
Math. Systems Theory 15, 95-125 (1982) Mathematical
Systems Theory

Three Hierarchies of Transducers

Joost Engelfriet

Twente University of Technology, Enschede, The Netherlands

Abstract. Composition of top-down tree transducers yields a proper
hierarchy of transductions and of output languages. The same is true for
ETOL systems (viewed as transducers) and for two-way generalized
sequential machines.

1. Introduction

Soon after the introduction of the top-down tree transducer [35, 40], as a model of
syntax-directed translation [4], one of the main problems turned out to concern
their composition. In fact, the class of top-down tree transductions is not closed
under composition [35, 40] unless certain restrictions or extensions are added to
the main model. Thus the class of deterministic top-down tree transducers
becomes closed under composition when the transducers are restricted to be total
[35] or extended to have regular look-ahead [17]. A similar statement holds for
linear (noncopying) top-down tree transducers. These phenomena are mainly due
to the fact that a top-down tree transducer cannot handle nondeterminism
followed by copying, cf. [16, 9].

Given the nonclosure of the class of tree transducers under composition, one
may ask whether composition of tree transducers gives rise to a proper hierarchy.
In other words the natural question arises whether n+ 1 transducers are more
powerful than n, or whether perhaps there exists a constant N such that any
sequence of tree transducers can be simulated by a sequence of at most N tree
transducers. In this paper we prove that n + 1 tree transducers are more powerful
than n (as conjectured in [32, 9, 33]).

Related to the problems concerning composition is that of determining the
closure properties of the class of output tree languages, or "surface sets", of tree
transducers (given some class of input tree languages). Thus Rounds showed that
the class of output tree languages of deterministic top-down tree transducers (with
recognizable input tree languages) is closed under deterministic tree transductions

0025-5661/82/0015-0095506.20
©1982 Springer-Verlag New York Inc.

96 J. Engelfriet

[35]. But Ogden and Rounds [32] proved that T(REC)gT2(REC), where T
denotes the class of top-down tree transductions, T 2 the class of compositions of
two transductions from T, and REC the class of recognizable tree languages [39]
(i.e., roughly, the class of derivation tree languages of context-free grammars).
This result means that the class T(REC) of output languages of top-down tree
transducers is not closed under top-down tree transductions, and thus it
strengthens that of nonclosure of T under composition. It was strongly conjec-
tured in [32] that composition of n top-down tree transducers gives rise to a
proper hierarchy even with respect to output tree languages, i.e., for all
n, Tn(REC)~ Tn+I(REC). In this paper we show that this is indeed the case. In
fact we prove that a proper hierarchy is formed even by the corresponding classes
of tree transformation languages yTn(REC): string languages obtained by taking
the yield, denoted by y, of the output trees (i.e., the string of their leaf labels).
Moreover, even for an arbitrary class K of input tree languages (satisfying a few
closure properties) a proper hierarchy is obtained whenever the first class is
properly contained in the second: if yT(K) ~ yT2(K) then, for all n, yT n(K)
yT ~+ I(K). After [32] some results concerning this problem were established in [9,
19, 21, 33]. Baker [9, 46] provided partial solutions to the problem of properness
of both the T~(K) hierarchy and the yT"(K) hierarchy, and reduced it to
problems concerning closure properties of the classes involved. She showed
moreover that the bottom-up tree transducers give rise to an infinite hierarchy if
and only if the top-down transducers do (see also [16]). Perrault [33] established
an intercalation theorem for yT(REC) which he used to show that yT(REC)g
yT2REC). In [21, 19] partial solutions to the problem of properness of the
yT~(K) hierarchy were given (using the operations of copying and of regular
substitution, respectively). The ideas developed in [19], in particular concerning
bounded copying tree transducers, led to the present paper.

To prove properness of the yT"(K) hierarchy we establish some general
properties of these classes (and some of their subclasses) which can also be used
to obtain proper hierarchies for two related string transducers. The first of these
transducers is the ETOL system [36] viewed as a transducer of its control string
into the string it generates (cf. [5, 15, 19] for the relationship between ETOL
systems and top-down tree transducers). We establish a proper hierarchy of
classes of string languages obtained by iterating the process of controlling ETOL
systems (starting with a given class of control languages, such as the regular
languages). Since classes of controlled ETOL languages are full hyper-AFLs (i.e.,
full AFLs closed under iterated substitution), see [6], this provides us with a
means to construct proper hierarchies of full hyper-AFLs containing a given class
of languages.

The second of these transducers is the 2-way generalized sequential machine
(2gsm) [3, 13, 26, 30, 34]. The relationship between top-down tree transducers and
2-way automata was established in [4, 19] and that between ETOL systems and
2-way automata in [34, 42, 19]. Results concerning composition of 2gsm's were
obtained in [2, 30, 26, 10]. We show that if 2GSM(K)g2GSM2(K) then, for all
n, 2GSM~(K)~ 2GSM "+ l(K), and in particular the classes 2GSM~(REG) form
a proper hierarchy (these results were obtained independently by Greibach [27]).
Moreover, the 2GSM hierarchy is a subhierarchy of both the ETOL hierarchy and
the top-down tree transducer hierarchy. Examples which show the properness of

Three Hierarchies of Transducers 97

these hierarchies can already be found in the 2GSM hierarchy. Properness of all
three hierarchies is caused by the two facilities of nondeterminism and copying
present in the transducers. Actually the examples with which we prove the
hierarchies to be proper are constructed (from some initial language) by repeated
application of two operations: one is a special regular substitution which inserts
any number of occurrences of a new symbol anywhere in the strings of a
language, and the other is the operation c, of unbounded copying defined by
c,(L) = ((w$)"ln - 1, wE L} where $ is a new symbol.

To establish these hierarchy results we will not use intercalation theorems
(which soon become too complex), but "bridge theorems" (in the terminology of
12]) which construct, from each language not in some class by means of some
operation, another language not in some larger class. Thus these theorems have
the form "if L ~ K I then f (L) (E K2" or equivalently "if f (L) E K 2 then L E Kl",
where ~1 C_ K 2. In case for instance K 2 C_ f(K2)C_ K3, we get that L E K 2 - K 1
implies f (L) E K 3 - K 2 , i.e., properness of the inclusion K 1 C_ K 2 implies proper-
ness of the inclusion K 2 C_ K 3. In such a way properness of inclusions of a
hierarchy can be shown in a step by step fashion; the problem is of course to find
the appropriate classes and operations for which bridge theorems can be proved.

The power of the method of bridges is shown by the fact that just two bridge
theorems are needed to prove all our hierarchy results. On the other hand, bridge
theorems should always be accompanied by several results on closure properties,
for two reasons. First, to show that f (K 2) C_ K 3 one usually proves closure of K 3
under the operation f. Second, to show "if f (L) E K a, then L E K~" one usually
shows that f(L), or an appropriate subset of it, is in K~, and then one applies
another operation (under which K I is closed) to retrieve L from f(L), or its
subset. Thus the method of bridges is intimately related to the theory of
operations on languages [23].

Bridge theorems are usually easier to obtain than intercalation (or pumping)
theorems. In fact, in an intercalation theorem for a class K 2 a property should be
expressed which holds for all languages in K 2, as a result of general properties of
the device defining the languages of K 2. Then it has to be shown that a language
of a special form, say f(L), does not satisfy the property. However, in a bridge
theorem one considers only languages of a special form (f(L)) and one shows
how the special form of the language f (L) forces the device defining f (L) to have
certain restricted properties. This then implies that f(L), or an appropriate subset
of it, belongs to a smaller class K~. Thus, rather than looking at general properties
of languages forced by general properties of the device (as in an intercalation
theorem), one looks (in a bridge theorem) at restricted properties of the device
forced by restricted properties of languages.

Bridge theorems were used, among many others, by Greibach [24] to obtain
proper hierarchies of full AFLs, by Skyum [38] to establish proper inclusions
between several classes of languages generated by parallel rewriting systems (such
as ETOL systems), and by Baker [46] to give a partial solution to the problem of
properness of the yTn(REC) hierarchy. The operations involved in their bridge
theorems were substitution, copying (i.e., the operation c 2 defined by c2(L)=
{w$wlw EL}) and regular substitution, respectively. As mentioned above, we will
use a special regular substitution and c,: operations expressing nondeterminism
and copying.

98 J. Engelfriet

This paper consists of four sections of which this is the first. Section 2
contains preliminary definitions and a few basic lemmas. In Section 3 we present
three bridge theorems (Theorems 3.1, 3.6 and 3.9) from which properness of the
tree transducer hierarchy follows (for arbitrary classes of input tree languages in
Theorem 3.12, and in particular for REC in Theorem 3.14). Using another bridge
result, we give concrete examples of languages not in yT"(REC) for any n
(Theorem 3.16). In Section 4 we establish the hierarchies of ETOL systems and
2-way gsm's (in Theorems 4.2, 4.3 and Theorem 4.7, respectively). We show the
existence of proper hierarchies of full hyper-AFLs (Theorems 4.5, 4.10), and we
show that the 2GSM hierarchy is a small subhierarchy of both the ETOL
hierarchy and the top-down tree transducer hierarchy (Theorem 4.8).

2. Preliminaries

We assume the reader to be familiar with the basic facts of formal language
theory [29, 23], in particular some tree language theory [41]. In this section we fix
some notation, define some more or less well-known concepts and prove a few
lemmas.

Whenever it does not give rise to confusion we identify a class K of languages
with the class (L - (X } I L E K } , where ?t denotes the empty string.

We denote by REG, CF and CS the classes of regular, context-free and
context-sensitive languages, respectively.

A hierarchy is a family of classes K, , n---1, such that K~ C_K,,+~ for all n. It is
denoted by {K,}; we also refer to (K,} as "the K, hierarchy". The hierarchy
(K~} isproper if K~ ~gn+ 1 for all n.

In an inclusion diagram (such as those in Fig. 2 and 3) an ascending line from
K~ to K 2 means that K~ C_K 2. An inclusion diagram is correct if (i) an ascending
line from K l to K 2 means proper inclusion (K l ~K2), and (ii) if K l and K 2 are
not connected by any path in the diagram, then they are incomparable with
respect to inclusion.

2.1. Trees and tree languages

An alphabet £ is ranked if Y~= U{Znin->0), where the Y~, are (not necessarily
disjoint) subsets of ~. such that only finitely many of them are nonempty. If
oEY~ n, then we say that o has rank n. The set T~ of trees over ~. is the smallest set
of strings over ZU{(,)} such that (1) Y~0 C_T~ and (2) if oEZ,(n>_-l) and
t t t , ETy., then o(t I ... t n) E T ~.

If Y is a set of strings, then Tz[Y] is the smallest set of strings such that (1)
Y'o U YC_T~[Y] and (2) if oEY,,(n___l) and t 1 t, ETa[Y], then o(t l . . , tn)E
Ty.[Y]. Let X = (x l , x2, x 3 } and, for k>_O, X k = (x z , . . . , x k) . For a tree tE
T~[Xk] and trees t l , . . . , tk, the result of substituting t i for xi in t is denoted by

tit 1 tk].
Note that we have defined trees to be a particular type of strings. We shall

make extensive use of this fact in our notation, in particular concatenation of

Three Hierarchies of Transducers 99

strings is denoted by juxtaposition as usual. We shall also use the usual more
intuitive terminology with respect to trees. Thus a tree consists of labeled nodes,
such that a node labeled oEY,, has n sons (ordered from left to right). The root of
a tree is the unique node without a father. A subtree of a tree consists of a node
(the root of the subtree) together with all its descendants. As a notational
example, if t E T~ has a subtree s E T~, then we write t = usv, where u and v are
strings over ZU-{(,)} which together form the part of t outside s (u and v are
not trees themselves). A leaf of a tree is labeled with a symbol of rank 0, and the
yield of a tree is the string of labels of its leaves.

