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Abstract: A three-legged compliant parallel mechanism (3L-CPM) achieves fully decoupled motions
when its theoretical 6 × 6 stiffness/compliance matrix is a diagonal matrix, which only contains
diagonal components, while all non-diagonal components are zeros. Because the motion decoupling
capability of 3L-CPMs is essential in the precision engineering field, this paper presents the fundamen-
tal criteria for designing 3L-CPMs with fully decoupled motions, regardless of degrees-of-freedom
and the types of flexure element. The 6 × 6 stiffness matrix of a general 3L-CPM is derived based on
the orientation of each flexure element, e.g., thin/slender beam and notch hinge, etc., and its relative
position to the moving platform. Based on an analytical solution, several requirements for the flexure
elements were identified and needed to be satisfied in order to design a 3L-CPM with a diagonal
stiffness/compliance matrix. In addition, the developed design criteria were used to analyze the
decoupled-motion capability of some existing 3L-CPM designs and shown to provide insight into the
motion characteristics of any 3L-CPM.

Keywords: three-legged parallel mechanism; compliant mechanism; flexure-based mechanism;
flexure; compliant joint; decoupled motion; coupled motion; stiffness; compliance

MSC: 70-10

1. Introduction

Compliant (or flexure-based) mechanisms have been widely used to develop pre-
cise devices, such as micro-scale manipulation grippers [1,2], nano-scale positioning
actuators [3,4], alignment systems [5–7], etc., due to their frictionless elastic deformation
behavior. Precise positioning is considered to be one of the most popular applications
for a compliant mechanism, because it has the ability to deliver repeatable motion with
high positioning resolution, which its traditional counterparts failed to achieve [8]. In the
past few years, compliant mechanisms have been preferred in biological/surgical applica-
tions [9,10], micro-machining systems [11–13], and bulk lithography and microlithography
three-dimensional fabrication processes [14,15]. It is seen that the abilities of producing
precise and repeatable motions of compliant mechanisms are essential in these advanced
applications. Thus, the motion property of compliant mechanisms needs to be thoroughly
investigated to further improve their performance.

Compliant mechanisms in these applications can be designed through various tech-
niques, such as the pseudo-rigid-body modeling approach [5,16–41], the exact constraint
design approach [42–52], and topological/structural optimization methods [6,7,53–56].
In addition, parallel kinematic configuration is commonly adopted to design compliant
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positioning stages, due to its closed-loop and compact architecture. As a result, numerous
three-legged compliant parallel mechanisms (3L-CPMs) with different numbers of degrees-
of-freedom (DOF) have been developed over the past two decades, e.g., the 3-DOF in-plane
motions (X-Y-θZ) 3L-CPMs [18–20,22,27,29,35,53,55], the 3-DOF out-of-plane motions (X-Y-
Z) [24,25] and (θX-θY-Z) [5–7] 3L-CPMs, and the 6-DOF motions 3L-CPMs [28,31,42,43,56].
These 3L-CPMs all adopted a three-legged parallel kinematic configuration as a base archi-
tecture. Due to their popularity, this paper focuses on the 3L-CPM with detailed studies on
its motion decoupling capability.

In general, a 3L-CPM consists of three legs, wherein each leg is formed by either one
or a series of flexure elements, e.g., thin/slender beams or notch hinges, etc., connected
together. Hence, each leg can be partially compliant if a rigid-link is used to connect two
flexure elements, or is fully compliant; or if there is no rigid-link between two flexure
elements. Depending on the structure of the leg, 3L-CPMs can be classified into two types,
i.e., single flexure serial chain and double reflecting flexure serial chains in a leg. For
a 3L-CPM or any compliant mechanism, DOF represents the number of possible output
motions that the moving platform can deliver, i.e., three translation motions along and three
rotation motions about the respective X, Y, and Z axes. In an ideal case, the output motions
have to be fully decoupled, i.e., delivering the desired DOF in the actuating directions
and without any parasitic motion in the non-actuating directions. Based on Hooke’s Law,
the motion property (coupled or decoupled) of a compliant mechanism is governed by a
6 × 6 stiffness matrix where the diagonal components represent the stiffness characteristics
of all six possible actuation directions, while the non-diagonal components are responsible
for the off-axes (or non-actuating) stiffness characteristics.

Past works in the literature have shown that the motion properties of many existing 3L-
CPMs were generally neglected [18–22,24,25,27–29,31,33,35,41–43,54]. Based on the derived
6 × 6 stiffness/compliance matrices, only few recent 3L-CPMs demonstrated decoupled
motions [7,52,55,56], while most 3L-CPMs could only deliver coupled motions [5,6]. The
main reason is that the existing 3L-CPMs were synthesized with the aim of achieving the
desired DOF. As a result, they were able to deliver the motions in the desired actuating
directions, but they also produced undesired parasitic motions in the non-actuating di-
rections. More recent efforts have mainly focused on synthesizing 3L-CPMs with a high
ratio between the non-actuating stiffness and actuating stiffness [6,7,53,55], so as to keep
the undesired parasitic motions to a very small percentage as compared to the actuating
motions. In addition, several design criteria for achieving 3L-CPMs with decoupled motion
capability were recently presented in Reference [7]. Such criteria were obtained by substitut-
ing a number of discrete parameters (orientation and position) of flexure elements into the
mathematical model of a 3L-CPM used in a specific structural optimization method [7,56].
Thus, these criteria are not general and cannot be applied in different design methods.
Because motion decoupling is an important performance indicator for any positioning
system, the criteria that can be used to design decoupled-motion 3L-CPMs regardless of
design method and DOF are essential. This paper presents the fundamentals for designing
any 3L-CPMs with fully decoupled motion characteristic. This includes several design
criteria that need to be fulfilled in order to completely eliminate parasitic motions. The
findings that arise from this work suggest that parametric features of flexure elements,
such as the orientation and relative position to the end effector, will have a direct impact
on the performance of any 3L-CPM in terms of the DOF, the constrained motions, and the
parasitic motions.

The remainder of this paper is organized as follows: Section 2 describes the stiffness
modeling of a typical 3L-CPM and the stiffness property of each leg. The criteria of flexure
elements to design a 3L-CPM with fully decoupled motion are presented in Section 3, and
a special case of 3L-CPMs having two reflecting flexure chains in a leg is discussed in
Section 4. Section 5 presents a review on the decoupled-motion capability of an existing
3L-CPM, and Section 6 provides discussions about the findings in this work. Lastly, some
conclusions are offered in Section 7.
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2. Stiffness Modeling of a Decoupled-Motion 3L-CPM

In this work, a CPM is represented by a mechanism having three compliant legs that
are distributed symmetrically about the center of the end effector. The legs are fixed at one
end, while the free ends are connected with the end effector. Each legs contains a serial
chain of flexure elements and rigid links, as illustrated in Figure 1. Here, the global frame,
XYZ, is attached to the center of the end effector, and the local frame of each leg, X′Y′Z′, is
attached at the free end of each leg. Note that the X′Y′ plane of the local frame of each leg
lies on the same plane as the XY plane of the global frame.
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Figure 1. Construction of a general 3L-CPM.

