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�is paper presents a second-order voltage-mode �lter with three inputs and single-output voltage using single commercially
available IC, one resistor, and two capacitors. �e used commercially available IC, called LT1228, is manufactured by Linear
Technology Corporation.�e proposed �lter is based on parallel RLC circuit.�e �lter provides �ve output �lter responses, namely,
band-pass (BP), band-reject (BR), low-pass (LP), high-pass (HP), and all-pass (AP) functions. �e selection of each �lter response
can be done without the requirement of active and passive component matching condition. Furthermore, the natural frequency
and quality factor are electronically controlled. Besides, the nonideal case is also investigated.�e output voltage node exhibits low
impedance. �e experimental results can validate the theoretical analyses.

1. Introduction

Analog �lter is widely utilized in numerous applications
such as communication, sound system, instrumentation, and
control system. �e biquadratic or second-order �lter is the
important building block. Also, this �lter is the basic block to
design high order �lter. In particular, the second-order mul-
tifunction �lter which provides many �lter responses in the
same circuit has gained signi�cant attention and has become
an interesting research topic [1, 2].�emultiple-inputs single-
output (MISO) universal �lter is the interesting one and has
been continuously proposed. In case of voltage-mode MISO
�lter, the selection of output �lter response by switching
on or o
 the input voltages should be done without the
matching condition of passive and active elements.Moreover,
the additional double gain ampli�er should not be required.

Attention has been paid to the use of active building block
in synthesis and design of electronic circuits for analog signal
processing [3–6]. �e active building block based circuits
require a minimumnumber of active elements (most of them
use only single active building block). �us, the new active

building blocks have been continuously introduced especially
the electronically controllable active building block. Most
of them are designed and constructed from BJT or CMOS
transistors. Practically, these devices should be fabricated into
the chip for the best way to test their performances. However,
their performances and applications are o�en proved via
simulation by only using computer program due to the
investment cost reason. Although the new active building
block can be constructed from commercially available IC, for
example, in [7, 8] using AD844 and in [9] using OPA860
and EL2082, they still require more than one commercially
available IC. Despite the fact that some circuits can use single
AD844 as active building block, the AD844 based circuits are
not electronically controlled.

In the literature, a number of multiple-input single-
output voltage-mode multifunction �lters based on di
erent
active building blocks have been reported in [10–42] and the
references cited. However, the proposed �lter in [10–16, 18–
23, 27, 29, 30, 32, 34, 38, 39, 41, 42] uses more than one active
building block. �e natural frequency and quality factor of
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the �lters in [10–17, 19, 21–25, 27, 28, 30, 32, 35, 38, 39] are not
electronically tuned. �e matching condition for selection of
output �lter response is required for the circuit in [14, 15, 17,
21, 23, 26, 28, 33, 35–38]. �e active building block used in
[19, 24, 27, 30, 32, 36, 38] is not commercially available IC.
�e output voltage node does not exhibit low impedance for
the �lter in [11, 12, 14, 15, 17, 18, 20–22, 24, 25, 29, 31, 33, 34, 36–
38, 40]. �e proposed �lter in [37, 41] requires double input
signal. Additionally, only the proposed �lters in [11–18, 21, 22,
25, 26, 31, 35, 39, 41, 42] are supported by the experimental
measurements.

�e three-input single-output voltage-mode biquad �lter
emphasizing the use of single commercially available IC,
LT1228 from Linear Technology Inc., is present in this paper.
�e proposed �lter consists of single LT1228, single resistor,
and two capacitors which are suitable for o
-the-shelf imple-
mentation.�e selection of output �lter response can be done
without the requirement of any passive and active component
matching condition.�e natural frequency and quality factor
can be electronically adjusted. �e experimental results of
proposed �lter agree well with the theoretical expectation.

2. Principle of Operation

2.1. Active Building Block: LT1228. LT1228 is commercially
manufactured by Linear Technology Inc. [43]. It is the com-
bination of transconductance ampli�er (OTA) and current
feedback ampli�er (CFA). �e symbolic representation of
LT1228 is shown in Figure 1(a). Let us denote the name of each
port as V+, V−, �, �, and �. In ideal consideration, impedance
at ports V+, V−, and � exhibits high and the impedance at ports� and� exhibits low. Figure 1(b) shows the equivalent circuit
and pin con�guration is illustrated in Figure 1(c). Ideally, the
port relation can be described by the following matrix:

( �V+�V−������)=(
0 0 0 0 00 0 0 0 0	� −	� 0 0 00 0 1 0 00 0 0 
� 0)(

�+�−������), (1)

where 
� is the transresistance gain. In an ideal case, 
� is
typically very large and can be considered as in�nite value.	� of LT1228 is controlled by DC bias current �� as follows:	� = 10��. (2)

2.2. Proposed Filter. �e structure of three-input and single-
output voltage-mode �lter which is composed of single
commercially available IC, single resistor, and two capacitors
is presented in Figure 1. �is �lter is based on parallel
RLC circuit. �e input voltage Vin1 is applied at V+ terminal
which is ideally high impedance, Vin2 is applied through�1, and Vin3 is applied through 
. �e output voltage Vo

is at � terminal which exhibits low impedance. In routine

analysis, the output voltage of the proposed �lter can be given
as

Vo = Vin1 (	�/�1) � + Vin2�2 + Vin3 (	�/�1�2
)�2 + (	�/�1) � + 	�/�1�2
 . (3)

From (3), the natural frequency is given as�0 = √ 	��1�2
. (4)

Subsequently, the quality factor is given as� = √ �1�2	�
. (5)

It is evident from (4) and (5) that the natural frequency and
quality factor can be electronically tuned via 	�.