Formally we define the yield of a tree t, denoted by yield(t) or y(t) or even yt,
as follows. We introduce a special symbol e of rank 0 with yield)~ (the empty
string).

(1) For o ~ Z 0 , y i e l d (o) = o if o:/:e,
yield(e) = 2~.

(2) For oEZn(n--> 1) and t I t , E T z,
yield(o(tl ... t ,))=yie ld(t l) . . , yield(t,).

A tree language over Y~ is a subset of Z~. Note that every tree language is also a
(string) language because every tree is a string. For a tree language L and a class
K of tree languages, their yields yL and yK are defined to be a string language and
a class of string languages, respectively, in the usual way: yL=(Yti t~L} and
yK=- (YLIL EK}.

A tree translation from Z to A (both ranked alphabets) is a subset of T z × T a.
Let S be a class of tree translations. Then S n denotes the class of all tree
translations which are the (relational) composition of n elements of S and S ~
denotes the union of all S n. For a class K of tree languages, S (K) = (M(L)IM~
S, L E K) is the class of output tree languages of S (with input tree languages from
K), and yS(K)={y(M(L))IMES, L ~ K } is the corresponding class of tree
transformation languages. K is closed under the translations from S if S(K)C_K.
The game notation is used for string translations.

A ranked alphabet 7, is monadic if Z = Z 0 = Z 1 and Y', = ~ for n_>2. Trees,
tree languages and classes of tree languages over such a Z are also called monadic.
We will identify an unranked alphabet Y. with the corresponding monadic ranked
alphabet, the monadic tree 0~(o2(... o,_~(o,).. .)) with the string olo2... O,_la,,
and hence T z with Z + and tree languages over Y, with (X-free) string languages
over Y,. In this sense monadic trees are also called vertical strings. Note that, by
this identification, the yield of a tree is a monadic tree.

2.2. Top-down tree transducers and their derivations

In this subsection we define the top-down tree transducer (see also [35, 40, 16, 9]).
We discuss some important concepts concerning its derivations.

A top-down tree transducer M is a construct (Q, Z, A, q0, R) where Q is a
finite set of states, Z and A are ranked alphabets of input and output symbols
respectively, q0 ~ Q is the initial state and R is a finite set of rules of the form

|00 J. Engelfriet

q(o(x I ... xk)) -~ t with q E Q , o ~ Y.k(k>---O) and t ~ Ta[Q(Xk)], where Q(Xk) is the
finite language (q ' (x i)]q '~Q, 1 <_i<_k}; recall the definition of T:~[Y] in Section
2.1. For k = 0, we write q(o)--, t, with t ~ T a. M is deterministic if no two different
rules have the same left-hand side. M is a tree homomorphism if it is deterministic,
has only one state and is total (i.e., for each a E E k there is a rule with left-hand

side q(a(x I . .'. x k))). M is a (top-down)finite state relabeling if all rules in R are of
the form q (o (x l . . . Xk)) ~ T(ql(Xt)... qk(xk)) with ~-~ A k. M is a (top-down)finite
tree automaton if Z = A and all rules in R have the above form with ~'=o.

A configuration of M is an element of Ta[Q(T~)], where Q(Tz) is the language
(q (t) l q E Q, t E Tz). A derivation relation between configurations is defined as

follows. If q(o(x v . .Xk))~ t is a rule and t 1 tk E Ty, then uq ((t l . . . t k))v = ut' v

where t ' = t [t l , . . . , tk]. A derivation t 1 ~ t 2 ~ . . . ~ t n is denoted as usual by t I * t n.
The top-down tree translation realized by M, also denoted by M, is M = {(tl, t2) E

T~ × Talqo(t 0 * t2).
Since we can view the elements of X to have rank 0, and those of Q to have

rank 1, the elements of languages like T~[Q(Xk)] and Ta[Q(T~)] are also trees.
The class of top-down tree transducers and the corresponding class of

top-down tree translations is denoted by T. The class of deterministic top-down
tree transducers is denoted by DT, and the class of tree homomorphisms by

HOM.
Note that, due to the use of the special symbol e with yield(e) = X, the class

y T (K) is the same as in [19], where y T (i.e., the composition of T with yield) is
defined directly by a class of tree-to-string transducers. The same holds for all
subclasses of y T which we will consider. Under weak conditions on K (see Section
2.3) the symbol e can be dropped.

A tree language is recognizable if it is the domain (or range) of a finite tree
automaton. The class of recognizable tree languages is denoted REC; thus
REC = (M (T ~) [M is a finite tree automaton with input alphabet 2) . Note that
yREC = CF [39]. Note also that a (string) language is recognizable (when viewed
as a monadic tree language) iff it is regular; thus we identify REG with the class

of monadic tree languages in REC.
A top-down tree transducer M = (Q, E, A, q0, R) may be viewed as a system

of (nondeterministic) recursive procedures. Each state q of M is a recursive
function procedure which has one parameter t 1 of type tree and returns a tree t 2

(q(t l) * t2, t I E T~, t2E TA) : t 2 is a "q-translation" of t 1 (or the q-translation of tl,
if M is deterministic). The q-translation of a tree depends only on the label of its
root and the translations of its subtrees. This dependence is expressed by the
rules. A rule q(o(Xp. .Xk)) ~ t is part of the body of the procedure q and shows
how the q-translation of a tree with root label a is expressed (by t) in terms of
certain translations of its subtrees (denoted q'(xi)). Derivations as defined above
mirror the usual operational semantics of recursive procedures: a configuration in
a derivation q o (t l) * t 2 is a partially evaluated call qo(t~) in which calls with
subtrees of t~ as actual parameters still occur. Note that in the right-hand side t of
a rule q(Cr(Xv..Xk))-~ t a formal parameter x~ may occur more than once
("copying"), exactly once, or not at all ("deletion"). Thus a configuration may
contain several calls with the same subtree as parameter.

We now define a few basic concepts associated with the number of transla-
tions made of subtrees of an input tree, cf. [19]. Consider an input tree t, a subtree

Three Hierarchies of Transducers 101

s of t, and a derivation qo(t) * t' of M on t with output tree t'. It should be clear

from the above description of M as a system of recursive procedures that, during
this derivation, s will appear as actual parameter to some number, say n, of calls.

Consequently the derivation can be divided i n t o a derivation on the part of t
outside s and n derivations on s. The output tree t ' contains n (disjoint) subtrees

which are the translations of s.
More formally, let uE T~[{xl}] contain one occurrence of x 1 and let t = u[s],

i.e., u is the part of t outside s. Then there are derivations q o (u) * v (with
v E Ta[Q(xl)]) and q~(s) *~ s~ (with s i ~ Ta, 1 < i < n, n --> 0) such that the deriva-

tion q0(t) *~ t ' can be reordered as

qo(t) * v[s] = v , q , (S) V z q z (s) . . . v , q , (s) v , + , * VlS,V2S2...vns,v,+ , = t',

where v = Vlql(X])V2q2(xl).. .Vnqn(Xl)Vn+ 1 and v i does not contain x 1. We note
that these derivations are unique modulo reordering; we will not formalize this
concept of reordering, it is similar to the one for derivations of context-free

grammars; see the notion of computation tree in [45].
We say that, with respect to q o (t) * t ' , < q l (s) * s l q , (s) * s n > is the

derivation-sequence o f s, <q~ , qn> is the state-sequence of s and {r I , r,> is the
rule-sequence of s, where r i is the first rule applied in the derivation qi(s) * s i. We
also say that these sequences are associated with the root of s. The following
simple property is of importance: if we replace in qo(t)*= t' the derivations

qi(s) * S, of the derivation-sequence of s by other derivations qi(s) ~* s i' (with

s" E T a), then we obtain another valid derivation qo(t) * t" = v 1 s~v2 s~... v n s 'v , +

such that the rule-sequences of all nodes of u (the part of t outside s) remain
unaltered.

In general, for a given top-down tree transducer, the length of the derivation-
sequences in its derivations (i.e., the number of calls with a subtree as actual
parameter, i.e., the number of copies made of an input subtree) is unbounded. We
now define those transducers for which a bound on this number exists. They will
play an essential intermediate role in the proof of the properness of the tree
transducer hierarchy. For k_>l, a derivation q o (t) * t' of a top-down tree
transducer M = (Q, E, A, q0, R) is k-copying if for each subtree s of t the length of
the derivation-sequence of s is at most k. M is k-copying if each of its derivations
qo(t) * t' (t E Tz, t ' E T~) is k-copying. M is finite copying if it is k-copying for
some k -> 1. M is linear if it is 1-copying. The class of finite copying (k-copying)

top-down tree translations is denoted by Tfc (Tfc(~)), and DT/c (DTfc(k)) in the
deterministic case. We note that there is no difference between Tuc(K) and
DTfc(K) under weak conditions on K (see next subsection). Consequently, we will
never consider T/c (K) .

The state-sequences of a finite copying tree transducer can be computed by a
finite tree automaton, cf. [19]. This is shown in the following lemma.

Lemma 2.11 Let M E DTfc. There exists a deterministic finite tree automaton A

which has the state-sequences of M as states, and has the following property: for

every node d of an input tree, A arrives at d in state q, where q is the state-sequence

of M at d. Formally, let t = ulsu 2 with t, s ~ T~, where Y, is the input alphabet of M

102 J. Engelfriet

(and A). Then qo(t) &vlq l (s)vzqz(s) . . . vnq , (s)v ,+ l in M if and only if (qo) (t)

u lz (s)u 2 in A, where z = (ql ,q2 q ,) .

Proof Let M = (Q , Y., A, qo, R) be in DT/c(k). Note that, by the determinism of
M, each subtree of an input tree has at most one state-sequence. Define the finite

tree automaton A = (Q A, E, Y~,(qo), RA) where QA is the set of all sequences of

states of M of length at most k, i.e., QA = t3 {Q" IO<_n<_k}, and R A is constructed

as follows. Consider o EZ , , and z = (ql,.. ., q ,) E Q", n<_k. Let qj(o(xl . . . x , ,)) ~
uj be a rule in R for every j , l<_j<_n. For l<i<_m, let z i = (p 1 p s) E Q s if
s<_k and pl(xi) , p2(xi) , . . . , ps(xi) occur in this order in the string ulu2.., u, (and
there are no other occurrences of x i in UxUz... u,). Then the rule z (o (x l . . . Xm))--"
O(ZI(XO... Z,,(Xm)) is in R A. In case not all uj exist or s > k for some i, there is no

rule with left-hand side z(o(Xl . . . x, ,)) in R A.
It should be clear that A has the required property: if z is the state-sequence

of o(t~.., tin) then obviously z~ is the state-sequence of t~. Note that, in particular,

A and M have the same domain. []
We will need an easy technical result: a top-down tree transducer can be

changed in such a way that it simultaneously simulates a finite tree automaton on

its own output tree, cf. Lemma 2.10 of [17]. This is formalized in the following

lemma.

Lemma 2.2. Let M = (Q , Y . , A , qo, R) be a top-down tree transducer and A =
(P, A, A, Po, RA) a finite tree automaton (working on M ' s output trees). Then there

exists a top-down tree transducer M' = (Q', Y., A, (qo, Po) , R') with Q' = Q × P, such

that

(q, p) (t) ~ v i (q , , p ,) (s ,) v z . . . v , (q , , p ,) (s ,) v , + , in M'

if and only if

q(t) ~ vlq,(s ,)Vz . . . v ,q , (s ,)v ,+ l in M and

p(v,s~v2...vns'vn+l) ~ vlp,(s~)v2...VnPn(S'n)V,+l in A

where s 1 s , are subtrees of t and s~ s~ are arbitrary trees in T a.