The stiffness property of a 3L-CPM is governed by the stiffness of the legs and the
moving stage (end-effector). The stiffness matrix of the leg along the Y axis is represented
by Kl with respect to (w.r.t.) the local frame, i.e., at point E, as shown in Figure 1. With D as
the vector that represents the distance between the local frame of the leg and the global
frame of the 3L-CPM, the stiffness matrix of the entire 3L-CPM, Km, is expressed as follows:

Km =
3

∑
i=1

Jl
iR

l
iK

l
(

Rl
i

)−1(
Jl

i

)T
(1)

where i = 1, 2, and 3 denotes the three legs in the CPM, as illustrated in Figure 1; Jl
i is the

translation matrix from the local frame of the ith leg to the global frame; and Rl
i is the

rotation matrix about the Z axis of the ith leg. As three legs are symmetrical and 120◦ apart,
Rl

i and Jl
i are written as follows:

Rl
i =

[
Rz(θi) 0

0 Rz(θi)

]
where Rz(θi) =

 cos θi − sin θi 0
sin θi cos θi 0

0 0 1

 (2)

Jl
i =

[
I 0

Tl
i I

]
where Tl

i =

 0 Dzi −Dyi

−Dzi 0 Dxi

Dyi −Dxi 0

 (3)

In Equation (2), the values of θ1, θ2, and θ3 are 0◦, 120◦, and 240◦, respectively. In
Equation (3),Dxi , Dyi , and Dzi are three components of Di and represent the projections of
the distance from each local frame to the global frame onto the X, Y, and Z axes, respectively.
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Note that Dzi = 0, since the X′Y′ plane of the local frames lies on the same plane as the XY
plane of the global frame.

Here, the stiffness of a general leg, Kl , is represented as follows:

Kl =



kl
11

kl
21 kl

22 SYM
kl

31 kl
32 kl

33
kl

41 kl
42 kl

43 kl
44

kl
51 kl

52 kl
53 kl

54 kl
55

kl
61 kl

62 kl
63 kl

64 kl
65 kl

66


(4)

where the non-diagonal components are symmetrical. By substituting Equations (2)–(4)
into Equation (1), the general form of the stiffness matrix of a 3L-CPM is as follows:

Km =



km
11
0 km

22 SYM
0 0 km

33
km

41 km
42 0 km

44
km

51 km
52 0 0 km

55
0 0 km

63 0 0 km
66

 (5)

with d denoting the size of the end effector, as illustrated in Figure 1, the expressions of the
non-zero components within the stiffness matrix of Equation (5) are expressed as follows:

km
11 = km

22 = 3
2

(
kl

11 + kl
22

)
km

33 = 3kl
33

km
44 = km

55 = 3
2

(
d2kl

33 − 2dkl
43 + kl

44 + kl
55

)
km

66 = 3
(

d2kl
11 + 2dkl

61 + kl
66

)
km

41 = km
52 = − 3

2

(
dkl

31 − kl
41 − kl

52

)
km

51 = −km
42 = 3

2

(
kl

51 + dkl
32 − kl

42

)
km

63 = 3
(

dkl
31 + kl

63

)

(6)

By referring to Equation (6), the five non-diagonal components within Km (km
41, km

42,
km

51, km
52, and km

63) are represented by seven components within Kl (kl
31, kl

32, kl
41, kl

42, kl
51,

kl
52, and kl

63). To fulfill the requirements of a fully decoupled motion, all non-diagonal
components in Km must be zeros. In this work, the 6 × 6 stiffness matrix of a 3L-CPM with
fully decoupled motion characteristic is termed as a diagonal stiffness matrix, as shown
in Equation (7).

Km =



km
11
0 km

22 SYM
0 0 km

33
0 0 0 km

44
0 0 0 0 km

55
0 0 0 0 0 km

66

 (7)

In order to obtain a diagonal stiffness matrix as shown in Equation (7), the five non-
diagonal components in Equation (5), for which the expressions are written in Equation (6),
must be zeros. With km

41 = km
52 and km

51 = −km
42, the relationship between seven variables

(kl
31, kl

32, kl
41, kl

42, kl
51, kl

52, and kl
63) in km

41, km
42, km

51, km
52, and km

63 can only be represented
by three equations, and this condition led to a multiple-solutions problem. Hence, it is
important to note that this work only uses a special case (or solution) to demonstrate how
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the presented mathematical models can be used to synthesize a 3L-CPM with the aim
of achieving fully decoupled motion capability. This special case is to make those seven
components within Kl be zeros, as shown in Equation (8).

Kl =



kl
11

kl
21 kl

22 SYM
0 0 kl

33
0 0 kl

43 kl
44

0 0 kl
53 kl

54 kl
55

kl
61 kl

62 0 kl
64 kl

65 kl
66


(8)

In this work, the two popular-choice flexure elements that are used to synthesize the
compliant mechanisms are the beam type and the notch type, as shown in Figure 2. Both
elements have thin features which permit elastic bending in a specific direction.
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with the local frames, X”Y”Z”, attached at the free end and the arbitrary orientation of the flexure
elements (dotted-lines) about these local frames.

Assuming that each leg being formed by a serial chain of flexure elements and rigid
links where a rigid link has infinite stiffness (non-compliance) property, the compliance
of each leg (Cl) is governed by the compliance of each flexure element, Ce

j , expressed
as follows:

Cl =
n

∑
j=1

Je
j R

e
j C

e
j

(
Re

j

)−1(
Je

j

)T
(9)

where n denotes the number of flexure elements, and Re
j and Je

j are the rotation matrix, and
translation matrix of the jth flexure element respectively. Referring to Reference [57], the
compliance matrix of each original flexure element, Ce

j , with respect to the local frame, as
illustrated in Figure 2, is defined as follows:

Ce
j =



ce
11
0 ce

22 SYM
0 0 ce

33
0 0 0 ce

44
0 0 ce

53 0 ce
55

0 ce
62 0 0 0 ce

66

 (10)

Equation (10) is applicable for both the beam type and notch type flexure elements, as
illustrated in Figure 2 [57]. In addition, the geometry of each flexure element type can vary
without changing the form of the compliant matrix expressed in Equation (10). Several
kinds of flexure elements which have a similar form of compliance matrix are presented in
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Appendix A. Note that the X”Y” plane of the local frame of each flexure element (Figure 2)
lies on the parallel plane with the XY plane of the global frame, as illustrated in Figure 1.
By referring to Equation (9), we see that the rotation matrix, Re

j , is a 6 × 6 matrix and is
defined as the multiplication of the rotation matrices about the X”, Y”, and Z” axes (Re

xj
,

Re
yj

and Re
zj

). Hence, it is written as follows:

Re
j =

[
Re

zj
Re

yj
Re

xj
0

0 Re
zj

Re
yj

Re
xj

]
where Re

zj
=

 cos γj − sin γj 0
sin γj cos γj 0

0 0 1

,

Re
yj
=

 cos β j 0 sin β j
0 1 0

− sin β j 0 cos β j

,

Re
xj
=

 1 0 0
0 cos αj − sin αj
0 sin αj cos αj


(11)

Here, αj, β j, and γj represent the rotation angles about the X”, Y”, and Z” axes,
respectively. The geometries of a flexure element before and after orientation are also
illustrated in Figure 2. As for the 6 × 6 translation matrix, Je

j , it represents the projected
distances onto the three axes (rxj , ryj , and rzj ) from the jth flexure element to the local frame
of the leg that are indicated by vector rj, as shown in Figure 1, written as follows:

Je
j =

[
I re

j
0 I

]
where re

j =

 0 rzj −ryj

−rzj 0 rxj

ryj −rxj 0

 (12)

