNA networks 

based on the interactions among mRNAs, miRNAs, and 

noncoding RNAs (ncRNAs) were constructed by using 

Cytoscape.

Statistics analysis

�e R software ggpubr package was used to perform 

statistical analyses, and the ggplot2 package was used to 

draw boxplots. Student’s t-test was used to compare the 

differences between the two groups. IBM SPSS Statistics 

25 (SPSS, Inc., Chicago, IL, USA) was used to analyse the 

data and draw the ROC curve.

Results
Identi�cation of DEGs

�e datasets GSE77298 and GSE82107, which included 

16 RA samples and 10 OA samples, were selected to ana-

lyse and identify the DEGs. Compared with genes in the 

OA samples, we identified a total of 275 DEGs in the RA 

samples, which comprised 197 downregulated genes and 

78 upregulated genes. Next, heatmap and volcano plot 

analyses were used to visualize these DEGs, which are 

shown in Fig. 1a, b.

Identi�cation of the tissue/organ-speci�c expressed genes

A total of 71 tissue/organ-specific expressed genes were 

identified by BioGPS (Table 2). We observed that most of 

these genes were specifically expressed in the haemato-

logic/immune system (35/71, 49.29%). �e second organ-

specific expressed system was the nervous system, which 

included 13 genes (13/71, 18.31%). �is was followed by 

the digestive system (7/71, 9.86%), respiratory system 

(4/71, 5.63%), circulatory system (4/71, 5.63%), and pla-

centa (3/71, 4.22%). Finally, the endocrine system, genital 
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Fig. 1 Identification of DEGs. a Heatmap of DEGs between the RA samples and the OA samples. Red rectangles represent high expression, 

and green rectangles represent low expression. b Volcano plot of DEGs between the RA samples and the OA samples. The red plots represent 

upregulated genes, the black plots represent nonsignificant genes, and the green plots represent downregulated genes.
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system, and tongue, prostate, and adipose tissues had the 

lowest specific expressed genes (1/71, 1.41%).

Enrichment analysis

�e GSEA software, R software clusterProfiler package, 

and online tool KOBAS 3.0 were used for functional and 

pathway enrichment analyses. First, we uploaded the 

expression profile of all genes in the RA and OA samples 

to GSEA, and the c5: GO gene set was used to perform 

the GO enrichment analysis of the expression profile at 

an overall level. �e screening criterion for significant 

gene sets was p < 0.05 and Q < 0.25. We observed that 

most of the enriched gene sets were related to the innate 

immune cell-mediated immune response, immune-

related biological processes, and pathways (Fig. 2).

Next, the R software clusterProfiler package and 

KOBAS 3.0 were used to perform GO, KEGG pathway, 

and Reactome enrichment analyses of DEGs, respec-

tively. �e KEGG pathway is more comprehensive and 

contains more genes; while the Reactome pathway has 

more specific functions and focuses more on biochemi-

cal reactions[24]. We will observe the enrichment path-

way of DEGs from multiple perspectives. GO enrichment 

analysis of DEGs also revealed that the immune response 

in RA samples was stronger than that in OA samples, 

and this included the regulation of humoral immune 

response, complement activation, leukocyte activation, 

and migration. �e top 10 biological processes were 

selected based on a Q value < 0.05 and were drawn in a 

chord plot (Fig. 3a). KEGG pathway enrichment analysis 

showed that DEGs were enriched in cytokine-cytokine 

receptor interaction, primary immunodeficiency, JAK-

STAT signalling pathway, Fc gamma R-mediated phago-

cytosis, and neuroactive ligand-receptor interaction. 

Reactome enrichment analysis showed that DEGs were 

mostly enriched in the immune system and signal trans-

duction. According to Q value < 0.05, we selected the top 

five KEGG pathways and the top five Reactome terms 

and showed them in a bubble plot (Fig. 3b).

PPI network analysis, MCODE cluster modules and hub 

gene identi�cation

�e interaction network between proteins coded by 

DEGs, which was comprised of 187 nodes and 307 

edges, was constructed by STRING and visualized 

by Cytoscape (Fig.  4a). �e MCODE plugin was used 

to identify gene cluster modules. In this network, we 

identified four modules, which are shown in Fig. 4b-e, 

according to the filter criteria. Cluster 1 had the highest 

cluster score (score: 9, 9 nodes and 36 edges), followed 

by cluster 2 (score: 5.167, 13 nodes and 31 edges), clus-

ter 3 (score: 3.333, 4 nodes and 5 edges), and cluster 

4 (score: 2.8, 6 nodes and 7 edges). Next, we used the 

cytoHubba plugin to identify hub genes. Fifteen hub 

genes were identified by intersecting the results from 

the five algorithms of cytohubba including Degree, 

MCC, MNC, DMNC, and Clustering Coefficient [20]. 