Proof The rules of R' are constructed as follows. Let q(e(xx . . , x k))--, t be a rule
in R with tETa[Q(Xk)]. Let p (t) * t I be a derivation in A with p E P and
t I ETA[P(Q(X~))], i.e. "A is run on t as long as possible". Then the rule
(q, p) (o (x 1 ... xk))--,t 2 is in R', where t z CTa[Q'(Xk)] is the result of replacing

each pl(ql(xi)) by (qt, P l) (x i) in t I.
It should be clear that M' indeed simulates A on its own output trees (but

note that in one step of M' several steps of A are simulated). In particular, M'
produces only those output trees of M which are in the domain of A. []

Three Hierarchies of Transducers 103

2.3. Operations and closure properties

We assume the reader to be familar with the usual operations on languages, see
[29, 23]. Recall that a trio is a class of languages closed under intersection with
regular languages, inverse homomorphisms, and ~,-free homomorphisms (which
implies that it is closed under sequential machine mappings and h-free regular
substitution). A trio closed under union is called a semi-AFL. An AFL is a
semi-AFL closed under concatenation and Kleene star. A hyper-AFL is an AFL
closed under iterated substitution (see, e.g., [37,6]). Whenever such a class is
closed under arbitrary homomorphisms, the adjective "full" is added. Note that a
full trio is also called a rational cone. Apart from the usual operations on
languages we shall use the following copy-operations and a particular kind of
regular substitution called rub (the regular substitution of rubbish).

For a language L C_ Y,* and a symbol $ ~ E, we define

c (L) = (wSwlwEL},

c,(L) = {(w$)"lwEL, n>_l } and

2"
Cox, (L) : ((w$) IwEL, n->O}.

The regular substitution rub is defined by r u b (a) = $*a$* for all a E Y.. Note
that rub is also an inverse homomorphism.

With respect to tree languages we shall use the operations of finite state
relabeling (see Section 2.2) and of regular insertion (see [19]), to be defined next.
The first generalizes the sequential machine (with accepting states) on strings. The
second generalizes the notion of (h-free) regular substitution.

Let Y, be a ranked alphabet and h an alphabet. A regular insertion f is given
by a mapping fk from Yk to languages over A, for each k - 0, such that, for each
oE E~, f k (o)E REG, i.e., fk(o) is a regular language over A.

The regular insertion f is a mapping from tree languages over E to tree
languages over Y~UA (where the elements of A have rank 1) defined as follows; for
wE A* and t E T z we denote by w(t) the tree t with the monadic tree w on top,
i.e.,)~(t) = t and aw(t) = a(w(t)). If w ~ fo(o) then w(o) E f(o). If s i E f (t i) for
1 _< i -< k and wE fk(O), then w(a(sl . . .sg))E f (o (t r . .tk)). If L C_ T z then f (L) :
U { f (t) [t E L}. Thus a regular insertion inserts (substitutes) strings from a regular
language fk(o) jus t above each node labeled o.

The next concept is introduced for the sake of this paper only. A class of tree
languages is a tree trio if it is closed under finite state relabelings and regular
insertions. A monadic tree trio is not necessarily a trio, but every trio is a monadic
tree trio.

If K is a tree trio, then T/c(k)(K) -- DT/c(k)(K) for every k; see Lemma 3.2.3
of [19]. If K is a tree trio, then we can do without the special sygtbol e (with yield
h) in all classes yT(K) , yDT(K) , yDT/c(K) and y HOM(K) , cf. Lemma 1.3 of
[17].

Lemma 2.3. REC is a tree trio.

104 J. Engelfriet

Proof Closure of REC under finite state relabelings is easy to prove (REC is
even closed under linear tree transducers [41]). To prove closure under regular
insertion let A be a finite tree automaton recognizing the tree language L C_ T~.,
and let f be a regular insertion with alphabet A. Since REC is closed under finite
state relabeling we may assume y and A to be disjoint. It is now easy to see that
f (L) is the intersection of two recognizable tree languages. In fact, for any tree
s E T~uA, one finite tree automaton checks that the "~-par t" of s belongs to L
(simulating A and disregarding elements of A), and the other finite tree automa-
ton checks that all "vertical A-strings" of s belong to the appropriate regular

languages fk(o) (simulating all the corresponding ordinary finite automata). Since
REC is closed under intersection [41], this shows the lemma. []

The next lemmas state some relationships between operations on tree lan-
guages. Let K be a class of tree languages.

Lemma 2.4. I f K is a tree trio, then T (K) is a tree trio.

Proof As far as finite state relabelings are concerned, T (K) is even closed under
linear top-down tree translations [17]. Closure under regular insertion can easily
be proved as follows. Let L E K , M = (Q , E , A , q o , R) in T, and f a regular
insertion on TA. We have to show that f (M(L)) E T(K) . Define a regular insertion
g on T~ by

g , (o) = # (U (~fk(' r) l~E2ik,k-->0))* for eacho ~ Z,(n-->0).

It is straightforward to construct a new top-down tree transducer M' such that
M ' (g (L)) = f (M (L)) . M' simulates M and moreover it selects a string of fk(~-)
from the input before it produces the output symbol ~-. []

Lemma 2.5. I f K is a tree trio, then YDTfc(K) and yT(K) are closed under regular
substitution.

Proof Direct from Lemma 3.2.2. of [19], where it is shown that a generalized
top-down tree transducer in which the rules are allowed to have regular languages
as right-hand sides can be simulated by an ordinary top-down tree transducer.
Thus, if L = y M (L l) with L 1 E K and M E T , and the generalized top-down tree
transducer M' is obtained from M by applying the regular substitution f to the

fight-hand sides of its rules, then yM'(L 1) = f (L) . D

Lemma 2.6. I f K is a tree trio, then yD Tic (K) is closed under c2, yD T(K) is closed
under cz, c. and Cexp,, and y H O M (K) is closed under c 2 and Cex p.

Proof Note that~since K is a tree trio, we may assume that the root of the input
tree of a transducer has a label different from all other labels in the tree. This
allows us to insert a regular language above the root of the tree and insert
nothing, i.e. (X}, everywhere else.

Let M C D T and L EK. We now consider three cases: c 2, c. , and cex p.

Three Hierarchies of Transducers 105

For c2, let L 1 be obtained from L by inserting a symbol g above the root of
each tree of L, i.e., L~ =$(L) . Since K is closed under regular insertion, L 1 EK.
Construct from M a new transducer M' which, for an input tree $(t), first makes
two copies of t (by the rule qo($(xl))~$(qo(Xl)$qo(xl)), where q0 is the initial
state of M, and g has ranks 1 and 3), and then treats both copies of t in the same
way as M. Clearly yM' (L 1) =yM'(~(L)) = e~_(yM(L)). Furthermore M' E D T, and
if M is finite copying then so is M' (but the bound is doubled). If M is a tree
homomorphism, then so is M'.

For c., insert the regular language g*j~ above the root of each tree of L and
let L~ =$*je(L) be the resulting language (again L~ ~ K) . Extend M to M' by the
rules

q~(:~(x,)) -, $(ql (x ,)Sq~(x ,)) ,

qO(jz(x,)) ~ j~(q0(x,)$),

q,($(xl)) ~ ql(xl) and ql(.e(Xl)) --~ qO(Xl),

where q6 is the new and q0 the old initial state, ql is a new state, and j~ has ranks 1
and 2. Clearly M' E D T and yM'(Ll)=yM'($*~e(L))=c.(yM(L)) .

For Ce×p, insert ~e$* at the roots; add the rules qo(~(xl))~.e(qo(xl)$) and
qo($(xl))--,$(qo(xl)$qo(Xl)). The resulting M' is in DT, and if M E HOM then
M ' E HOM. ClearlyyM'(~$*(L)) = Cexp(yM(L)). This proves the lemma. []

3. The Tree Transducer Hierarchy

In this section we establish some general bridge theorems for classes of tree
transformation languages which together lead to the properness of the hierarchy
(yTn(REC)). Due to their general character, we even obtain the uniform result
that, for an arbitrary tree trio K, if y T(K) ~ y T 2(K), then the hierarchy (y T n(K))
is proper. In other words if, for some input tree trio, two tree transducers are
more powerful than one, then n + 1 are more powerful than n. The (sharper) main
result of this section is stated in Theorem 3.12. The same bridge theorems will
also be used in the next section to obtain two other hierarchies of transducers. At
the end of this section we provide some concrete examples of languages not in
yTn(REC) for any n.

We start with the following bridge theorem from [19] which intuitively says
that a deterministic transducer which fully uses its copying facility (i.e. is not
finite copying) cannot simultaneously handle nondeterminism. The second state-
ment of the theorem is shown also in Theorem 16 of [46]. In Theorem 15 of [46] it

is shown for tree languages (i.e. without " y " and with a tree variant of rub),
based on the techniques of [32]. The first statement of the theorem was discovered
independently by Latteux [31] for the case K---REG.

Theorem 3.1 [19]. Let K be a tree trio and L a (string) language.

l f rub(L) E yDT(K), then L E yDTfc(K).

l f rub(L) E y H O M (K) , then L ~ yDTfc(o(K).

106 J. Engelfriet

Proof. The proof is given in Theorem 3.2.14 of [19]. It is based on the fact that
the form of the language rub(L) forces the involved tree transducer to have many
derivations which are finite copying as far as the symbols from L are concerned,
i.e., unbounded copying is used only to produce the $ symbols.

Note that y HOM(K)C_yDTo) (K) in the notation of [19]. The classes are even
equal, []

We note that, to obtain a language in yT(REC)-yDT(REC), Perrault [33]
used f (L), where f is a finite substitution and L an exponential language (i.e. its
strings are of exponential length). Exponentiality forced L outside y D ~ (R E C)
and the finite substitution forced L outside yDT(REC). The same method was
used in [11] for the monadic case.

Since yDTy~(K), yT(K), and yDTfc(T(K)) are all closed under regular
substitution by Lemmas 2.4 and 2.5, we obtain from Theorem 3.1 the following
three corollaries. The second corollary is one of the steps to be used to show that
the inclusions in the tree transducer hierarchy are proper.

Corollary 3.2. I f K is a tree trio, then yDTf~(K) is the largest subclass of yDT(K)
closed under regular substitution.

Proof. Let K 0 be a subclass of yDT(K) closed under regular substitution, and let
L E K o. Then also r u b (L) E K o and hence rub(L)EyDT(K). By Theorem 3.1,
L @yDTf~(K). Hence K o C yDTfc (K). []

Corollary 3.3. Let K be a tree trio and L a (string) language. I f L ~ y D T (K) -
yDTfc(K), then rub(L) ~yT(K) - yDT(K). []

Corollary 3.4. Let K be a tree trio, let K I : T (K) , and let L be a (string)
language. I f L EyDTfc(K I) --yK1, then rub(L) E yD T/¢(K l) --y HOM(K 1).

Proof. Use the second part of Theorem 3.1 and note that if K is a tree trio, then
T(K) is closed under linear tree transducers [17], i.e., D Tyco)(KL)--K v []

Note that Theorem 3.1 and Corollary 3.3 illustrate the discussion on bridge
theorems in the introduction, with K~ =yDTfc(K), K: =yDT(K), g 3 =yT(K),
and f = rub.