Using Equations (9)–(12), the compliance matrix of a leg, Cl , can be obtained, and the

stiffness matrix of each leg is given as Kl =
(

Cl
)−1

.
As mentioned earlier, the stiffness matrix of each leg must follow the exact form shown

in Equation (8), and this requirement applies to its corresponding compliance matrix too.
The detailed derivation of the compliance matrix of each leg with the aim of achieving
that requirement is presented in Appendix B. To summarize the results obtained from
Appendix B, one condition which allows for the compliance matrix of a leg to become the
exact same form as Equation (8) is for seven components within the compliance matrix
of a leg to be zeros, i.e., cl

31 = cl
32 = cl

41 = cl
42 = cl

51 = cl
52 = cl

63 = 0. This condition
offers simplicity during the design stage and can be used as the standard approach to
synthesize 3L-CPMs with the aim of achieving fully decoupled motion capability. However,
it also introduces a multiple-solutions problem to solve the corresponding components
within the stiffness matrix, Kl . Among a number of possible solutions, kl

64 = kl
65 = 0 is a

unique solution that is used to fulfill the condition in this work. By adopting this unique
solution, both the stiffness matrix and the compliance matrix of a leg will have the same
form as expressed in Equation (13), and the expression of each component within Kl is
given in Appendix C.

kl
11

kl
21 kl

22 SYM
0 0 kl

33
0 0 kl

43 kl
44

0 0 kl
53 kl

54 kl
55

kl
61 kl

62 0 0 0 kl
66


}
Kl

=



cl
11

cl
21 cl

22 SYM
0 0 cl

33
0 0 cl

43 cl
44

0 0 cl
53 cl

54 cl
55

cl
61 cl

62 0 0 0 cl
66



−1

}

(Cl)
−1

(13)
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3. Characteristics of Flexure Elements in Decoupled-Motion 3L-CPMs

In this section, the desired rotation angles (α, β, and γ) and distances (rx, ry, and rz)
of flexure elements in a leg to achieve decoupled-motion capability are analyzed. First,
Equation (9) is re-expressed as follows:

Kl =
(

Cl
)−1

=

(
n

∑
j=1

Je
j R

e
j C

e
j

(
Re

j

)−1(
Je

j

)T
)−1

=

(
n

∑
j=1

Ce
j

)−1

(14)

where Ce
j indicates the compliance matrix of the jth oriented flexure element referring to

the local frame X′Y′Z′ attached to the free end of the leg, as illustrated in Figure 1. In order
to achieve fully decoupled motion, the nine non-diagonal components (cl

31, cl
41, cl

51, cl
32, cl

42,
cl

52, cl
63, cl

64, and cl
65) of the compliance matrix, Cl , must be zeros, as shown in Equation (13).

As Cl is the sum of n sub-components, Ce
j , there could be numerous solutions, because all

components within Ce
j can have arbitrary values in general cases. In this work, a special

case where all Ce
j have the same form (Ce) is considered and yields the following:

Ce
=



ce
11

ce
21 ce

22 SYM
ce

31 = 0 ce
32 = 0 ce

33
ce

41 = 0 ce
42 = 0 ce

43 ce
44

ce
51 = 0 ce

52 = 0 ce
53 ce

54 ce
55

ce
61 ce

62 ce
63 = 0 ce

64 = 0 ce
65 = 0 ce

66

 (15)

Note that Ce in Equation (15) is different from Ce in Equation (10), since
Ce

= JeReCe(Re)−1(Je)T , as expressed in Equation (14). Re and Je are similar to
Equations (11) and (12) with the subscript, j, being removed.

Equation (15) describes the condition to obtain a 3L-CPM with fully decoupled motion
capability, expressed by nine equations that can be obtained based on those nine zero
components. There are six unknowns in these equations, i.e., the rotation angles (α, β, and
γ) and the distances (rx, ry, and rz) measured from the moving end of the flexure element
to the free end of the leg.

ce
31 = −ce

11 sin β cos β cos γ + ce
44 cos β

(
ry cos γ− rx sin γ

)(
ry sin β + rz cos β sin γ

)
−

cos β sin α
{

cos γ sin α
(
ce

62rz − ce
22 sin β

)
+ cos α

[
ce

62ry cos β +
(
ce

22 − ce
62rz sin β

)
sin γ

]}
+

cos α cos β
{

cos α cos γ
(
ce

53rz + ce
33 sin β

)
+ sin α

[
−ce

53ry cos β +
(
ce

33 + ce
53rz sin β

)
sin γ

]}
+[

sin α sin β
(
ry cos γ− rx sin γ

)
− cos α

(
rx cos γ + ry sin γ

)]
·{

cos α cos γ
(
ce

55rz + ce
53 sin β

)
+ sin α

[
−ce

55ry cos β +
(
ce

53 + ce
55rz sin β

)
sin γ

]}
+[

cos γ
(
rx sin α + ry cos α sin β

)
+
(
ry sin α− rx cos α sin β

)
sin γ

]
·{

cos γ sin α
(
−ce

66rz + ce
62 sin β

)
− cos α

[
ce

66ry cos β +
(
ce

62 − ce
66rz sin β

)
sin γ

]}
(16)

ce
41 = ce

44 cos β cos γ
(
ry sin β + rz cos β sin γ

)
+ (cos γ sin α sin β− cos α sin γ)·{

cos α cos γ
(
ce

55rz + ce
53 sin β

)
+ sin α

[
−ce

55ry cos β +
(
ce

53 + ce
55rz sin β

)
sin γ

]}
+

(cos α cos γ sin β + sin α sin γ)·{
cos γ sin α

(
−ce

66rz + ce
62 sin β

)
− cos α

[
ce

66ry cos β +
(
ce

62 − ce
66rz sin β

)
sin γ

]} (17)

ce
51 = ce

44 cos β sin γ
(
ry sin β + rz cos β sin γ

)
+ (cos α cos γ + sin α sin β sin γ)·{

cos α cos γ
(
ce

55rz + ce
53 sin β

)
+ sin α

[
−ce

55ry cos β +
(
ce

53 + ce
55rz sin β

)
sin γ

]}
+

(− cos γ sin α + cos α sin β sin γ)·{
cos γ sin α

(
−ce

66rz + ce
62 sin β

)
− cos α

[
ce

66ry cos β +
(
ce

62 − ce
66rz sin β

)
sin γ

]} (18)
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ce
32 = −ce

11 cos β sin β sin γ− ce
44 cos β(rz cos β cos γ + rx sin β)

(
ry cos γ− rx sin γ

)
+

cos β sin α
{

cos α
[
ce

62rx cos β + cos γ
(
ce

22 − ce
62rz sin β

)]
+ sin α

(
−ce

62rz + ce
22 sin β

)
sin γ

}
+

cos α cos β
[
ce

53rx cos β sin α− cos γ sin α
(
ce

33 + ce
53rz sin β

)
+ cos α

(
ce

53rz + ce
33 sin β

)
sin γ

]
+{

cos α
[
ce

66rx cos β + cos γ
(
ce

62 − ce
66rz sin β

)]
+ sin α

(
−ce

66rz + ce
62 sin β

)
sin γ

}
·[

cos γ
(
rx sin α + ry cos α sin β

)
+
(
ry sin α− rx cos α sin β

)
sin γ

]
+[

ce
55rx cos β sin α− cos γ sin α

(
ce

53 + ce
55rz sin β

)
+ cos α

(
ce

55rz + ce
53 sin β

)
sin γ

]
·[

sin α sin β
(
ry cos γ− rx sin γ

)
− cos α

(
rx cos γ + ry sin γ

)]
(19)

ce
42 = −ce

44 cos β cos γ(rz cos β cos γ + rx sin β) + (cos α cos γ sin β + sin α sin γ)·{
cos α