�ese hub genes with detailed information are shown 

in Table  3. �ese genes are the most important genes 

in PPI network and may play an important role in the 

pathogenesis of RA. Additionally, GO and KEGG 

enrichment analyses showed that DEGs were mainly 

Table 2 Distribution of tissue/organ-speci�c expressed genes identi�ed by BioGPS

System/Organ Genes Counts

Haematologic/Immune

 Haematologic/Immune cells PLA2G7, SLC50A1, T, MSC, MATK, PRKCD, CCR7, CYB561A3, P2RY8, CD3G, EMR2, NOV, 
BCL2A1, CD52, CD27, IL7R, TTK, MAP3K7CL, PNOC, FCGR1B, GZMB, GZMA, DLGAP5, 
TRBC1, MYOM2, CORO1A, PRC1, CEP55, CD3D, IER2, ITK, TNFRSF17

32

 Immune organs CXCL13, LCK, CD163 3

Nervous PALM, KCND2, RASL10A, DACH1, STXBP1, DNM1, IL17D, PLP1, WRB, RCAN2, ZNF423, 
LRRN4CL, LPHN3

13

Digestive GIPC2, AKR1B10, IGJ, ADAMDEC1, C6, TOX3, C15orf48 7

Respiratory CHAD, MFAP4, CLDN5, LAMP3 4

Circulatory ACTC1, CASQ2, LRRC2, CKMT2 4

Placenta PVRL3, RHOBTB1, AGTR1 3

Endocrine DUOX2 1

Genital MLF1 1

Others

 Tongue MAL 1

 Prostate PPAP2A 1

 Adipose HOXC10 1
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enriched in immune-related biological processes and 

pathways. As the most common autoimmune disease, 

a better understanding of immune-related mecha-

nisms in RA is an important part of current research. 

�e discovery of genes specifically expressed by the 

immune system in RA synovium may contribute to 

the discovery of key targets in the pathogenesis of RA. 

�erefore, we intersected 15 hub genes and genes spe-

cifically expressed in the haematologic/immune system. 

Ultimately, we obtained eight haematologic/immune 

system-specific expressed hub genes, includin–g CD52, 

CD27, TTK, GZMA, DLGAP5, PRC1, CEP55, and 

CXCL13 (Table 3, in italics).

Prediction of target miRNAs and construction 

of the co-expressed network

We used five online miRNA databases to predict target 

miRNAs of hub genes. Finally, we obtained 95 target 

miRNAs of 8 specifically expressed hub genes and deter-

mined 105 mRNA-miRNA pairs. According to the pre-

diction results, a co-expressed network of mRNAs and 

miRNAs, which comprised 103 nodes and 105 edges, was 

constructed by Cytoscape (Fig. 5).

Veri�cation of the 8 speci�cally expressed hub genes by 4 

datasets from the GEO database

�ree GPL96 datasets, namely, GSE55584, GSE55457 

and GSE55235, which included 33 RA samples and 26 

OA samples, and the GPL11154 GSE89408 dataset, 

which included 57 early RA samples, 95 established RA 

samples and 22 OA samples were selected to verify the 8 

specifically expressed hub genes. �e R software ggplot2 

package and ggpubr package were used to draw boxplots 

and perform Student’s t-test statistical analyses. Consist-

ent with our predictions, the mRNA expression levels 

of the 8 specifically expressed hub genes in the RA sam-

ples were significantly increased compared with those 

in the OA samples (p < 0.01) (Fig. 6a, b). In addition, we 

observed that the mRNA expression levels of GZMA, 

PRC1, and TTK in the 57 early RA samples were signifi-

cantly increased compared with those in the 95 estab-

lished RA samples (p < 0.05) (Fig. 6b).

ROC curve of the 8 speci�cally expressed hub genes 

in early RA samples and established RA samples

We used IBM SPSS Statistics 25 to analyse the 8 spe-

cifically expressed hub genes expression profiles of OA 

samples, early RA samples, and established RA sam-

ples and draw the ROC curves. Area under the curve 

(AUC) is an indicator combining sensitivity and speci-

ficity, which can describe the intrinsic effectiveness of 

diagnostic tests [25]. Compared to OA samples, these 

8 specifically expressed hub genes have higher diag-

nostic value both in the early RA samples and in the 

established RA samples. Among them, GZMA has the 

highest diagnostic value (AUC: 0.906) in the early RA 

samples, while CXCL13 has the highest diagnostic 

value (AUC: 0.900) in the established RA samples. The 

diagnostic value of other genes are follows: in early RA 

samples, CXCL13 (AUC: 0.893), CD27 (AUC: 0.872), 

CD52 (AUC: 0.863), DLGAP5 (AUC: 0.810), PRC1 

(AUC: 0.809), CEP55 (AUC: 0.805), TTK (AUC: 0.793) 