The next bridge theorem (taken from [21], see also [38]) will show that an
essentially nondeterministic transducer cannot do copying of strings; more pre-
cisely, if c2(L) ~yT(K) then LEyDT(K) . Although this theorem is not needed to
obtain properness of the tree transducer hierarchy (yT"(K)}, it is useful to
establish a finer hierarchy and, moreover, it illustrates a general method to be
used in other cases. Before presenting this theorem we need some more terminol-
ogy, together with a lemma. The theorem is concerned with showing that, under
certain circumstances, a nondeterministic transducer M can be replaced by a
deterministic transducer. This is true in particular if M has sufficiently many
"uniform" derivations (this notion was introduced in [33]). A derivation of a
transducer is uniform if at each node the transducer applies the same rule when
arriving in the same state at that node. Formally we define this as follows.

Three Hierarchies of Transducers 107

Let M = (Q, Y., A, q0, R) be a top-down tree transducer. Let qo(t) * t' be a
derivation of M (t E Tr., t '~ Ta), let s be a subtree of t, and let (qL q ,) and
(r I ,rn) be the state-sequence and rule-sequence of s respectively. The deriva-
tion q o (t) * t ' is uniform at the root of s if, for all l<_i,j<_n, q i=qj implies
r~ = ~). Note that, since the state-sequence is determined by the rule-sequence,
uniformity is a property of the rule-sequence alone. The derivation qo(t) * t' is
uniform if it is uniform at all nodes of t. For a tree language L C_ T:~, we denote by
Mu~(L) the tree language {t 'E Ta[there is a uniform derivation qo(t) * t' of M
for some t E L).

Lemma 3.5. Let K be a tree trio, L E K and M a top-down tree transducer. Then
Mu . (L)E DT(K) .

Proof. We use a finite state relabeling to "guess" the rule applied by M at each
node of the input tree. Let M = (Q , Y., A, qo, R). Let A be a (nondeterministic)
finite state relabeling which adds to each label o ~ Yk of a node of an input tree a
mapping f: Q ~ R , such that the left-hand side of f (q) is q(o(x I ... xk)) for all
qEQ. Construct M' such that when arriving in state q at a node labeled (o, f) , it
applies rule f (q) , more precisely: M' applies the rules obtained from f (q) by
replacing its left-hand side q(o(x I ... xk)) by q((o, f) (x 1 ... xk)). Clearly M' is
deterministic and simulates exactly all uniform derivations of M (due to the fact
that it applies the same rule when arriving in the same state at some input node).
Hence M'(A(L)) = M,~(L) which proves the lemma. []

We now continue with the second bridge theorem. We note here that copying
was also used in [32] and [33] to obtain languages outside T(REC) and yT(REC),
respectively.

Theorem 3.6 [21]. Let K be a tree trio and L a (string) language. I f c2(L) E y T(K),
then L E y D T (K) .

Proof. Let c2(L)=yM(Li) with LI E K and M= (Q, Y . , A , qo, R) a top-down
tree transducer. We will show tha t the form of the language c2(L) forces a large
degree of uniformness on M; in fact we will show that c2(L)=yMun(LO; from
this it follows by Lemma 3.5 that c2 (L)EyDT(K), and hence L@yDT(K)
because y D T (K) is closed under deterministic gsm mappings [17]. Consider a
derivation qo(t) *~ t' of M such that yield(t') = w$w with wE L, and let s be a
subtree of t with derivation-sequence (q l (s) * s l , . . . , q , (s) *s~) . Suppose that
qi =qj with i < j. Then w$w=xuyvz with u = yield(s/) and v = yield(sj). Since
qi = qj, also xuyuz and xvyvz are in yM(L i) = c2(L) by replacing qj(s) * s by

. J

q~(s) *~ s i m the gwen derlvauon and vice versa. Due to the form of the string
w$w this implies that u = v, i.e. yield(si)= yield(sj). Hence we can change, say
qj(s) * s j into qi(s)*~s i without changing the yield of the output tree. By
repeating this process we can change the derivation into one which is uniform at
the root of s without changing the yield of the output tree. We now apply this
procedure to all nodes of the input tree t in a top-down fashion, i.e. first to the

108 L Engelfriet

root of t, then to its sons (in some arbitrary order), then to their sons, etc. In this
way we change the derivation (without changing the yield of its output tree) into a

uniform derivation.
Note that if the procedure is applied to some node, then the rule-sequences of

all nodes which are not descendants of this node remain unaltered, cf. the "simple
property" of rule-sequences in Section 2.2. Hence w$wEyM~n(Ll). And so

c2(L) = yMu, (L l) and the theorem is proved. []
Since yDT(K), yHOM(T(K)) and yDT/c(T(K)) are all closed under c 2

(Lemmas 2.4 and 2.6), we obtain from Theorem 3.6 the following corollaries of
which (he second will be used to show that some of the inclusions in the tree

transducer hierarchy are proper.

Corollary 3.7. I f K is a tree trio, then yDT(K) is the largest subclass of yT(K)

closed under copying (c 2).

Corollary 3.8. Let K be a tree trio and L a language. I f L E y T (K) - y D T (K) ,
then c2(L)EyDTfc(T(K)) - y T (K) and c2(L)EyHOM(T(K)) - y T (K).

Corollaries 3.3 and 3.8 do not yet provide us with enough bridges to step
from one bridge to the next. A bridge is missing from yDTf~(K)-yK to
yDT(K)-yDTfc(K). The existence of such a bridge remains open. However, we
can establish such a bridge if K = T(K~) for some tree trio K~ and this suffices for
our purposes. The involved operation is unbounded copying (cex p or c,). Thus the
next theorem expresses the intuitively obvious fact that a finite copying trans-
ducer cannot do infinite copying (of an essentially nondeterministic language). It

is the key result of this paper.

Theorem 3.9. Let K be a tree trio and L a (string) language. Let L o C_c.(L) have
the property that for each w EL there are infinitely many n such that (w$)" EL o. I f

L o ~yDTfc(T(K)), then L EyDT(K).

Proof The idea of the proof is similar to that of Theorem 3.6. Let L o =
yN(M(L1)) with L~ EK, M E T and NEDTfc(k) for some k->l. Roughly we will
show that the form of the language L 0 forces M to have sufficiently many uniform
derivations to obtain a subset L6 of L 0 which still contains some (w$) n for each
w E L (in other words, the nondeterminism of M is used only to iterate w$, not to
obtain w itself). Consequently M can be replaced by a deterministic transducer

(Lemma 3.5), L' o EyDTfc(DT(K)), and hence L' o EyDT(K) because DT(K) is
closed under DT, see [17]; since yDT(K) is closed under deterministic gsm

mappings [17], it then follows that LEyDT(K) .
For technical reasons, but also to increase the transparency of the demonstra-

tion, we first change M in such a way that in its finite control it keeps track of the
(bounded) state-sequences of N on the output tree of M. By Lemma 2.1 the
state-sequences of N can be computed by a finite tree automaton A, and by
Lemma 2.2 M can be changed in such a way that it additionally simulates A on its
output trees. Let M = (Q , Z , A , qo, R l) and N=(Qz, A,a, qN, R2), and let Z
denote the (finite) set of all possible state-sequences of N, i.e. Z = U (Q~ [0-<n-<k}.

Three Hierarchies of Transducers 109

We obtain a top-down tree transducer M ' = (QI × Z, E; A, q~, R'I) with

q~= (qo,(qoU)), such that if qo(t)~Vlq(S)V 2 ~VlS'V2-----t' in M, then q ~ (t) *
v l (q , z) (s)v z * v f f ' v z = t' in M', where z is the state-sequence of s ' with respect
to N (note that because N is deterministic the state-sequences of N are unique).
Note that M' produces only output trees which are in the domain of N.

Thus L 0 = yN(M' (LO) . We now want to show that yN(Mu,(L~)) contains
some (w$) n for each wE L, which proves the theorem by Lemma 3.5 and the

above arguments (set L~ --- yN(M" ,(L l))).
For arbitrary wE L, consider (w$)" in L0 such that n ~ 2k + 2 (the reason for

this number 2k + 2 will become clear later). Let q~(t~) *~ t 2 and qN(t2) * t 3 be
two derivations in M' and N respectively, such that t ~ L 1 and yield(t 3) = (w$) ",
see Figure 1.

We want to change the first derivation into a uniform one in such a way that
the resulting (changed) t 3 has a yield which still "contains the same w". Let s be
an arbitrary subtree of tl and let us try to make the first derivation uniform at the
root of s. Let s~ and s 2 be two different (q, z)-translations of s, where (q, z) is
some state of M'. Thus derivations (q, z) (s) * s I and (q, z) (s) * s 2 occur in the
derivation-sequence of s (with respect to q~(t l)~ t2). As one step toward uni-
formness at the root of s we show how to replace one of these derivations by the

other. If z = (Pl , . . . ,Pm) with m<-k, then s~ and s 2 both have state-sequence
(P l , - - . ,Pro) in the derivation qU(t2) * t 3. Thus t 3 has (disjoint) subtrees t(si, Ph)
such that ph(si) * t (s , Ph) for 1 _< i -< 2 and 1 _< h -< m: these are the translations

1¥

- - - >

M ~

Fig. 1. A two-stage derivation.

* >

lq

110 J. Engelfriet

of the trees s i by N. Note that a change of a subderivation (q, z) (s) * si into
(q, z) (s) & s j in the first derivation results in a corresponding change in N ' s

derivation, and one in t3, consisting of the change of t(si, Ph) into t(sj, Ph) for
each h, 1 _-_ h < m. Note also that the strings yt(s~, Ph) are disjoint substrings of
yt 3 = (w$) n.

For 1 _< i --< 2, let num(i) denote the number of occurrences of $ in the string

yt(si, P l). yt(s~, P2).. .yt(si, P,,). Assume without loss of generality that num(2)-<
hum(l). We now replace (q, z)(s) *~ s 2 by (q, z)(s) *~ s I in the first derivation.
Let this replacement change t 3 into t~. To show that yield(t~) still "contains the
same w" we consider the following two cases.

Case 1. There exists h such thatyt(s~, Ph) contains at least two occurrences of $.
Then it contains a substring w. Since this occurrence of w is not affected by
changing s 2 into Sl, y ie ld(t ;)=(w$) n' for some n 1. Moreover, since hum(2)_<

num(1), n I ~ n and so n t ->2k+2.

Case 2. For all h, yt(sl, Ph) contains at most one occurrence of $. Then
num(1)_<m___k and hence also num(2) -<m-k . Consequently the stringsyt(s 2, Ph)
overlap with at most 2m occurrences of w in yield(t3). Therefore, since
n>_2k+2>__2rn+2, there is an occurrence of w which lies outside these

yt(s2, Ph)" Since this "outer" w is not affected by changing yt(s2, Ph) into
yt(sl , Ph), yield(t~)=(w$) n~ for some n I. Moreover, as in Case 1, n I - n - > 2 k + 2 .

Note that in Case 2 essential use is made of the finite copying of N, i.e., of the
assumption that n-> 2 k + 2. We have been careful to see to it that the replacement

of s 2 by s 1 results in some n I such that again n~ ---2k+2. This ensures that the
replacement process (and Cases 1 and 2) can be repeated to obtain a derivation
which is uniform at the root of s. (Note that if s 3 is another (q, z)-translation of s

and num(3)_>num(1), then both occurrences of s l, obtained after replacing s 2 by
s I, have to be replaced by s3; if num(3)_<num(1), then s 3 is replaced by sl). This
procedure can now also be applied to all nodes of the tree t~ in the usual
top-down fashion. This leads to a uniform derivation qr(t~)*= t~ in M' and a
derivation qoN(t~) * t~ in N such that yield(t~) = (w$) ~' for some n 1 -> n. Hence
(w$)n'~yN(M~,~(Ll)). Since w was arbitrary this proves that yN(M~,~(LI))
contains some (w$) ~' for each wE L (even infinitely many), and the theorem is
proved. []

Note that Theorem 3.9 holds in particular for L 0 =Cexp(L) and L 0 = c , (L) .
From Lemma 2.4 we again obtain two corollaries of which the second is the
important one.