[
ce

66rx cos β + cos γ
(
ce

62 − ce
66rz sin β

)]
+ sin α

(
−ce

66rz + ce
62 sin β

)
sin γ

}
+

(cos γ sin α sin β− cos α sin γ)·[
ce

55rx cos β sin α− cos γ sin α
(
ce

53 + ce
55rz sin β

)
+ cos α

(
ce

55rz + ce
53 sin β

)
sin γ

] (20)

ce
52 = −ce

44 cos β(rz cos β cos γ + rx sin β) sin γ + (− cos γ sin α + cos α sin β sin γ)·{
cos α

[
ce

66rx cos β + cos γ
(
ce

62 − ce
66rz sin β

)]
+ sin α

(
−ce

66rz + ce
62 sin β

)
sin γ

}
+

(cos α cos γ + sin α sin β sin γ)·[
ce

55rx cos β sin α− cos γ sin α
(
ce

53 + ce
55rz sin β

)
+ cos α

(
ce

55rz + ce
53 sin β

)
sin γ

] (21)

ce
63 = 1

2 cos β
{(

ce
62 + ce

53
)

cos β sin 2α +
[
2ce

44 − ce
55 − ce

66 +
(
ce

55 − ce
66
)

cos 2α
]
·

sin β
(
−ry cos γ + rx sin γ

)
−
(
ce

55 − ce
66
)

sin 2α
(
rx cos γ + ry sin γ

)} (22)

ce
64 = cos β

[
cos γ

(
−ce

44 + ce
66 cos2 α + ce

55 sin2 α
)

sin β + (−ce
55 + ce

66) cos α sin α sin γ
]

(23)

ce
65 = cos β

[
(ce

55 − ce
66) cos α cos γ sin α + ce

66 cos2 α sin β sin γ +
(
−ce

44 + ce
55 sin2 α

)
sin β sin γ

]
(24)

This set of equations can be solved by considering Equation (22) first, because β is the
only dominant angular variable, and the results are given as follows:

ce
63 = 0⇔

 β = 90◦

α = 0◦ and β = 0◦, 180◦

α = 90◦ and β = 0◦, 180◦
; ∀γ, rx, ry, rz (25)

Here, the rotation angle about the X” axis, α, varies from 0◦ to 90◦, because of the
symmetrical structure of the flexure elements, as illustrated in Figure 2. Equation (25)
shows that there are three possible cases for, ce

63 = 0 with the four remaining variables (γ,
rx, ry, and rz) being arbitrary values.

First, the case with β = 90◦ is considered. With every component within the compli-
ance matrix of the flexure element having a specific value, as shown in Equation (10), six
Equations, from (16) to (21), are always different from zero with any value of γ, rx, ry, and
rz. Hence, β = 90◦ is not a feasible solution.
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Next, consider the second case with α = 0◦ and β = 0◦, 180◦; the following results can
be obtained:

ce
31 = ±rz

{
∓ce

55rx cos2 γ∓ ce
44rx sin2 γ + cos γ

[
ce

53 +
(
±ce

44 ∓ ce
55
)
ry sin γ

]}
ce

41 =
(
ce

44 − ce
55
)
rz cos γ sin γ

ce
51 = rz

(
ce

55 cos2 γ + ce
44 sin2 γ

)
ce

32 = ±rz
[
∓ce

44ry cos2 γ +
(
±ce

44 ∓ ce
55
)
rx cos γ sin γ + sin γ

(
ce

53 ∓ ce
55ry sin γ

)]
ce

42 = −rz
(
ce

44 cos2 γ + ce
55 sin2 γ

)
ce

52 =
(
−ce

44 + ce
55
)
rz cos γ sin γ

ce
64 = ce

65 = 0

(26)

Here, the upper signs of “±” and “∓” in Equation (26) represent the case of α = 0◦

and β = 0◦, while the lower signs represent the case of α = 0◦ and β = 180◦. To solve
Equation (26), ce

51 is first considered to be equal to zero, a unique solution can be obtained
rz = 0 by, and γ can be any value. With rz = 0, all the remaining equations in Equation
(26) will also be equal to zeros. Hence, rz = 0, α = 0◦, β = 0◦ or 180◦ are solutions used to
obtain a 3L-CPM with any DOF and decoupled motions.

Similarly, for the case with α = 90◦ and β = 0◦ or 180◦, it can be shown that this is
also a possible solution. In summary, the two feasible solutions found from Equation (25)
with rz = 0 are as follows:[

α = 0◦ and β = 0◦, 180◦

α = 90◦ and β = 0◦, 180◦
; ∀γ, rx, ry (27)

Equation (27) provides the design criteria for the orientations and positions of the
flexure elements that need to be satisfied to design a 3L-CPM with fully decoupled motion
capability. Figure 3 illustrates the desired orientation of the flexure elements about the X”
and Y” axes, with various orientations about the Z” axis. With flexure elements in a leg
having these orientations and distributing in the X′Y′ plane (rz = 0), a 3L-CPM is able to
achieve fully decoupled motions.
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Figure 3. Orientations of the flexure elements in fully decoupled motion 3L-CPMs: (a) beam-type and
(b) notch-type with α = 0◦, β = 0◦ or 180◦, and rz = 0, respectively. (c) Beam-type and (d) notch-type
with α = 90◦, β = 0◦, 180◦, and rz = 0 respectively.
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4. Stiffness Analysis of 3L-CPMs Containing Two Serial Flexure Chains in a Leg

In Section 2, the stiffness modeling of a general 3L-CPM, with each leg consisting
of a single serial flexure chain, is presented. However, there are many existing 3L-CPMs
synthesized by constraint-based and optimization methods that have two reflecting (or
symmetrical) serial flexure chains, as shown in Figure 4 [6,7,28,31,42,43,53,55,56,58]. In this
section, the analysis of such a leg configuration is presented.
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From the literature [6,7,28,31,42,43,53,55,56,58], we can see that the double flexure
chains are either on the same plane or have an offset distance of 2∆ along the Z′ axis, as
shown in Figure 4. The stiffness matrix of each leg is expressed as follows:

Kl =

(
n

∑
j=1

J(+∆)C
scJT

(+∆)

)−1

+

(
n

∑
j=1

J(−∆)MCscMTJT
(−∆)

)−1

(28)

where M is the reflection matrix about the Y′Z′ plane given in Equation (29); and J(+∆) and
J(−∆) represent the offset matrices used to shift the original flexure chain and the reflecting
flexure chain along the Z′-axis distances of +∆ and −∆, respectively, as given in Equation (30).