It is found from (3) that the derivation of �ve �lter
responses can be done as follows:

(i) If the input voltage is applied at node Vin3 while nodes
Vin1 and Vin2 are grounded, the noninverting low-pass
�lter is achieved.

(ii) If the input voltage is applied at node Vin2 while nodes
Vin1 and Vin3 are grounded, the noninverting high-pass
�lter is achieved.

(iii) If the input voltage is applied at node Vin1 while nodes
Vin2 and Vin3 are grounded, the noninverting band-
pass �lter is achieved.

(iv) If the input voltage is applied at nodes Vin2 and Vin3
while node Vin1 is grounded, the noninverting band-
reject �lter is achieved.

(v) If the input voltage is applied at nodes Vin2 and Vin3
while the inverting input voltage is applied at node
Vin1, the noninverting all-pass �lter is.

It is found from the above statement that the output
�lter response can be selected without the active and passive
matching condition. Moreover, the all-pass �lter response
does not require the double gain ampli�er circuit unlike the
MISO �lters in [37, 41]. However, the inverting unit gain
ampli�er circuit is required for the all-pass function [44].

3. Effect of Parasitic Elements

Practically, the influence of parasitic element in LT1228will af-
fect the performances of the proposed �lter. High impedance
ports�+,�−, and � and the parallel RC appeared.�eparasitic
resistance and capacitance are, respectively, named as 
+,�+,
−, �−, 
�, and ��. At low impedance port �, the series resis-
tance appears.�is resistance is denoted as
�. Also, the tran-
sresistance gain (
�) is considered as 
� paralleled with ��.
�ese important parasitic impedances most a
ect the per-
formance of the proposed circuit. Taking them into account,
the output voltage of the circuit in Figure 2 is obtained as

Vo = 	� (�� + ��2) Vin1 + (�� + ��2) ��1Vin2 + [
��� (�� + ��1) + 	�] �Vin3{(��2 + �) [
��� (�� + ��1) + 	�]} + [(�� + ��2) (�� + ��1)] , (6)
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Figure 1: LT1228. (a) Electrical symbol of LT1228. (b) Equivalent circuit. (c) Pin con�guration.
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Figure 2: Proposed �lter.

where �� = ��� +��, �� = ��� +��, �� = 1/
�, �� = 1/
�,
and � = 1/
. If the operational frequency �op ≪ 1/��
�,
the output voltage in (6) becomes

Vo = ��2	�Vin1 + �2�1�2Vin2 + 	��Vin3�2 + � ((�� + 	�) / (�1 + ��)) + 	��/ (�1 + ��) �2 . (7)

From (7), the natural frequency is given as�0 = √ 	�(�1 + ��) �2
. (8)

Subsequently, the quality factor is given as� = 1�� + 	�√(�1 + ��) 	��2
 . (9)

4. Experimental Results

In order to evaluate the performances of the proposed three-
input single-output voltage-mode multifunction �lter in Fig-
ure 2, the experiment was done by using LT1228. �e power
supply voltage of the LT1228 was ±5V. An experimental setup
was made by taking �1 = �2 = 1 nF, 
 = 1 kΩ, �� = 100 �A. A
resistor of 2 kΩ in series with the � terminal (pin 8 of LT1228)
was connected as recommended in datasheet [43]. With
above component values, the natural frequency and quality
factor as analyzed in (4) and (5) become �0 = 159.15 kHz and� = 1. For this test, the sinusoidal voltage with 60mVp-p

was applied as input voltage. �e frequency response of the
LP, HP, BP, and BR function is reported in Figure 3 and
the phase and gain response of AP function is shown in
Figure 4. It is obvious that the proposed �lter can provide
�ve �lter responses as described in Section 2. �e theoretical
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Figure 3: Experimental gain response of the proposed �ler.
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Figure 4: Experimental phase and gain response of all-pass function.

and experimental gain responses are slightly di
erent during
low and high frequency due to the e
ect of parasitic elements
of LT1228 as studied in Section 2. �e experimental natural
frequency is about 155 kHz. �e deviation of theoretical and
experimental natural frequency is about 2.6%. �e time-
domain responses of output voltage in LP, HP, BP, BR, and AP
functions are, respectively, shown in Figures 5, 6, 7, 8, and 9
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Figure 5: �e measured input and output waveforms of low-pass �lter at (a) 10 kHz, (b) 155 kHz, and (c) 1MHz.
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Figure 6: �e measured input and output waveforms of high-pass �lter at (a) 10 kHz, (b) 155 kHz, and (c) 1MHz.
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Figure 7: �e measured input and output waveforms of band-pass �lter at (a) 10 kHz, (b) 155 kHz, and (c) 1MHz.
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Figure 8: �e measured input and output waveforms of band-reject �lter at (a) 10 kHz, (b) 155 kHz, and (c) 1MHz.
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Figure 9: �e measured input and output waveforms of all-pass �lter at (a) 10 kHz, (b) 155 kHz, and (c) 1MHz.
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when three frequencies, 10 kHz, 155 kHz, and 1MHz with
60mVp-p were applied at the input voltage.

5. Conclusion

In this contribution, the three-input single-output voltage-
mode �lter is presented. �e proposed �lter uses only single
commercially available IC, LT1228 as active element. �e
natural frequency and quality factor can be tuned electron-
ically by changing the bias current of LT1228. �e selection
of output �lter response can be done without requirement
of the matching condition of passive and active component.
Also, the selection of all-pass �lter response can be done
without the requirement of double gain ampli�er. Using
only single commercially available IC, the proposed �lter is
suitable for o
-the-shelf implementation. �e workability of
the proposed �lter is demonstrated by experimental results.
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