Corollary 3.10. I f K is a tree trio, then y D T (K) is the largest subclass of
yDTf¢(T(K)) closed under unbounded copying (Cex p, c.).

Corollary 3.11. Let K be a tree trio and L a language. I f L ~ y T (K) - - y D T (K) ,
then C e x p (L) i ~ y H O M (T (K)) - y D T f c (T (K)) and c . (L) ~ y D T (T (K)) -
yDT/~(T(K)).

Three Hierarchies of Transducers 111

Corollaries 3.3, 3.8 and 3.11 lead to the main result of this section. For the

notion of a correct diagram see Section 2.

Theorem 3.12. Let K be a tree trio. t f yDTfc(K)~yT(K), then for all n>--I the
following diagram is correct, where K. denotes T"(K), see Figure 2.

More generally, if yDT#(K)~yTm(K) for some m >--1, then this diagram is
correct for n >- m.

Proof. By Lemma 2.4 K, is a tree trio for all n. Let L, be a language in
y K - y D T (K , _ I) . Note that for n = l the existence of L, follows from the
hypothesis of the theorem together with Corollary 3.3.

Then Cexp(L,) e yHOM(K.) - yDTfc(K.)
rub(cz(L,)) e yDTIc(K,) - y H O M (K ,)

rub(cexp(L,)) e yT(K,) - yDT(K,)

by Corollary 3.11
by Corollaries 3.8 and 3.4
by Corollary 3.3.

This proves the first part of the theorem. Note also that

c2(L.) 6 (yHOM(K.) N y D ~ (K .)) - y K N
c,(L.) q yDT(K.) - yDT#(K.)

rub(c.(L.)) • yT(K,) - y D T (K ,)

by Corollary 3.8
by Corollary 3.11

by Corollary 3.3.

For the second part of the theorem we observe that if L E y D T (K m_ l)-YKm_l,
then rub(c , (L))EyT(K m_ O-yDT(Km_l) by Lemmas 2.5 and 2.6 and Theorems

yHOM (Kn) yDTfc (Kn)

YK n Fig. 2. The tree-transducer hierarchy.

112 J. Engelfriet

3.1 and 3.9. Hence a language L m E y K m - y D T (K m _ I) has to exist, and the
argument is the same as above.

The languages which prove the hierarchy to be proper are over an increas-
ingly large alphabet (because with each application of an operation rub, c 2 or Cex p
a new symbol $ has to be taken). However, since y D T (K) is closed under
deterministic gsm mappings [17], it is easy to see that examples of such languages
exist over a fixed alphabet (of, say, 4 symbols).

Remark. We have done our best to add y H O M (T " (K)) to the diagram of
Figure 2, because of the following ([46], see also [16]). If, in Theorem 3.12, K is
also closed under linear tree transducers (equivalently, under linear tree homo-
morphisms), then, for all n - 0, y HOM(T"(K))= yB ~ + l (K) where B is the class
of bottom-up tree transducers. This is in particular true for K = REC. The
top-down/bottom-up hierarchy obtained from Figure 2 by disregarding y D T (K ,)
and yDT/¢(K~) was considered in [46]. We also note here that, as remarked in [46],
under the conditions of Theorem 3.12 y H O M (T " (K)) is not closed under inverse
homomorphisms (and hence is not a trio) because Cexp(L~)E y H O M (T ~ (K)) but
rub(c~xp(L,)) ~ y H O M (T " (K)) , cf. the proof of Theorem 3.12.

A weaker but intuitively attractive consequence of the above theorem is that
if 2 transducers are more powerful than 1, then n + 1 transducers are more
powerful than n.

Corollary 3.13. Let K be a tree trio. I f y T (K) ~ y T 2 (K) , then y T ~ (K)

~ y T " + I(K) for all n > _ 1.
We now turn to the tree transducer hierarchy which starts with the recogniz-

able tree languages.

Theorem 3.14. The tree transducer hierarchy {yTn(REC)} is proper. More pre-

cisely, for K n = T'(REC) and n >_ 1 the diagram of Figure 2 is correct.

Proof Since by Lemma 2.3 REC is a tree trio, Theorem 3.12 is applicable to
K = REC. It was shown in Corollary 3.2.7 of [19] that all languages in yDTf¢(REC)
have semi-linear Parikh-sets. Hence languages such as {a2"ln >>- 0} and {a"ln is
not prime} are in yDT(REC) but not in yDTfc(REC). Note that {aZ"ln--> 0} =
h(cexp({a})) and {a"ln is not prime} = h(c+(aaa*)), where h is the homomor-
phism erasing $ and c + (L) = ((w$)n l w ~ L, n >-- 2}. []

Note that properness of the tree transducer hierarchy has implications with
respect to closure properties of its classes; see Corollaries 3.2, 3.7 and 3.10. In
particular, by Corollary 3.2, yDT(Tn(REC)) is not closed under regular substitu-
tion and hence is not a trio.

It follows trivially from Theorem 3.14 that the hierarchy {T"(REC)} of
classes of tree languages and the hierarchy (T n } of classes of tree translations are
also proper (more precisely, the analogues of the diagram of Fig. 2 are correct).
See [46] for some consequences with respect to closure properties of the T n (R E C)

Three Hierarchies of Transducers 113

hierarchy. We note that although the hierarchy (T ~} is proper, all counterexam-
pies have to be relations which are not partial functions. It can be shown that the
class T"n {fl f i s a partial function} is contained in T2; in fact this class is equal
to the class of tree translations which can be realized by deterministic top-down
tree transducers with regular look-ahead [18].

The situation with respect to the hierarchy (T"(K)} for an arbitrary tree trio
K is not immediately clear from our results so far. It is however not difficult,
using the same methods as for the yT"(K) hierarchy and the obvious analogues
of the operations rub, c 2, Cex p and c, for trees, to obtain similar results for
(T"(K)}. The detailed proofs, which are easier than in the y-case, are left to the
reader.

Theorem 3.15. Let K be a tree trio. If DTfc(K)~T(K), then the hierarchy
(T"(K)} is proper (more precisely, the diagram of Figure 2, with " y " deleted, is
correct).

Proof The analogue of Theorem 3.1 can be shown using for rub the regular
insertion which inserts ~$* above each symbol c of rank 0. The analogue of the
second statement of Theorem 3.1 was shown in this way in [46].

The analogue of Theorem 3.6 can be proved using the tree operation
c2(L)---{$(tt)ltEL }, where $ has rank 2, and the analogue of Theorem 3.9 for
Cex p and c, can be shown using Cexp(L)= (c~(t)ln>_O , tEL} and c , (L) = (ft~(t)]n
>-0, tEL}, where, for every tree s, ft(s)=$(ts); cf. the proof of Lemma 2.6.

We note here that, in this "tree notation", the tree language used in [32] to
show that T(REC)~ T2(REC) can be written as c2(rub(c,(b*$))), where b*$ is a
monadic tree language. []

In fact, we do not know any tree trio K to which Theorem 3.15 is applicable
(i.e., OTfc(K)~ T(K)), but Theorem 3.12 is not (i.e., yDTfc(K)=yT(K)).

If DT(K)=T(K) then the whole hierarchy {T"(K)} collapses to
DT(K): T2(K)=T(DT(K))C_T(K), cf. [17]. Hence the hierarchy {T"(K)} is
proper if and only if nondeterminism does pay, i.e., DT(K)~T(K). It is not
clear whether a similar result holds for {yT"(K)}.

It was shown in [45] that yT°°(REC) is properly contained in the class of
context-sensitive languages. We close this section by providing some concrete
examples of context-sensitive languages outside the hierarchy yT°~(REC) (recall
that yT°~(REC) is the union of all classes yTn(REC) of the tree transducer
hierarchy).

Theorem 3.16. Let f be a partial injective function of positive integers with an
infinite domain. Then ((a"$)s~")ln >_1, f(n) defined} ~ yT°°(REC).

Proof Let L 0 = {(an$)Y(")In_> 1, f(n) is defined}. We shall first prove the bridge
result that for a tree trio K

(*) i fL o ~yDT(T(K)) , thenL o EyDT(K) ,

114 J. Engelfriet

and then show that L o q~ yDT(REC). Together this clearly proves the theorem: if
LoE T"(REC), then, trivially, LoE yDT(T"(REC)) and so, by repeated applica-
tion of (.), LoE yDT(REC).

The proof of (.) uses the same technique as that of Theorem 3.9. Let
L o = yN(M(LI)) with L~ E K, ME T and NE DT. We will construct M' such that
L o = yN(M'n(L1)). By Lemma 3.5 and the closure of DT(K) under DT [17] this
implies that LoE yDT(K). As in the proof of Theorem 3.9, M' is equivalent to M
but keeps some more information in its finite control. First of all M' keeps track
of the state-sets of N on the output tree of M, where the state-set of a subtree is
the set of states occurring in its state-sequence, cf. [19]. This can be done as in the
proof of Theorem 3.9 (using an obvious analogue of Lemma 2.1). Secondly, when
arriving at the root of an input subtree s in state q and with state-set z of N, M'
will predict for each p E z whether the string wp, such that q (s)~ t s ' and p (s ') ~ s"

and yield(s")= Wp, will contain 0, 1 or ___ 2 occurrences of the symbol $ (where

q(s) ~I s is the derivation which M will follow from this point onwards). This can

be done by another application of Lemma 2.2. In fact, for each p there exists a
finite tree automaton Ap which, on a tree s', checks whether Wp satisfies the
properties above (this is because if N E T and L E REG then (yN) -~(L)E REC,
cf. [32, 17]; take L = F* or F*$F* or ~05~05f]0, where f] is the output alphabet
of N and F = f~0-($}). Combining these automata Ap into one finite tree
automaton A, M' can simulate A on its output trees by Lemma 2.2. Thus, the
states of M' have the form (q, z, g) where q is a state of M, z is a state-set of N
and g is a mapping g: z --* {0, 1, _> 2} with the meaning described above. Actually,
the third component is the state of A which is not necessarily equal to g, but
determines it uniquely.

Consider the string (an$)/(") and two derivations q~(tl) * t 2 and q~(t2) * t 3
in M' and N respectively, such that yield(t3)= (a~$)/(n). We now adopt the same
terminology as in the proof of Theorem 3.9 (see also Figure 1), except that we
have (q, z, g) instead of ~q, z) and z = {Pl, '" ,Pm} instead of z = (Pl Pro)"
Note that there may now be an unbounded number of occurrences of t(s i, Ph) in
t 3. We now show that the first derivation can be made uniform at the root of
subtree s without changing the yield of t 3. Repetition of this process as in the
proof of Theorem 3.6 leads to the desired result. We distinguish two cases.

(1) There exists h such that yt(sl, Ph) contains at least two occurrences of $.
Then we change s 2 into s~. The yield of t 3 does not change because a substring
SanS remains unaltered and f (n) is a function. Similarly with s~ and s 2 inter-
changed.

(2) For all iE (1,2} and h, yt(s i, Ph) contains at most one occurrence of $.
Since we are considering state (q, z, g) of M', for fixed h both yt(s~, p~) and
yt(s2, Ph) contain the same number of occurrences of $, viz. g(Ph) which is 0 or 1.
Change, say, s 2 into s I. Then all occurrences of yt(s2, Ph) are changed into
yt(sl, Ph) and consequently the number of occurrences of $ in the yield of t 3 does
not change. Hence, because f is injective, yield(t3) does not change.