M =



−1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 −1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (29)

J(±∆) =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 ±∆ 0 1 0 0
∓∆ 0 0 0 1 0

0 0 0 0 0 1

 (30)
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Here, Csc is the compliance matrix of a serial flexure chain that can be calculated
by Equation (9). The results from Section 3 are used to analyze the stiffness property of
3L-CPMs with two reflecting flexure chains. After substituting Equations (9), (14), (29) and
(30) into Equation (28), the results show that the decoupled motion capability can only be
achieved when the offset distance 2∆ = 0 (or ∆ = 0). The offset distance can be considered
as the translation component along the Z axis of each flexure elements (rzj ) that can lead
coupled motions, as mentioned before. Most important, to achieve fully decoupled output
motion, Csc must be in the following form:

Csc =



csc
11

csc
21 csc

22 SYM
0 0 csc

33
0 0 csc

43 csc
44

0 0 csc
53 csc

54 csc
55

csc
61 csc

62 0 0 0 csc
66

 (31)

5. Review and Analysis of the Motion Characteristics of Existing 3L-CPMs

In Sections 2–4, 3L-CPMs constructed with single or double serial flexure chains in a
leg together with their corresponding stiffness modeling and decoupled design criteria were
presented. In this section, the proposed criteria are used to analyze the decoupled-motion
capability of some existing 3L-CPM designs. It can be seen that the analysis provides insight
into the motion characteristics of 3L-CPMs. With the design criteria for synthesizing 3L-
CPMs with fully decoupled motions being provided and the motion-decoupling capability
of popular 3L-CPM designs being clearly defined, designers can select or synthesize any 3L-
CPM with suitable motion property (coupled or decoupled) for their specific applications.

This section presents a short review on the motion characteristics from some of the
existing 3L-CPMs. For each CPM, either the compliance matrix of a leg/serial flexure
chain or the stiffness/compliance matrix of the entire mechanism was derived and used
to determine the theoretical motion characteristics. For 3L-CPMs having a single serial
flexure chain in each leg, fully decoupled motion can be achieved if the compliance matrix
of the leg is in the form of Equation (13). The full stiffness matrix of the entire 3L-CPMs
can then be calculated by using Equations (5), (6) and (14). For 3L-CPMs containing two
reflecting serial flexure chains in each leg, fully decoupled motion can be obtained if the
compliance matrix of a serial flexure chain is similar to Equation (31), and the full stiffness
matrix of entire CPM can be calculated based on Equations (5), (6) and (28). Note that the
analyses were conducted for general cases where most parameters, such as rotations angles
and distances, are symbolic. Therefore, the obtained results are in general forms, while the
results for some specific designs were obtained by substituting values into the parameters.

5.1. Three-Legged Revolute–Revolute–Revolute and Three-Legged Prismatic–Revolute–Revolute CPMs

The Three-legged Revolute–Revolute–Revolute (3RRR) configuration has been the
most popular design for developing 3-DOF 3L-CPMs with (X-Y-θZ) planar motions, which
are widely used in positioning/alignment systems [18–20,22,27,29,35,41]. The schematic
diagram of a typical 3RRR-CPM is illustrated in Figure 5a, while Figure 6a illustrates
the three-legged Prismatic–Revolute–Revolute (3PRR) configuration, which is a variant
of 3RRR, where a revolute joint is replaced by a prismatic joint. The 3PRR-CPMs are
preferred to create 3-DOF planar motions in MEMS devices, due to their advantage in
actuation [59,60]. The prismatic joint can be designed as an active joint and easily driven
by a linear actuator. Note that all flexure elements must be in the XY plane to create three
desired motions. The physical prototypes of positioning systems developed based on 3RRR-
and 3PRR-CPMs are shown in Figures 5b and 6b, respectively.
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=
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Figure 6. (a) Schematic diagram of 3PRR-CPM and (b) a positioning stage developed based
on 3PRR-CPM.

To determine the theoretical motion characteristics of 3RRR-CPM or 3PRR-CPM, the
compliance matrix of each flexure element is represented by Ce

1, Ce
2, and Ce

3, respectively,
and each compliance matrix has a similar form to the one shown in Equation (10). Here, Ce

1
is the compliance matrix of either the first revolute joint within a 3RRR-CPM or the first
prismatic joint within a 3PRR-CPM. Ce

2 and Ce
3 are the compliance matrices of the second

and third revolute joints, respectively. As illustrated in Figures 5a and 6a, each joint has
a different orientation about the Z” axis, γj, and a different distance to the moving end
point, rj, with j = 1, 2, and 3. The projections of rj onto the X and Y axes are rxj and ryj ,
respectively. Based on Equation (9), the formula to calculate the compliance matrix of a leg
is written as follows:

Cl =
3

∑
j=1

Je
j R

e
j C

e
j

(
Re

j

)−1(
Je

j

)T
(32)

where Je
j and Re

j are obtained by using Equations (12) and (11), respectively. The result of
Equation (32) is shown in Equation (33), and the detailed expression of each component
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is given in Appendix D. It is observed that the compliance matrix of each leg within the
3RRR-CPMs and 3PRR-CPMs is similar to the form expressed in Equation (13). Hence,
this observation suggests that the 3RRR and 3PRR configurations are able to deliver fully
decoupled motion. This performance indicator also highlighted why both configurations
are popular designs for developing state-of-the-art 3L-CPMs.

Cl =



cl
11

cl
21 cl

22 SYM
0 0 cl

33
0 0 cl

43 cl
44

0 0 cl
53 cl

54 cl
55

cl
61 cl

62 0 0 0 cl
66


(33)

5.2. Three-Legged Prismatic–Prismatic–Spherical and Three-Legged Revolute–Prismatic–Spherical CPMs

Based on past works in the literature, the three-legged Prismatic–Prismatic–Spherical
(3PPS) [5,32] and the three-legged Revolute–Prismatic–Spherical (3RPS) [21,61] configura-
tions were adopted to develop 3-DOF 3L-CPMs with (θX-θY-Z) out-of-plane motions, as
shown in Figure 7a,b respectively. For both 3L-CPMs, each leg employed three serially
connected flexure elements along the Z axis to create the desired motions. As a result,
the component rzj in Equation (12) exists and generates the off-axis components in the

compliance matrix of a flexure element after transformation (Ce
j ). Here, the components

within Cl can be derived from the following:

cl
ab =

3

∑
j=1

c
ej
ab (34)

where c
ej
ab is a component on row a and column b in Ce

j calculated by Equation (14).
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Figure 7. Structure of (a) 3PPS CPM [62] and (b) 3RPS CPM modeled based on the design presented
in [21].

Based on the results obtained from Equation (16) to Equation (24), the components,
i.e., c

ej
31, c

ej
41, c

ej
51, c

ej
32, c

ej
42, and c

ej
52, are non-zeros because of the existence of rzj . Thus,

the corresponding components in Cl are also non-zeros. Therefore, the legs’ compliance
matrices within the 3PPS- and 3RPS-CPMs do not satisfy Equation (13). As a result, both
the 3-DOF 3PPS- and 3RPS-CPMs will generate coupled motions. This coupled motion
property can be observed from Equation (35), which is the 6× 6 stiffness matrix of the 3PPS-
CPM (Figure 7a) taken from Reference [5]. Having those five non-diagonal components
indicates that the developed 3PPS-CPM cannot deliver fully decoupled motion.
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K =



2.57× 105

0 2.57× 105 SYM
0 0 3.99× 105

5.47× 101 5.18× 103 0 9.51× 102

−5.18× 103 5.47× 101 0 0 9.51× 102

0 0 −5.63× 101 0 0 1.72× 103

 (35)