(Fig.  7a), while in established RA samples, GZMA 

Table 3 15 hub genes identi�ed by �ve algorithms of cytoHubba

Annotation: FC: fold change, Q value: adjust P-value. The gene symbol in bold indicates eight hematologic/immune system-speci�c expressed hub genes

Gene symbol Description log2FC Q value Regulation

CXCL13 C–X–C motif chemokine ligand 13 2.846 0.012 Up

CD52 CD52 molecule 1.928 0.004 Up

GZMA Qranzyme A 1.753 0.022 Up

CD27 CD27 molecule 1.419 0.004 Up

CEP55 Centrosomal protein 55 1.264 0.01 Up

SKA3 Spindle and kinetochore associated complex subunit 3 1.215 3.03E−07 Up

IL21R Interleukin 21 receptor 1.208 7E−04 Up

DLGAP5 DLG associated protein 5 1.172 0.027 Up

PRC1 Protein regulator of cytokinesis 1 1.112 0.042 Up

EOMES eomesodermi 1.108 0.031 Up

TTK TTK protein kinas 1.065 0.006 Up

CDCA8 Cell division cycle associated 8 1.049 1.74E−08 Up

UHRF1 Ubiquitin-like with PHD and ring finger domains 1 1.048 0.016 Up

KIAA0101 PCNA clamp associated factor 1.017 0.013 Up

FNBP1L Formin binding protein 1 like −1.325 0.004 Down
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(AUC: 0.852), CD27 (AUC: 0.817), CD52 (AUC: 0.837), 

DLGAP5 (AUC: 0.786), PRC1 (AUC: 0.703), CEP55 

(AUC: 0.731), TTK (AUC: 0.726) (Fig.  7b). Due to 

their good diagnostic performance in both early RA 

and established RA, we combined with their expres-

sion levels in early RA and established RA to identify 

better biomarkers. Compared with established RA, 

GZMA, PRC1 and TTK were up-regulated in early RA 

with statistical significance (Fig.  6b). Therefore, we 

hypothesize that GZMA, PRC1 and TTK may be bio-

markers for early diagnosis of RA based on our present 

samples.

Prediction of target ncRNAs and construction of ceRNA 

networks

miRNAs are well known to induce gene silencing and 

downregulate gene expression by binding mRNAs. How-

ever, its upstream molecules, circRNAs, and lncRNAs, 

can affect the function of miRNA by combining miRNA 

response elements, thus upregulating gene expression. 

�is interaction between RNAs is called a ceRNA net-

work [13]. Next, we used the online database Starbase 

3.0 to predict the lncRNAs and circRNAs that interact 

with the selected miRNAs. �e screening criteria were: 

mammalian, human h19 genome, strict stringency (> = 5) 

Fig. 2 GSEA plot showing most enriched immune-related gene sets in the RA group and OA group. The c5: GO gene set was used to perform the 

GO enrichment analysis of the expression profile at the overall level. a The most significant enriched immune-related gene set was regulation of 

natural killer cell mediated immunity (ES = 0.666, NES = 1.615, p < 0.05). b The second significant enriched immune-related gene set was positive 

regulation of natural killer cell medicated immunity (ES = 0.729, NES = 1.604, p < 0.05). c The third significant enriched immune-related gene set 

was negative regulation of cytokine production involved in immune response (ES = 0.553, NES = 1.603, p < 0.05). d The fourth significant enriched 

immune-related gene set was positive regulation of natural killer cell mediated cytotoxicity (ES = 0.766, NES = 1.600, p < 0.05). e The fifth significant 

enriched immune-related gene set was positive regulation of monocyte chemotaxis (ES = 0.712, NES = 1.510, p < 0.05). F. The sixth significant 

enriched immune-related gene set was positive regulation of antigen receptor mediated signaling pathway (ES = 0.750, NES = 1.489, p < 0.05). The 

screening criteria for significant gene sets were p < 0.05 and Q < 0.25. ES: enrichment score; NES: normalized enrichment score; Q: also named False 

Discovery Rates (FDR)or adjust p value
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of CLIP-Data, and with or without degradome data. We 

chose the ncRNAs that exist in most of the prediction 

results of miRNAs as our predicted lncRNAs and circR-

NAs. In addition, since a transcript has multiple circRNA 

shear sites in the prediction results of the Starbase data-

base, we selected the circRNA with the most samples 

and highest score in the circBase database as the target 

circRNA. Finally, we obtained 3 target lncRNAs and 4 

target circRNAs of the target miRNAs of PRC1; 1 target 

lncRNA and 19 target circRNAs of the target miRNAs 

of GZMA; and 1 target lncRNA and 14 target circR-

NAs of the target miRNAs of TTK. �ree ceRNA net-

works based on the prediction results were constructed 

and illustrated by Cytoscape and are shown in Fig. 8a-c. 