This concludes the proof of (,). We show that L o q~ yDT(REC) by the
intercalation theorem of Perrault [33] as stated in Theorem 3.2.4 of [19]. Since
yDT(REC) is closed under deterministic gsm mappings [17], it may be assumed
that each odd $ in a string of L 0 is changed into ~, i.e. it suffices to show that the

Three Hierarchies of Transducers 115

language L~ = ((a"$a"$)l/2/~'° ln -> 1, f(n)even) U ((a~$a~$)ma~$l n > 1, m =

1/2(f (n) - 1) , f (n) odd} is not in yDT(REC) . According to the intercalation
theorem for yDT(REC) , each sufficiently long string z E L~ has short substrings
z~ z k which can be replaced by (longer) strings v I Vk, such that for each i
(1-< i - k) the set of symbols occurring in v i equals the set of symbols occurring
in zi, the result z' of replacing each zi by vi in z is in L~, and z :/: z'. If we take
z = (a~x) yt'o for some large n (where the x is alternatingly $ and $), then the short
substrings z~ are in a*, a*ga* or a*$a*. Due to the condition on the set of
symbols and the alternation of $ and $, v~ must be in a*, a*$a* or a*$a*
respectively. But then z' too must contain f (n) occurrences of $ and $. Since f is
injective, z = z', which is a contradiction. []

Theorem 3.16 implies that languages such as ((a" b) 2n l n >- 1 }, ((a ~ b) " l n >_ 1)
and ((a2nb) ~ In- 0) are not in yT°°(REC). We finally note that the languages of
Theorem 3.16 are not in INDEXED, the class of indexed languages [1, 22]. In
fact, it suffices to show that Lo={(a~$) fOO- la" ln>_ l , f (n) defined} is not
indexed. Suppose that it is. Since it clearly has Property (P1) of [21], it follows
that LoEEDTOL ([22], see alSO Theorem 1 of [21]). But since EDTOLC_
yDT(REC) , Theorem 3.16 implies that L 0 ~EDTOL. From this contradiction it
follows that L 0 ~ INDEXED (cf. also [28]).

4. String Transducer Hierarchies

The bridge theorems from which the tree transducer hierarchy was obtained can
also be used to establish proper hierarchies for two (closely related) string
transducers. The first class of string transducers to be considered is y T restricted
to monadic input trees. Such a string transducer consists of a top-down tree
transducer which receives monadic input trees (i.e., vertical strings) as input and
produces a tree as output of which the yield is taken.

This type of string transducer is of interest because, for monadic K, y T (K) is
equal to ETOL(K): the class of languages generated by K-controlled ETOL
systems [36, 6, 19]. The hierarchy (ETOL~(K)}, constructed by iterating the
mechanism of control on ETOL systems, is proper under similar assumptions as
for tree transducers. In particular {ETOL~(REG)}, the hierarchy considered in [8,
14], is proper (the proof of properness in [8] is, however, incomplete). Since each
ETOL~(K) is a full hyper-AFL (i.e., a full AFL closed under iterated substitu-
tion), see [6], the above result can be used to obtain proper hierarchies of full
hyper-AFLs.

The second class of string transducers to be considered is the well-known
class of (nondeterministic) 2-way generalized sequential machines (2gsm, and
2dgsm for its deterministic version), see [3, 13, 34]. A relationship between
finite-copying top-down tree transducers and a tree-walking tree-to-string trans-
ducer was established in [4] and generalized to the arbitrary case in [19]. By
restricting this tree-walking transducer to monadic input trees one obtains the
2-way gsm (and the cs-pd of [42] in the general case). The resulting relationship
between 2-way gsm's and ETOL systems was investigated in [34, 42]. For a survey
of these connections see [19]. Under suitable initial conditions the 2-way gsm

116 J. Engelfriet

hierarchy (2GSMn(K)) is proper (this was shown independently in [27]). Since
2GSM(K) is also the class of languages accepted by K-controlled checking stack
automata [26] (which start with an arbitrary string from a given language in K on
their checking stack), {2GSMn(K)} is also the hierarchy obtained by iterating
this control mechanism for checking stack automata.

We show that properness of the 2GSM hierarchy implies properness of the
ETOL hierarchy (of full hyper-AFLs) but not vice versa. Finally, the hierarchy
{2GSMn(REG)} is a subhierarchy of both (ETOLn(REG)} and (yT"(REC)),
and examples proving the properness of these hierarchies can be found in
{2GSMn(REG)}.

In order to apply the results of the previous section to the two string
transducers mentioned above we need a few relationships between 2gsm's and
top-down tree transducers expressed in the following lemma. Let 2GSM and
2DGSM denote the classes of 2-way gsm's and 2-way deterministic gsm's respec-
tively (see [3]; they are gsm's which move both forwards and backwards on their
input string; the input string is surrounded by endmarkers; the output string is
produced in the ordinary one-way fashion). We note that, since we will be
interested mainly in classes of output languages, the precise details of the model
of a 2gsm are not important.

Lemma 4.1 [19].

(1) Let K be a class of languages (i.e., monadic tree languages) which is a trio.
Then 2DGSM(K) = yDTfc(K) and 2GSM(K) C_ yT(K).

(2) Let K be a tree trio. Then 2DGSM(yK) C_ yDTfc(K) and 2GSM(yK) C_
yT(K).

Proof. For a proof of (1) see Corollaries 4.6 and 4.10 of [19] and for a proof of
(2) see Theorem 5.5 of [19]. Statement (1) expresses the relationship mentioned
above between 2gsm's and top-down tree transducers [4, 34, 42]. In fact, for an
arbitrary tree trio K, yDT/c(K)= DTWT(K) where D T W T denotes the (de-
terministic) tree-walking transducer of [4], and TWT(K) C_ y T(K) where TWT is
its nondeterministic variant (denoted DCT and CT in [19] respectively). The proof
of statement (2) in [19] is by showing that a 2dgsm walking on the yield of a tree
can be simulated by a tree-walking transducer walking on the tree itself, and so
2DGSM(yK) c_ D TWT(K) = yD Tyc(K). Similarly for 2GSM(yK). []

We first consider the yT string transducer. For a monadic class K, we denote
yT(K) , yDT(K) andyDTfc(K) also by ETOL(K), EDTOL(K) and EDTOL/c(K)
respectively. In [19], EDTOLfc(K) is denoted by EDTOLFIN(K);
EDTOLvlN(REG) is the class of ETOL languages of finite index (see also [31]).
For a trio K, the class ETOL(K) is equal to CS-PD(K), where CS-PD is a class of
restricted 2-way pushdown transducers discussed in [42, 20, 19]: the transducer
pushes a symbol on the pushdown only when moving its input head one square to
the right, and pops a symbol only when moving one square to the left.

The composition of these y T transducers is quite strange from the tree
transducer point of view: the yield of the output tree of the first tree transducer is

T h r e e H i e r a r c h i e s o f T r a n s d u c e r s I 17

turned vertical and then used as fnput to the second tree transducer! Thus, e.g.,
ETOL(ETOL(K))=yT(yT(K)) which class is quite different from yT2(K) =
yT(T(K)). From the point of view of control on ETOL systems the composition
is however quite natural.

The hierarchy result for these controlled ETOL systems is stated in the next
theorem• Properness of this hierarchy is caused, as for the tree transducer
hierarchy, by the alternation of copying and nondeterminism present in ETOL
systems.

Theorem 4.2. Let K be a trio./f EDTOL/~(K)~ETOL(K), then for all n >- 1 the
following inclusions are proper, where K n denotes ETOLn(K): K n ~ EDTOLfc (K n)

EDTOL(K.) ~ ETOL(K.)=K.+ ,.

Proof The proof is completely analogous to that of Theorem 3.12• It is easy to
show that if K is a trio then ETOL(K) is a trio (by Lemma 2.5, ETOL(K) is
closed under regular substitution; by Lemma 4.3 of [6], ETOL(K) is closed under
intersection with regular languages)• Hence K n is a trio for all n. Now Theorems
3.1 and 3.6 are applicable without change (take the monadic case). The key
remark is that instead of Theorem 3.9 we can use the same result with yD Tic (T(K))
replaced by yDT/c(yT(K)); this result holds because yDT/c(yT(K))=
2DGSM(yT(K)) C_yDTf~(T(K)) by Lemma 4.1 (1) and (2), and hence Theorem
3.9 can be used! To obtain the analogues of Corollaries 3.3, 3.8 and 3.11 we use
the monadic cases of Lemmas 2.5 and 2.6.

Thus, similar to the tree transducer hierarchy, if L n is a language in K n --
EDTOL(Kn-1), then

c2(L n) E EDTOLfc (K n)-Kn,
c,(L n) E EDTOL(K n) - EDTOLI~(K n), and

rub(c.(L~)) ~ ETOL(Kn)- EDTOL(K n). []

The analogue of Corollary 3.13 also holds for ETOL.
Note that if K is a trio and ETOLfc(K) ~ ETOL(K), then both {ETOLn(K)}

and (yT~(K)) are proper hierarchies.
We now turn to the ETOL hierarchy which starts with the regular languages

[8, 14]. Note that ETOL(REG) is equal to the class of usual (uncontrolled) ETOL
languages [36, 6].

Theorem 4.3. The ETOL hierarchy (ETOLn(REG)} is proper. More precisely, for
K, = ETOLn(REG) and n~ 1 the inclusions in Theorem 4.2 are proper.

Proof Since EDTOLyc(REG)CyDTrc(REC), all languages in EDTOL,¢(REG)
• - - ~ 2n .t

have semi-linear Parikh-sets [19] and hence languages such as {a In->0) and
(an In is not prime) are in EDTOL(REG) but not in EDTOLfc(REG). Now

118 L Engelfriet

Theorem 4.2 is applicable. Thus the same sequence of languages proves the
properness of both hierarchies ETOL~(REG) and yT~(REC). Compare this proof
with the proof of Theorem 3.14. []

It is open whether EDTOLn(REG) is a proper hierarchy.
The ETOL hierarchy contains a language not in the tree transducer hierarchy.

In fact the language ((a~b)~ln>-I } is an example. It is not in yT~(REC) by
Theorem 3.16, but it is in EDTOL(ETOL(REG)): in fact it is yM(L) where L is
the monadic language (anbc ~ In-> 1) and M copies bc ~ n times, using the a 's, and
translates each bc ~ into a tree with yield a ~b; clearly (a nbc ~ In___ 1) ~ ETOL(REG).

It is open whether there exists a language in yT°°(REC) not in ETOL~(REG),
but we conjecture that there is already one in yDTf,(REC).

It was shown in [6] that if K is, say, a full AFL, then ETOL(K) is a full
hyper-AFL (i.e., a full AFL closed under iterated substitution, see [37, 6]), and
similarly EDTOL(K) is a "full dhyper-QAFL" [7]. Thus Theorem 4.2 can be used
to obtain proper hierarchies of full hyper-AFLs, such as {ETOL~(REG)). More-
over, if K is included in the class CS of context-sensitive languages, then the
hierarchy {ETOLO(K)) is also inside CS. This follows from the next lemma
which was shown in [8].

Lemma 4.4. [8]. I f K is a full AFL included in CS, then so is ETOL(K).