5.3. Three-Legged Prismatic–Revolution–Prismatic–Revolution CPMs

Based on past works in the literature, several 3-DOF 3L-CPMs with spatial motions
capability have been developed by using the three-legged Prismatic–Resolution–Prismatic–
Revolution (3PRPR) configuration. Depending on the orientations of the prismatic and
revolute joints, a 3PRPR-CPM can deliver either (X-Y-Z) [24,25] or (θX-θY-Z) [16,17] spatial
motions, as shown in Figure 8a,b respectively. For the 3PRPR-CPM with (X-Y-Z) spatial
motion, as shown in Figure 8a, all the P-joints and R-joints within each leg have their
respective X”Y” planes. The P-joints operate in their respective X”Y” planes, while the
R-joints rotate out of these planes. To analyze its compliance behavior, the leg parallel to the
Y axis of the global frame was selected. Note that detailed modeling follows the procedures
presented in Section 2. Here, each leg consists of four flexure elements (e1, e2, e3, and e4),
representing the P-, R-, P-, and R-joints, respectively. The local frame X′Y′Z′ is attached at
the free end of the leg. The compliance matrix of each flexure element, Ce

j (with j = 1, 2, 3,
4), is given as follows:

Ce
1 = Ce

3 =



cP
11
0 cP

22 SYM
0 0 cP

33
0 0 0 cP

44
0 0 cP

53 0 cP
55

0 cP
62 0 0 0 cP

66

, and Ce
2 = Ce

4 =



cR
11
0 cR

22 SYM
0 0 cR

33
0 0 0 cR

44
0 0 cR

53 0 cR
55

0 cR
62 0 0 0 cR

66

 (36)
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Based on Figures 2b, 8a, and A1b, the two P-joints can have arbitrary rotation angles
(γ1 and γ3) about their Z” axes, while the two R-joints have two rotations, i.e., about the
X” axes with an angle of 90◦ (α2 = α4 = 90◦) and about the Z” axes with an angle of 90◦ (γ2
= γ4 = 90◦). All flexure elements have no rotation about their Y” axes (β1 = β2 = β3 = β4
= 0). In addition, as the first three flexure elements (e1, e2, and e3) are located at specific
distances from the local frame of the leg X′Y′Z′, the distance vectors are r1 =

{
rx1 , ry1 , rz1

}
,
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r2 =
{

rx2 , ry2 , rz2

}
, and r3 =

{
rx3 , ry3 , rz3

}
, respectively, as illustrated in Figure 1 and

Equation (12). Moreover, r4 is a zero vector, because the free end of the last R-joint (e4)
coincides with the frame X′Y′Z′. By substituting these parameters into Equations (9), (11)
and (12), the compliance matrix of the proposed leg can be expressed as follows:

Cl =



cl
11

cl
21 cl

22 SYM
cl

31 cl
32 cl

33
cl

41 cl
42 cl

43 cl
44

cl
51 cl

52 cl
53 cl

54 cl
55

cl
61 cl

62 0 0 0 cl
66


(37)

The expression of each component in Equation (37) is given in Appendix E. It is
observed that the compliance matrix expressed in Equation (37) does not match the form
given in Equation (13) with six non-diagonal components (cl

31, cl
41, cl

51, cl
32, cl

42, and cl
52) not

equal to zero. This is due to the non-zero translation components along the Z axis of the
first three flexure elements (rz1 , rz2 , rz3 6= 0) making the oriented compliance matrix of each
flexure element different from the condition in Equation (15). Thus, the output motions of
the entire 3PRPR 3L-CPM are coupled.

As for the 3PRPR-CPM with θX-θY-Z spatial motion shown in Figure 8b, each leg has
its respective X”Y” plane. Based on the design of each leg, it is observed that the P-joints
(also illustrated in Figure A1b) would operate in their respective X”Y” plane, while the
R-joints were designed to rotate out of that working plane. In addition, the translation of
each flexure element consists of three projection components onto three axes. Similar to the
3-DOF 3PRPR 3L-CPM presented above, this design also generates coupled motions, since
the flexure elements are not distributed in the XY plane (rzj 6= 0) and the orientations of
the flexure elements also include the rotation out of the X”Y” plane (β j 6= 0), making the
non-diagonal components within the compliance matrix of each leg become non-zeros, as
proven in Section 3. Lastly, a similar analysis can be adopted to demonstrate that the 3L-
CPM using three serial Prismatic–Universal–Prismatic–Universal (3-PUPU) flexure chains
presented in Reference [33] will also generate coupled motions.

5.4. Three-Legged CPM with Paired Prismatic–Spherical–Spherical Configuration

A 6-DOF 3L-CPM [28] was developed using a pair of Prismatic–Spherical–Spherical
(PSS) serial chain configuration to create each leg as illustrated in Figure 9. By considering
the leg in the front of the 3L-CPM, it is observed that two PSS serial chains located in the
X′Z′ plane and reflect about the Y′Z′ plane. Based on Figure A1, the P-joint is oriented about
the X” axis (α1 = 90◦) and Z” axis (γ1 = 90◦) respectively to obtain the desired orientation.
In addition, the two S-joints are oriented 45◦ about their Y” axes (β2 = β3 = 45◦) and the
distance vector from each joint to the local frame X′Y′Z′ at the moving end of the leg only
consists of two components, i.e., r1 = {rx1 , 0, rz1}, r2 = {rx2 , 0, rz2} and r3 = {rx3 , 0, rz3}.
Subsequently, the compliance matrix of each flexure element is given as follows:

Ce
1 =



cP
11
0 cP

22 SYM
0 0 cP

33
0 0 0 cP

44
0 0 cP

53 0 cP
55

0 cP
62 0 0 0 cP

66

, and Ce
2 = Ce

3 =



cS
11
0 cS

22 SYM
0 0 cS

33
0 0 0 cS

44
0 0 cS

53 0 cS
55

0 cS
62 0 0 0 cS

66

 (38)

where cP
uv and cS

uv (with u, v = 1, 2, . . . , 6) are the components within the compliance
matrices of the P-joints and S-joints, respectively.
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Equation (28). It is realized that the form of scC  in this design is different from the 
condition shown in Equation (31), as the flexure elements are not located in the XY plane 
( 0

jzr ≠ ) and the P-joint has a rotation about the Y’’ axis ( 1 0β ≠ ). Therefore, even the offset 

distance between two serial flexure chains in each leg is zero ( 0Δ = ), and the output 
motions of this 6-DOF 3L-CPM are coupled based on the results obtained from Section 4. 
Using a similar analysis, the 6-DOF 3L-CPM presented in Reference [31] also generates 
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Figure 9. Six-DOF 3L-CPM with two reflecting PSS chain in a leg modeled based on the design
presented in [28].

In this design, the two symmetrical PSS serial chains have no offset distance. Hence,
the offset matrices, J(±∆), as shown in Equation (30), become identity matrices. By using
Equations (9), (11) and (12) with the defined parameters, the compliance matrix of a serial
flexure chain in the proposed leg, Csc, is written in Equation (39), and the result of each
component is given in Appendix F.

Csc =



csc
11

csc
21 csc

22 SYM
csc

31 csc
32 csc

33
csc

41 csc
42 csc

43 csc
44

csc
51 csc

52 csc
53 csc

54 csc
55

csc
61 csc

62 0 0 0 csc
66

 (39)

Based on the obtained Csc, the stiffness matrix of each leg, Kl , can be calculated by
Equation (28). It is realized that the form of Csc in this design is different from the condition
shown in Equation (31), as the flexure elements are not located in the XY plane (rzj 6= 0)
and the P-joint has a rotation about the Y” axis (β1 6= 0). Therefore, even the offset distance
between two serial flexure chains in each leg is zero (∆ = 0), and the output motions of this
6-DOF 3L-CPM are coupled based on the results obtained from Section 4. Using a similar
analysis, the 6-DOF 3L-CPM presented in Reference [31] also generates coupled motions.