Subsequently, according to the ceRNA hypothesis, we 

conducted a literature search and selected four reported 

downregulated miRNAs and an upregulated lncRNA in 

RA and upregulated lncRNA in another autoimmune 

disease, Sjogren’s syndrome, for further analysis. We pro-

pose that NEAT1-miR-212-3p/miR-132-3p/miR-129-5p-

TTK (Fig. 8d) and XIST-miR-25-3p/miR-129-5p-GZMA 

(Fig. 8e) might be potential RNA regulatory pathways to 

regulate the disease progression of early RA. Regarding 

the prediction results of circRNAs, we found a circRNA 

(TTK_hsa_circ_0077158) predicted by target miRNAs 

of TTK, and its target is TTK. Hence, we propose the 

following circRNA-miRNA-mRNA pathway: TTK_

hsa_circ_0077158-miR-212-3p/miR-132-3p/miR-129-5p-

TTK (Fig. 8f ); it might be a key regulatory pathway in the 

pathogenesis of early RA.

Discussion
�e main characteristic of RA is chronic synovial inflam-

mation, which leads to erosion and damage of joints. 

Early diagnosis and treatment of RA will effectively pre-

vent joint damage and improve quality of life. However, 
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early RA is difficult to diagnose due to the lack of effec-

tive biomarkers. It is crucial to identify new and effective 

biomarkers for the early diagnosis and treatment of RA.

In our study, we identified 275 DEGs, including 71 

tissue/organ-specific expressed genes, by comparing 

genes expressed in RA and OA samples. GO enrich-

ment analysis of all genes and DEGs indicated that the 

immune responses, such as the immune cell-medi-

ated immune response and the regulation of humoral 

immune response, were stronger in RA samples than 

in OA samples. KEGG pathways that were enriched 

included cytokine-cytokine receptor interaction, pri-

mary immunodeficiency, JAK-STAT signalling pathway, 

Fc gamma R-mediated phagocytosis, and neuroactive 

ligand-receptor interaction. Reactome enrichment analy-

sis also showed that DEGs were mostly enriched in the 

immune system and signal transduction. GO, KEGG and 

Reactome enrichment analysis all showed that RA syno-

vial membrane had strong immune activation and signal 

transduction, which was the main cause of RA synovial 

inflammation, leading to arthritis and arthralgia. It is well 

known that arthritis and arthralgia are the main clinical 

manifestations of RA[1].

After the hub genes that were screened by the PPI 

network were validated using the GEO datasets, we 

identified eight haematologic/immune system-specific 
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expressed genes. ROC curve analysis suggests that these 

genes have high diagnostic value for both early RA and 

established RA. Combined with their expression levels 

in early RA and established RA, GZMA, PRC1 and TTK 

were up-regulated in early RA with statistical signifi-

cance (p < 0.05). �erefore, we hypothesize that GZMA, 

PRC1 and TTK may be biomarkers for early diagnosis of 

RA based on our present samples. In addition, we con-

structed an mRNA-miRNA co-expression network and 

ceRNA networks to elucidate the pathogenesis of RA at 

the transcriptome level.

GZMA, a member of the serine protease family, is 

secreted by cytotoxic cells such as cytotoxic T cells and 

natural killer (NK) cells and plays an important role 

in cell death, cytokine processing, and inflammation 

[26,27]. Several studies have reported that compared with 

the expression level of GZMA in OA patients, the expres-

sion level of GZMA increases in plasma, synovial tissues, 

and synovial membranes in patients with RA [28,29]. 

�is indicates that GZMA plays a significant role in the 

pathogenesis of RA. Consistent with this research, our 

study found that GZMA was upregulated in the synovial 

membrane of RA, especially in early RA. In addition, the 

ROC curve of GZMA indicated that it has a very high 

diagnostic value in early RA (AUC = 0.906). We consid-

ered GZMA a very effective biomarker for the diagnosis 

of early RA.