Proof. The following proof is based on similar results in [45] and [26]. Let K be a
full AFL and KC_CS. By a result in [26, 30] this implies that 2DGSM(K)CCS,
i.e., yDTfc(K)C_CS by Lemma 4.1 (1). Now note that DTf~(K)CyDTyc(K) where
it should be recalled that each tree is a string (in fact, it is easy to see that there is
an MEDTfc<1) such that, for every input tree t, yield(M(t))=t. Hence DTf~(K)C_
yM(DT/~(K))=yDTf~(K) because DT/c(K) is closed under DTfc [19]). Hence
DTf~(K)C_CS. It was proved in [45] that if a class of tree languages K 1 is closed
under linear top-down tree transducers and K l C_ CS, then yT(K1)C_ CS. Since it
is easy to show that T/~(K) is closed under linear top-down tree transducers, we
get that yT(DT/~(K)) C_ CS and hence certainly yT(K) = ETOL(K) is included in
CS. []

In the next theorem we show the existence of a proper hierarchy of full
hyper-AFLs between the tree transducer hierarchy yT*°(REC) and CS. It was
shown in [45, 46] that yT~(REC) is a full AFL included in CS.

Theorem 4.5. There is a proper hierarchy of full hyper-AFLs between yT°°(REC)
and CS.

Proof. We show that yT~(REC) satisfies the conditions of Theorem 4.2. First,
EDTOLyc(yT°°(REC))=yDTy¢(yT~°(REC)) and, by Lemma 4.1 (1) and (2), this
class is included in yDT/c(T~(REC))=yT°~(REC). Hence yT°°(REC) is closed
under EDTOL/¢. But it is not closed under ETOL because the language {(anb) n tn
-->1) is in ETOL(ETOL(REG))C_ ETOL(yT°°(REC)) as shown above but not in
yT°°(REC) by Theorem 3.16. Consequently ETOLn(yT~(REC)) is a proper
hierarchy of full hyper-AFLs containing yT°°(REC). Since yT°°(REC) is a full
AFL included in CS [9], Lemma 4.4 implies that ETOL~(yT*°(REC))C CS. []

Three Hierarchies of Transducers 119

The second string transducer hierarchy to be considered is that of the 2-way
gsm. The class 2DGSM is closed under composition [10], but 2GSM is not [30].
The fact that a hierarchy theorem will hold for 2GSM could be guessed from
Lemma 4.1 and the fact that the examples constructed for the tree transducer and
ETOL hierarchies by the rub and c. operations can be realized by (compositions
of) 2-way gsm's. Thus properness of the 2GSM hierarchy is again caused by the
combined presence of copying and nondeterminism in a 2-way gsm.

The next lemma shows that the 2GSM hierarchy is a subhierarchy of both the
ETOL hierarchy and (if possible) of the tree transducer hierarchy.

Lemma 4.6.

(1) Let K be a trio. Then for all n>_O

2GSM"(K) C_ ETOLn(K) and 2DGSM(2GSM'(K)) C_ EDTOL/~(ETOL" (K)) .

(2) Let K be a tree trio. Then for all n >- 0

2GSM"(yK) C_ yT"(K) and 2DGSM(2GSM"(yK)) C_ yDTrc(T"(K)).

Proof If K is a trio then so is ETOL(K), and if K is a tree trio then so is T(K).
Statements (1) and (2) now follow directly by induction from (1) and (2) of
Lemma 4.1, respectively. []

The hierarchy result for 2GSM is stated in the next theorem. Recall the
notion of a correct diagram from Section 2.

Theorem 4.7. Let K be a trio such that 2DGSM(K)~2GSM(K). Then the
following holds.

(1) For all n > _ 1, 2GSMn(K)~2DGSM(2GSMn(K))~2GSMn+n(K).
There even exist (for all n>_l) languages Ln E2GSMn(K) and L', E

2DGSM(2GSMn(K)) such that Ln 6Z EDTOL(ETOL "- ~(K)) and L'~ q~ ETOL"(K).
If, moreover, ETOL(K)-2GSM°°(K) : / :O, then the diagram of Figure 3A is
correct.

(2) Let K 1 be a tree trio such that K C_ yK I and 2 G S M (K) - yDTIc(K 0 vsO.
Then there exist languages L~E 2GSM~(K) and L'~E 2DGSM(2GSM~(K)) such
that L, ~EDTOL(ETOL"-I(K)) and L'~ ~ETOLn(K), and moreover L, q~
yDT(T"-1(KI)) and L' n q~ yT ' (Ki) . I f yK t - 2 G S M ~ (K) :/:N, then the diagram
of Figure 3B is correct.

Proof. (1) By Lemma 4.6 (1) the 2GSM hierarchy is included in the ETOL
hierarchy as indicated in Figure 3A. Also, by Lemrna 4.1 (1), 2DGSM(K)=
EDTOL/c(K). Hence, to prove (1), it suffices to show the existence of the
languages L, and L~, (all other proper inclusions and incomparabilities follow
from the existence of these languages and the assumption that E T O L (K) -
2GSM°°(K)4: ~).

Let L o ~ 2 G S M (K) - 2 D G S M (K) and let L I =rub(Lo). Since 2GSM(K) is
clearly closed under regular substitution, L 1 ~ 2GSM(K). Moreover, by Theorem

120 L Engelfriet

ETOL~(K) ~---..___._.~ 2GSM~(K) ~ YT~(KI)

ETOLn+[(K) ~
2GSMn+I(K)

EDTOL (ETOL n (K)) I

EDTOLfc (ETOL n (K))
2DGSM (2GSM n (K))

ETOLn(K)
2GSMn(K)

ETOL2(K)~

EDTOL(ETOL(K))

EDTOLfc(ETOL(K))

ETOL(K)

EDTOLfc(K)

2GSM2(K) /

2DGSM(2GSM(K))

2GSM(K)

2DGSM(K)

K

yTn+i(Kl)

yDT(Tn(KI))

y[Ygfc(Tn(Kl))

yTn(Kl)

yT2(K 1)

yDT(T(K 1)

yDTfc(T(K I)

yT(K I)

yDT(K I)

yDTfc(K 1)

YK 1

A

Fig. 3. Three hierarchies of transducers.

3.1, L 1 EEDTOL(K) would imply that L I ~ E D T O L f c (K) = 2 D G S M (K). Hence

L 1 satisfies the requirements. We now define by induction L'n=cz(Ln) and

L,+ 1 = rub(c,(L,)). Obviously, if L, EK' then c2(Ln)E2DGSM(K') , c , (Ln)E
2GSM(K'), and rub(c,(L,))E2GSM(K'). It follows from the proof of Theorem

4.2 that c2(L,) ~ ETOL"(K) and rub(c,(Ln)) ~ EDTOL(ETOL"(K)).

(2) By Lemma 4.6 (2) the 2GSM hierarchy is included in the tree transducer

hierarchy as indicated in Figure 3B. Let L o E2GSM(K) -yDTfc (K t) . Then, by

Theorem 3.1, L l = rub(L 0) is not in yD T(K l). Since 2DGSM(K) C_yD Tic (K l), L o
~ 2 D G S M (K) and L~ ~EDTOL(K) as above. Using the same argument as in

(1) together with the proof of Theorem 3.12, it follows that L n and L~, defined as

in (1), satisfy all requirements. []

Note that, in Fig. 3A, EDTOL(K) could be added between EDTOLfc(K)

and ETOL(K). The only reason we did not do so is that it is open whether

EDTOL(REG)-2GSM°~(REG)v ~ ~ and hence correctness of the diagram for

K = REG is unknown.
Hierarchy theorems for the 2-way gsm were obtained independently by

Greibach. In fact, in [27] it is shown, as in Theorem 4.7 (1), that if K is a trio such
that 2 D G S M (K) ~ 2 G S M (K) then for all n--> 1 2 G S M " (K)

2DGSM(2GSM"(K)) ~ 2GSM "+ 1(K). But in the proof in [27] the appropriate

languages L, and L'~ are defined by L~ = cz(L,,) and L,+ t = c,(L~). Hence for the

Three Hierarchies of Transducers 121

hierarchy {2GSM"(K)} the combined copying and nondeterminism present in
the operation c. suffices to prove properness, and the rub-operation is needed
only to find languages in the 2GSM hierarchy which prove properness of the
ETOL hierarchy (and the tree transducer hierarchy).

We now turn to the case K = REG.

Theorem 4.8. For K = R E G and K 1 = R E C both diagrams of Figure 3 are correct.

Proof Note that REG C_ CF=yREC [39]. The language L 0 = {a n In is not prime}
is in 2GSM(REG), but not in yDTI¢(REC), because its Parikh-set is not semi-linear.
Hence Theorem 4.7 is applicable.

It is shown in [27] that CF-2GSM°~(REG)v a ~ . Note that CFC_ ETOL(REG)
[36] and CF=yREC. []

Thus (for the regular case) the 2GSM hierarchy is a "small" hierarchy inside
both the ETOL hierarchy and the tree transducer hierarchy.

When gluing A and B of Fig. 3 together, note that ETOL(REG)C_yT(REC)
and hence, by Lemma 4.1, EDTOL/~(ETOL(REG))C_yDTIc(T(REC)). But, as
noted before, EDTOL(ETOL(REG)) contains a language not in yT~(REC),
whereas it is open whether there is a tree transformation language not in the
ETOL hierarchy.

It follows from Theorem 4.8 that (2GSM "} is a proper hierarchy of string
transductions. However, as in the case of tree transducers [18], this hierarchy does
not contain new partial functions, as stated in the next theorem.

Theorem 4.9. 2GSM ~ n (fl f is partial function} =2DGSM.

Proof (sketch). We first observe that if M is an arbitrary 2gsm then there exists
a 2dgsm N with the same domain as M such that NC_M, cf. [10]. In fact, if M has
m states and M produces output y on input w, then there is a computation
producing output y ' which never visits a square of w more than m times. If M
computes a partial function, then y'=y. It is possible to construct a 2dgsm N
which keeps track of the "visiting sequences" of the first (in some order) m-visit
computation of M on w and thus simulates the behaviour of M according to this
computation.

Let f be a partial function realized by the composition of the 2gsm's
M 1, M 2 , M n. Since the domain of a 2gsm is regular, we may assume that M i
only produces output which is in the domain of Mi+ 1- Hence we may replace each
M~ by the 2dgsm N~ described above. In fact, since f is a partial function, the
"lost" computations cannot affect the final output of M n. Since 2dgsm's are
closed under composition [10], the result follows. []

Let K be a trio such that REG C K C CF. Then the 2GSMn(K) hierarchy is
proper, because {a~ln is not prime} is in 2GSM(REG) but not in 2DGSM(CF):
note that 2DGSM(CF) = 2DGSM(yREC) C_ yDTIc(REC) by Lemma 4.1, and see
the proof of Theorem 4.8. The same result is proved in [27] by other means. In
fact, the 2GSMn(CF) hierarchy lies properly between the 2GSMn(REG) hierarchy
and the tree transducer hierarchy (yTn(REC)} (in the sense that if in the diagram
of Fig. 3B for K = R E G and K: = R E C the classes 2GSMn(CF) and

122 5. Engeifnet

2DGSM(2GSM"(CF)) are added properly between the two hierarchies at their
appropriate places, then the resulting diagram is correct for n--> 1; in particular,
2GSMn(REG) ~2GSM~(CF) ~ yT~(REC) for all n - 1, and 2GSM~(REG)
~2GSM°°(CF) ~ yT~°(REC)). To show this we need the following result of [27]:
let K 1 be a full principal substitution closed AFL with a generator which contains
no infinite regular language; if K1 C_ 2GSM°°(K) and K is a full semi-AFL, then
K~ C_K. Since CF satisfies the conditions for K 1, this implies that C F -
2GSM°~(REG)vaO (which we already used in the proof of Theorem 4.8).
Moreover yT(REC) also satisfies the conditions for K~ (use a generator obtained
from the CT-PD machine model of yT(REC) in [19] and insert brackets in the
obvious way) and so y T (R E C) - 2 G S M ~ (C F) v ~ . Note that 2GSM°°(CF) is
also (properly) included in ETOL°°(REG), because CF C_ ETOL(REG).