5.5. Six-DOF 3L-CPM Synthesized by Constrained-Based Method

A 6-DOF 3L-CPM using double flexure chains configuration, as shown in Figure 10,
was presented in Reference [42]. The construction of each leg contains two horizontal
beam-type flexure elements at both sides and one vertical beam flexure at the center. This
structure can be considered as a reflecting double chain about the Y′Z′ plane, where each
serial flexure chain consists of one horizontal beam and a half of the vertical beam, as
illustrated in Figure 10. Referring to Figure 2a, it is observed that the vertical beam (e2)
has a rotation of 90◦ about its Z” axis (γ2 = 90◦) while the horizontal beam (e1) remains
in its original orientation. In addition, the translations of e1 and e2 are represented by
r1 =

{
rx1 , ry1 , 0

}
and r2 = {0, 0, 0}, respectively, since the free end of e2 coincides with the

frame X′Y′Z′ of the leg. The compliance matrices of two flexure elements in a serial flexure
chain are given as follows:
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Ce
1 =



ce1
11
0 ce1

22 SYM
0 0 ce1

33
0 0 0 ce1

44
0 0 ce1

53 0 ce1
55

0 ce1
62 0 0 0 ce1

66

, and Ce
2 =



ce2
11
0 ce2

22 SYM
0 0 ce2

33
0 0 0 ce2

44
0 0 ce2

53 0 ce2
55

0 ce2
62 0 0 0 ce2

66

 (40)
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Figure 10. Six-DOF 3L-CPM  modeled based on the design presented in [42]. 
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Figure 10. Six-DOF 3L-CPM modeled based on the design presented in [42].

Based on Equations (9), (11) and (12) and the defined parameters, the obtained compli-
ance matrix of the serial flexure chain shown in Figure 10, Csc, is written as follows:

Csc =



ce1
11 + ce2

22 + ce1
66r2

y1
−
(
ce1

62 + ce1
66rx1

)
ry1 ce1

22 + ce2
11 + rx1

(
2ce1

62 + ce1
66rx1

)
SYM

0 0 ce1
33 + ce2

33 − 2ce1
53rx1 + ce1

55r2
x1
+ ce1

44r2
y1

0 0 −ce2
53 + ce1

44ry1 ce1
44 + ce2

55
0 0 ce1

53 − ce1
55rx1 0 ce1

55 + ce2
44

−ce2
62 − ce1

66ry1 ce1
62 + ce1

66rx1 0 0 0 ce1
66 + ce2

66

 (41)

It is observed that the compliance matrix presented in Equation (41) matches the form
expressed in Equation (31), and all flexure elements are distributed in the XY plane (∆ = 0
and J(±∆) become identity matrices). Note that, while csc

54 is zero, those nine essential
non-diagonal components (csc

31, csc
41, csc

51, csc
32, csc

42, csc
52, csc

63, csc
64, and csc

65) are zero and, thus,
satisfy the special case proposed in this work. As a result, it shows that this design is able
to produce fully decoupled motion. This can be demonstrated by the resulting diagonal
matrix obtained by applying Equations (1) and (28) to analyze the stiffness property of the
entire 3L-CPM. Several micro-scale 6-DOF 3L-CPMs which developed based on the same
concept were proposed in Reference [43], and a variant of this design was presented in
Reference [58].

5.6. Six-DOF 3L-CPM Synthesized by Optimization Method

A recent 6-DOF 3L-CPM synthesized by the structural optimization method [56] is
shown in Figure 11. Its leg consists of two reflecting flexures about the Y′Z′ plane, and
each flexure is constructed by a curved beam. Here, this curved beam can be considered
as a series of straight beam-type flexure elements (e1, e2, . . . , en) with various orientations
about their respective Z” axes (γ1, γ2, . . . , γn), as illustrated in Figure 3a. Note that each
beam-type flexure element has the compliance matrix in the form shown in Equation (10).
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Figure 11. Six-DOF 3L-CPM synthesized by the structural optimization method.

In Figure 11, the translation of each flexure element can be represented by rej ={
rxj , ryj , 0

}
(where j = 1, 2, . . . , n) because all flexure elements are located in the XY plane.

It is observed that the structure of this CPM matches the case shown in Figure 4, with zero
offset distance between two reflecting serial flexure chains (∆ = 0). Thus, this CPM is able
to achieve full decoupling. Referring to the results in Reference [56], we can see that the
stiffness matrix of this CPM has the form of a diagonal matrix, as shown in Equation (42),
and its motion-decoupling capability was also demonstrated.

C =



3.67× 10−5

0 3.67× 10−5 SYM
0 0 9.70× 10−5

0 0 0 3.06× 10−2

0 0 0 0 3.06× 10−2

0 0 0 0 0 3.47× 10−2

 (42)

5.7. Three-DOF Planar-Motion 3L-CPM Synthesized by Optimization Method

The three-legged configuration with double serial flexure chains within a leg is pre-
ferred in 3L-CPMs that were synthesized by the topological optimization method. Here, an
optimized 3-DOF (X-Y-θZ) planar motion 3L-CPM [53] shown in Figure 12a was analyzed
to study its motion property. It is observed that each leg contains two reflecting flexure
chains about the Y′Z′ plane, and each flexure chain has four beam-type flexure elements
(e1, e2, e3, and e4) connected together in a series. The thicker segments with each flexure
chain are considered as rigid-body links in the stiffness analysis. With this 3L-CPM being
a planar structure, the translation of each flexure element to the end effector is located
in the XY plane, and there is no projection component (rzj ) in the Z axis. By referring to
Reference [53], the 6 × 6 stiffness matrix of the entire 3L-CPM is as follows:

K =



2.0× 104

0 2.0× 104 SYM
0 0 2.6× 106

0 −545 0 1.3× 103

545 0 0 0 1.3× 103

0 0 0 0 0 12

 (43)
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From Figure 12a, we can see that the 3L-CPM has two reflecting flexure chains with 
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motions are decoupled. However, Equation (43) suggests that this 3L-CPM will generate 
coupled motions, since there are two non-diagonal components. This result can be 

Figure 12. Three-DOF (X-Y-θZ) 3L-CPM designed by using the optimization method (a) structure of
a leg and (b) prototype built based on the design presented in [53].

From Figure 12a, we can see that the 3L-CPM has two reflecting flexure chains with no
offset distance, so that, depending on the results presented in Section 4, its output motions
are decoupled. However, Equation (43) suggests that this 3L-CPM will generate coupled
motions, since there are two non-diagonal components. This result can be explained by
the stiffness modeling used in Reference [53]; the compliance matrices of the leg were
calculated at the local frame X′Y′Z′ in the middle plane, while the stiffness matrix of the
entire 3L-CPM was derived at the global frame XYZ (located at the center of the end effector)
in the top plane, as illustrated in Figure 12b. That generates the translation components Dzj

along the Z axis in the translation matrices of the legs, as demonstrated in Equation (3), and
creates the off-axis stiffness components within the final stiffness matrix. Similar designs
presented in Reference [55] will also generate decoupled motions. If the global frame is
attached at the middle plane of the end effector instead, the non-diagonal stiffness will be
eliminated, and the 3L-CPM will have fully decoupled motion characteristic.

5.8. Three-DOF Spatial-Motion 3L-CPMs Synthesized by Optimization Method

Two designs of 3-DOF (θX-θY-Z) spatial-motion 3L-CPMs, as shown in Figure 13, were
synthesized by the structural optimization method [6,7]. Here, the desired motions were
generated by two reflecting beam-type flexure elements about the Y′Z′ plane in each leg.
The design shown in Figure 13a has a small offset distance along the Z axis (∆ 6= 0) between
two flexure chains, as compared to the other design, which is shown in Figure 13b, where
all flexure elements are located in the same XY plane (∆ = 0).