PRC1 (also called ASE1), a human mitotic spindle-

associated CDK substrate protein, is a key regulator of 

cell division [30]. According to BioGPS, PRC1 is specifi-

cally expressed in early erythrocytes, endotheliocytes, 

and B lymphocytes. At present, PRC1 has not been 
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reported in RA-related studies. However, in our study, 

PRC1 was upregulated in the synovial membrane of RA, 

especially in early RA. Compared with OA, synovial 

inflammation and hyperplasia are marked in RA. In addi-

tion, it has been reported that the metabolic level of the 

synovial membrane is elevated, similar to that of tumour 

tissue [31]. �ese results all reflect the increased prolif-

eration of cells like synovial fibroblasts and macrophages 

in the synovial membrane of RA to some extent [32,33]. 

�erefore, PRC1 may play an important role in the pro-

liferation of synovial cells and the disease progression of 

RA.

TTK (also called MPS1 and CT96), which encodes a 

dual specificity protein kinase that phosphorylates a vari-

ety of amino acids such as tyrosine and serine, is related 

to cell proliferation [34]. Similar to PRC1, TTK is also 

highly specifically expressed in early red blood cells and 

endothelial cells. A study by H Ah-Kim et  al. reported 

that tumour necrosis factor-alpha (TNF-α) can increase 

TTK expression in human articular chondrocytes [35], 

suggesting that TTK is regulated by TNF-α in some 

biological processes. We know that TNF-α plays a very 

significant role in the pathogenesis of RA [36]. �us, we 

hypothesized that TTK plays an important role in syno-

vial cell proliferation and TNF-α-mediated pathogenesis. 

In addition, we identified that TTK was highly expressed 

in the synovial membrane of RA and has a high diagnos-

tic value in early RA (AUC = 0.793). We considered TTK 

as a novel and effective biomarker for the diagnosis of 

early RA.

Furthermore, target miRNAs and the target lncR-

NAs and circRNAs of these miRNAs were predicted 
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for GZMA, PRC1, and TTK, and a ceRNA network 

was constructed with Cytoscape. This network reveals 

the mechanism by which selected genes are regulated 

at the transcriptome level. According to the ceRNA 

hypothesis, we performed a literature search to select 

downregulated miRNAs in RA for further analy-

sis. Among the target miRNAs of GZMA, PRC1, and 

TTK,  the expression of the following miRNAs was 

downregulated in RA: miR-129-5p (in RA synovial 

tissue and synovial fibroblasts), miR-132-3p (in RA 

Fig. 7 ROC curve of the 8 specifically expressed hub genes. a ROC curve of the 8 specifically expressed hub genes in early RA samples. b ROC curve 

of the 8 specifically expressed hub genes in established RA samples. AUC  area under the ROC curve
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synovial fibroblasts), miR-212-3p (in RA synovial 

tissue and synovial fibroblasts), and miR-25-3p (in 

peripheral blood mononuclear cells) [37–40]. In addi-

tion, it has been reported that the lncRNA NEAT1 is 

upregulated in peripheral blood mononuclear cells 

of patients with RA [41]. Therefore, we propose that 

NEAT1-miR-212-3p/miR-132-3p/miR-129-5p-TTK 

might be a potential RNA regulatory pathway to reg-

ulate the disease progression of early RA. Addition-

ally, although lncRNA XIST has not been reported in 

RA, it has been reported to be upregulated in another 

autoimmune disease, Sjogren’s syndrome [42]. We 

hypothesize that XIST-miR-25-3p/miR-129-5p-GZMA 

has an important regulatory role in RA. Regarding 

the prediction results of circRNAs, we found a cir-

cRNA (TTK_hsa_circ_0077158) predicted by tar-

get miRNAs of TTK, and its target was TTK. Hence, 

we proposed a circRNA-miRNA-mRNA pathway: 

TTK_hsa_circ_0077158-miR-212-3p/miR-132-3p/

miR-129-5p-TTK; it might be a key regulatory path-

way in the pathogenesis of early RA. Of course, in 

our study, the sample size for analysis and verifica-

tion is relatively small. Therefore, future studies need 

to increase the sample size and conduct prospective 

cohort studies to further confirm our views.

Conclusions
Our work identified three haematologic/immune 

system-specific expressed genes, GZMA, PRC1, and 

TTK, as potential biomarkers for the early diagno-

sis and treatment of RA and provided insight into 

the mechanisms of disease development in RA at 

the transcriptome level. In addition, we propose that 

NEAT1-miR-212-3p/miR-132-3p/miR-129-5p-TTK, 

XIST-miR-25-3p/miR-129-5p-GZMA, and TTK_hsa_

circ_0077158- miR-212-3p/miR-132-3p/miR-129-

5p-TTK are potential RNA regulatory pathways that 

control disease progression in early RA.
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