The criterion 2DGSM(K)g2GSM(K) is necessary and sufficient for the
2GSM"(K) hierarchy to be proper. Indeed, if 2DGSM(K)= 2GSM(K), then
2GSM2(K) = 2GSM(2DGSM(K)) C_ 2GSM(K) [30] and the hierarchy collapses
to 2DGSM(K). Theorem 4.7 shows that propemess of the 2GSM"(K) hierarchy
always implies properness of the ETOL~(K) hierarchy. (This does not hold vice
versa: we have shown that for yT°°(REC) the ETOL hierarchy is proper, cf. the
proof of Theorem 4.5, but by Lemma 4.1 (2)yT°°(REC) is closed under 2GSM).
Thus a proper 2GSM"(K) hierarchy implies the existence of a proper hierarchy
of full hyper-AFLs containing K. In particular, using another result of [27] we
obtain the following result concerning the indexed languages [1].

Theorem 4.10. There is a proper hierarchy of full hyper-AFLs between
INDEXED and CS.

Proof By [27], the hierarchy {2GSMn(INDEXED)} is proper. Since INDEXED
is a full AFL contained in CS [1], Lemma 4.4 implies that the hierarchy
{ETOLn(INDEXED)} is inside CS. This hierarchy is proper by the above result
and Theorem 4.7., and it consists of full hyper-AFLs [6]. []

Conclusion

Proper hierarchies of output languages of top-down tree transducers, ETOL
systems and 2-way gsm's exist whenever two of these transducers can do more
than one (for a given class of input languages). These proper hierarchies arise due
to the alternation of copying and nondeterminism which can be realized by such
transducers. We have shown that bounded copying tree transducers cannot do
unbounded copying of a nondeterministic language, and that unbounded copying
deterministic tree transducers cannot handle regular substitution. Knowledge of
positive and negative closure properties of several classes of tree transducer
languages was essential in proving these facts.

It is of interest to establish still finer subhierarchies of the tree transducer
hierarchy than the one given in Figure 2 (Theorem 3.12). Closure properties of the
other restricted classes of tree transducer languages may be investigated with
respect to other operations. As an example we consider metalinear tree trans-

Three Hierarchies of Transducers 123

ducers (abbreviated by T,,t): these are finite copying tree transducers which copy
subtrees only at the first step of their derivation and are linear in the rest of the
derivation [19]. As in the finite copying case, determinism does not restrict the
class of output languages. It was shown in Theorem 3.2.10 of [19] that, under
certain conditions on K, the class yDTmt(K) is not closed under Kleene star. It is
easy to show that if K is closed under the operation star(L) =
($(tl$(t2... $(tn "__2$(t n_ ltn))...))] n >-- 1, t i ~ L), where $ is of rank 2, then yDTfc(K)
is closed under Kleene star. Assuming that the class K from which we start is
closed under union and star, yDT, nt(K n) can be added between yK , and yD Tfc (K~)
in the diagram of Figure 2 (Theorem 3.12), and similarly in the monadic case
Kn ~ EDTOLmI(Kn) ~ EDTOL#(K,) in Theorem 4.2. The corresponding class of
2-way gsm's is the class 2DGSM/p of 2dgsm's which are "finite pass", i.e., which
make a finite number of passes (from left to fight or vice versa) over the input
tape (equivalently, they are "finite turn" or "finite reversal", see [26] and [19]).
Thus to Theorem 4.7 the statement 2GSM"(K)~2DGSM/p(2GSM"(K))
~2DGSM(2GSMn(K)) can be added, together with the appropriate statement
concerning the existence of languages which prove the properness of the inclu-
sions in all three hierarchies.

In [47] a refinement of the tree transducer hierarchy is considered by adding
yNHOM(K,) to Fig. 2, where NHOM denotes the class of one-state nonde-
terministic top-down tree transducers.

It is suggested in [43] that properness of the 2GSM hierarchy can also be
shown by reducing it to the (known) properness of a hierarchy of space-complexity
classes. It would be interesting to know whether a similar proof can be given for
the tree transducer hierarchy.

Acknowledgments

I wish to thank Giora Slutzki for many days of stimulating discussions. I thank the referee for careful
reading of the paper and for helpful suggestions.

References

1. A. V. Aho, Indexed grammars--an extension of context-flee grammars, J A C M 15, 647-671
(1968).

2. A.V. Aho, J. E. Hopcroft and J. D. Ullman, A general theory of translation, Math. Syst. Th. 3,

193-221 (1969).

3. A.V. Aho and J. D. Ullman, A characterization of two-way deterministic classes of languages,
JCSS 4, 523-538 (1970).

4. A.V. Aho and J. D. Ullman, Translations on a context-free grammar, Inf. and Control 19,
439-475 (1971).

5. A. Arnold and M. Dauchet, Translations de forets reconnaissables monadiques; forets coregu-
lieres; RAIRO Informatique Theoretique 10, 5-28 (1976).

6. P. R. J. Asveld, Controlled iteration grammars and full hyper-AFLs, Inf. and Control 34,
248-269 (1977).

7. P .R.J . Asveld and J. Engelfriet, Iterated deterministic substitution, A cta Informatica 8, 285-302
(1977).

8. P . R . J . Asveld and J. van Leeuwen, Infinite chains of hyper-AFLs, Memorandum 99, Twente
University of Technology, 1975.

124 J. Engelfriet

9. B.S. Baker, Tree transductions and families of tree languages; Ph.D. Thesis; Harvard University,
Report TR-9-73, 1973; see also references [44, 45, 46].

10. M. P. Chytil and V. Jakl, Serial composition of 2-way finite-state transducers and simple
programs on strings; in Fourth Colloquium on Automata, Languages and Programming, Turku, A.

Salomaa and M. Steinby eds., Lecture Notes in Computer Science 52, Springer-Verlag, Berlin,
1977.

11. A. Ehrenfeucht and G. Rozenberg, Three useful results concerning L languages without interac-
tions; in L systekns, G. Rozenberg and A. Salomaa eds., pp. 72-77, Lecture Notes in Computer

Science 15, Springer-Verlag, Berlin, 1974.

12. A. Ehrenfeucht and G. Rozenberg, On inverse homomorphic images of deterministic ETOL

languages, in A utomata, Languages, Development, A. Lindenmayer and G. Rozenberg eds, pp.
179-189, North-Holland, Amsterdam, 1976.

13. R.W. Ehrich and S. S. Yau, Two-way sequential transductions and stack automata, Inf. and

Control 18, 404-446 (1971).

14. G. S. Eisman, Derivation controlled Lindenmayer systems; excerpt from Ph.D. Thesis at
University of California, Berkeley, 1977.

15. J. Engelfriet, Surface tree languages and parallel derivation trees, TCS 2, 9-27 (1976).

16. J. Engelfriet, Bottom-up and top-down tree transformations--a comparison, Math. Syst. Th. 9.

198-231 (1975).

17. J. Engelfriet, Top-down tree transducers with regular look-ahead, Math. Syst. Th. 10, 289-303
(1977).

18. J. Engelfriet, On tree transducers for partial functions; Inf. Proc. Letters 7, 170-172 (1978).

19. J. Engelfriet, G. Rozenberg and G. Slutzki: Tree transducers, L systems and two-way machines,

JCSS 20, 150-202 (1980).

20. J. Engelfriet, E. Meineche Schmidt and J. van Leeuwen, Stack machines and classes of nonnested

macro languages, JA CM 27, 96- l 17 (1980).

2 h J. Engelfriet and S. Skyum, Copying theorems, Inf. Proc. Letters 4, ! 57-161 (1976).

22. M.J. Fischer, Grammars with macro-like productions, Ph.D. Thesis, Harvard University, 1968.

23. S. Ginsburg, Algebraic and automata-theoretic properties of formal languages', North-
Holland/American Elsevier, Amsterdam/New York, 1975.

24. S.A. Greibach, Chains of full AFLs, Math. Syst. Th. 4, 231-242 (1970).

25. S.A. Greibach, Syntactic operators on full semi-AFLs, JCSS 6, 30-76 (1972).
26. S.A. Greibach, One-way finite visit automata, TCS 6, 175-221 (1978).

27. S.A. Greibach, Hierarchy theorems for two-way finite state transducers, Acta Informatica 1l,

89-101 (1978).

28. T. Hayashi, On derivation trees of indexed grammars--an extension of the uvwxy-Theorem,

Publ. of the Research Inst. for Math. Sciences (Kyoto University) 9 (1973) 61-92.
29. J.E. Hopcroft and J. D. Ullman, Formal languages and their relation to automata, Addison-Wes-

ley, Reading, Mass., 1969.
30. D. Kiel, Two-way a-transducers and AFL, JCSS 10, 88-109 (1975).

31. M. Latteux, EDTOL-systemes ultralineaires et operateurs associes, Publication no. 100, Uni-
versite de Lille, 1977.

32. W.F. Ogden and W. C. Rounds: Composition of n transducers; Fourth ACM Symposium on
Theory of Computing, pp. 198-206, 1972.

33. C.R. Perrault, Intercalation lemmas for tree transducer languages, JCSS 13, 246-277 (1976).
34. V. Rajlich, Absolutely parallel grammars and two-way finite state transducers, JCSS 6, 324-342

(1972).

35. W.C. Rounds, Mappings and grammars on trees, Math. Syst. Th. 4, 257-287 (1970).
36. G. Rozenberg, Extensions of tabled OL-systems and languages, Int. J. Comp. Inform. Sci. 2,

311-336 (1973).
37. A. Salomaa, Macros, iterated substitution and Lindenmayer AFLs, DAIMI PB-18, University of

Aarhus, 1973 (see also L Systems, G. Rozenberg and A. Salomaa eds., Lecture Notes in Computer

Science 15, pp. 250-253, Springer-Verlag, Berlin, 1974).
38. S. Skyum, Decomposition theorems for various kinds of languages parallel in nature, S l A M J.

Comp. 5, 284-296 (1976).

Three Hierarchies of Transducers 125

39. J .W. Thatcher, Characterizing derivation trees of context-free grammars through a generaliza-

tion of finite automata theory, JCSS I, 317-322 (1967).

40. J.W. Thatcher, Generalized 2 sequential machine maps, JCSS 4, 339-367 (1970).

41. J.W. Thatcher, Tree automata: an informal survey; in Currents in the Theory of Computing (ed.

A. V. Aho), Prentice-Hall, 1973.
42. J. van Leeuwen, Variations of a new machine model, 17th IEEE Symposium on Foundations of

Computer Science, Houston, Texas, pp. 228-235 (1976).
43. J. Engelfriet, Two-way automata and checking automata, in Foundations of Computer Science HI,

eds. J. W. de Bakker and J. van Leeuwen, MC Tract 108, Mathematical Centre, Amsterdam,

1979.
44. B.S. Baker, Composition of top-down and bottom-up tree transductions, Inf. and Control 41,

186-213 (1979).
45. B.S. Baker, Generalized syntax directed translation, tree transducers, and linear space, SIAMJ.

Comput. 7, 376-391 (1978).
46. B.S. Baker, Tree transducers and tree languages, Inf. and Control 37, 2,11-266 (1978).
47. J. Engelfriet and S. Skyum, The copying power of one-state tree transducers, Report DAIM[

PB-91, Aarhus University, 1978, to appear in JCSS.

Received April 1980, and in revised form April 1981.