Ca =



3.21× 10−8

0 3.21× 10−8 SYM
0 0 8.98× 10−5

−3.31× 10−6 7.84× 10−8 0 3.05× 10−2
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 (45)
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For the 3L-CPM with ∆ 6= 0, as shown in Figure 13a, the results presented in Refer-
ence [6] agree with the findings described in Section 4, where its compliance matrix, Ca,
has five non-diagonal components, as derived theoretically in Equation (44). For the other
3L-CPM with ∆ = 0, as shown in Figure 13b [7], the compliance matrix, Cb, only has diago-
nal components, as demonstrated theoretically in Equation (45). In summary, the motion
property of 3L-CPMs having two reflecting flexure chains in a leg was demonstrated. The
3L-CPM having an offset distance in the Z axis between two flexure chains will generate
coupled motions, while the other having both flexure chains located in the same plane will
generate decoupled motions.

6. Discussion

In order to deliver fully decoupled motion, a 3L-CPM must have a 6 × 6 diagonal
stiffness/compliance matrix whereby all non-diagonal components are zero. Due to the
property of the parallel architecture, the stiffness matrix of a 3L-CPM can be calculated
based on the stiffness matrices of its legs. However, the stiffness matrix of each leg cannot
be derived directly, since it can be constructed by one or two serial chains; each is formed by
a number of flexure elements and rigid links, and, thus, its characteristic is defined by the
compliance. Due to the challenges in converting between the stiffness and compliance ma-
trices, existing 3L-CPMs failed to analyze their motion property analytically. To overcome
this limitation and, most importantly, for designing a 3L-CPM to obtain a full-decoupled
motion characteristic, the conditions for the compliance matrix of the single serial flexure
chain, i.e., Equation (13), and for the compliance matrix of the double serial flexure chains,
i.e., Equation (31), are provided in this work. A short review of various state-of-the-art
3L-CPMs presented in Section 5 showed that the conditions of the compliance matrix can be
used to identify the motion property of these 3L-CPMs. In order to satisfy these conditions,
analytical analyses show that every flexure element within each leg must be located in
the global XY plane with only two orientations (0◦ and 90◦) about its local X” axis, as
illustrated in Figure 3, and the offset distance along the Z axis between two serial flexure
chains, as shown in Figure 4, must be zero (∆ = 0). In other words, these design criteria
can be used to synthesize a 3L-CPM that aims to achieve fully decoupled motion capability.
Moreover, the findings in this work are applicable to any synthesis method, e.g., traditional
pseudo-rigid-body model, constraint-based and topology/structural optimization meth-
ods, etc. Consequently, these design criteria and conditions for the compliance matrices of
the flexure chains can be used as the fundamental design guidelines for the syntheses of
3L-CPMs to achieve desired motion property that can be either decoupled or coupled.
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As the 3L-CPM plays an important role in precise motion systems, the motion de-
coupling capability needs to be clearly defined in the design process to make the control
simpler and the output motions more accurate as well. Based on the literature, several
compliant systems which are capable of producing precise motions with a simple control
method, due to the defined motion characteristics of their compliant structures, have been
developed. In particular, the 3-DOF spatial-motion (θX-θY-Z) manipulator [6,7] and the
flexure-based electromagnetic nano-positioning actuator [3] are able to produce a large
workspace with high resolutions, using simple open-loop control systems. Moreover, 3L-
CPMs with decoupled motions can also be applied to design micro-fabrication systems,
e.g., the flexural spindle head in a micro drilling machine tool [11,12], the motion stage in a
micro milling system [13], and the flexural stage to adjust the angles of mirror in advanced
three-dimensional fabrication methods [14,15]. In addition, the benefits offered by decou-
pled 3L-CPMs have been recently exploited in biomedical applications, such as the flexural
micro-dissection device [10]. Since the application range of decoupled-motion 3L-CPMs
has been increasing, it can be said that the fundamental criteria for synthesizing 3L-CPMs
with fully decoupled motions and the motion property of some existing designs presented
in this paper are an important background for developing advanced flexure-based systems.

7. Conclusions

This paper presented the fundamental design criteria for synthesizing any 3L-CPM
with fully decoupled motion capability regardless of the targeted DOF. The stiffness charac-
teristics of a 3L-CPM were analytically modeled. The derived criteria suggested that the
flexure elements in each leg must be distributed in the same plane with the end effector
of the 3L-CPM in order to fulfill the decoupled motions requirements. In the case where
each leg contains two parallel reflecting flexure chains, such requirements are valid if both
flexure chains are located in the same plane with no offset distance. To demonstrate the
effectiveness of the design criteria and conditions obtained from this work, several state-
of-the-art 3L-CPMs were analyzed for their stiffness characteristics and compared with
these criteria. The presented cases show that the proposed design criteria can be applied to
accurately determine the motion characteristics of any 3L-CPM through the analysis of its
stiffness/compliance matrix; only 3L-CPMs having diagonal stiffness/compliance matrices
are able to achieve fully decoupled motions. Findings from this work can be used to define
the motion property of any form of 3L-CPM during the design process.

In this paper, only some special solutions were considered to make the non-diagonal
components within the stiffness/compliance matrix of a 3L-CPM equal to zero; there could
be other solutions that need to be explored. Future work will focus on investigating more
general design criteria for synthesizing any CPMs with desired DOF and motion property.
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Appendix A. Stiffness Characteristics of Some Common Types of Flexure Element

Referring to References [22,57], some popular flexure elements have the same compli-
ance matrix form as expressed in Equation (10) and are shown in Figure A1. They can be
revolute hinge; thin beam, as illustrated in Figure 2; and also can be some other forms, such
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as spherical joint (Figure A1a) or prismatic joint (linear spring), as shown in Figure A1b.
The notch of spherical joint can have a circular or square cross-sectional area, while the
linear spring can be constructed by four notch hinges or a pair of cantilever beams.
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The expression of each component in Cl is given as follows:
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The form of Cl needs to be specified as a standard for the design process of decoupled-
motion 3L-CPMs. It is observed that the expressions of seven compliance components
(cl

31, cl
32, cl

41, cl
42, cl

51, cl
52, and cl

63) corresponding to the seven zero-components in the
stiffness matrix have similar forms as shown in Equations (A2) to (A8). In this paper,
these seven compliance components are required to be zeros, so that the form of the



Mathematics 2022, 10, 1414 24 of 30

leg’s compliance matrix will be the same with its stiffness matrix. This special form
offers simplicity during the design process and can be used as the standard to define the
decoupled-motion capability of various 3L-CPMs. The requirements to make the seven
compliance components equal to zeros are written in Equation (A17).
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As the diagonal components in the stiffness matrix are always non-zeros, while the
non-diagonal components can be zeros or non-zeros, the non-diagonal components are
considered as unknowns, and the diagonal ones are parameters. In the first set of equations,
one of the first two equations can be redundant. The answers to the first set of equations
are as follows: 
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The second set of equations contain three equations with five unknowns, so that there
could be many solutions. Here, two simple solutions are proposed, and their answers are
given as follows:
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Appendix C. Inversion of the Compliance Matrix of a Leg in a Typical
Decoupled-Motion 3L-CPM
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