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Abstract. Balancing domain decomposition by constraints (BDDC) methods are nonoverlap-
ping iterative substructuring domain decomposition methods for the solution of large sparse linear
algebraic systems arising from the discretization of elliptic boundary value problems. Their coarse
problems are given in terms of a small number of continuity constraints for each subdomain, which
are enforced across the interface. The coarse problem matrix is generated and factored by a direct
solver at the beginning of the computation and it can ultimately become a bottleneck if the num-
ber of subdomains is very large. In this paper, two three-level BDDC methods are introduced for
solving the coarse problem approximately for problems in three dimensions. This is an extension
of previous work for the two-dimensional case. Edge constraints are considered in this work since
vertex constraints alone, which work well in two dimensions, result in a noncompetitive algorithm
in three dimensions. Some new technical tools are then needed in the analysis and this makes the
three-dimensional case more complicated. Estimates of the condition numbers are provided for two
three-level BDDC methods, and numerical experiments are also discussed.
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1. Introduction. Balancing domain decomposition by constraints (BDDC)
methods, which were introduced and analyzed in [4, 11, 12], are similar to the bal-
ancing Neumann-Neumann algorithms. The coarse problem in a BDDC algorithm
is given in terms of a set of primal constraints chosen for each subdomain, and the
matrix of the coarse problem is generated and factored by using a direct solver at the
beginning of the computation. We note that there are now computer systems with
more than 100,000 powerful processors, which allow very large and detailed simula-
tions. If there is a one to one or one to several relationship between processors and
subdomains, then we can have a large number of subdomains. The coarse compo-
nent of a two-level preconditioner can therefore become a bottleneck if the number
of subdomains is very large. One way to remove this difficulty is to introduce one or
more additional levels. In our recent paper [17], two three-level BDDC methods were
introduced for two-dimensional problems with vertex constraints. We solve the coarse
problem approximately by using the BDDC idea recursively and show that a good
rate of convergence still can be maintained. However, in three dimensions, vertex
constraints alone are not enough to obtain good polylogarithmic condition number
bounds due to much weaker interpolation estimates, and constraints on the averages
over edges or faces are needed. The new constraints lead to a considerably more com-
plicated coarse problem and the need for new technical tools in the analysis. In this
paper, we extend the two three-level BDDC methods in [17] to the three-dimensional
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case using primal edge average constraints. With the help of new technical tools, we
are able to provide estimates of the condition numbers of the system with these two
new preconditioners.

We note that, since this paper was submitted, several papers have appeared on
inexact solvers for BDDC (see [5, 10, 16, 15]) and dual-primal finite element tearing
and interconnecting (FETT-DP), which are iterative substructuring algorithms closely
related to BDDC (see [6]). For the study of the convergence rates of the BDDC
algorithms and their connection with the FETI-DP algorithms, see [11, 12, 9, 2].

The rest of the paper is organized as follows. We first review the two-level BDDC
methods briefly in section 2. We introduce our first three-level BDDC method and
the corresponding preconditioner M ~! in section 3. We give some auxiliary results
in section 4. In section 5, we provide an estimate of the condition number for the
system with the preconditioner M~ which is of the form C(1 + log 2)2(1+1og )2,
where H , H, and h are typical diameters of the subregions, subdomains, and elements,
respectively. (We decompose the whole domain into subregions and each subregion is
then partitioned into several subdomains; see section 3 for details.) In section 6, we
introduce a second three-level BDDC method which uses Chebyshev iterations. We
denote the corresponding preconditioner by M ~!. We show that the condition number
bound of the system with the preconditioner M~ is of the form CC(k) (1 4+ log %)2,
where C(k) is a function of k, the number of Chebyshev iterations, and also depends
on the eigenvalues of the preconditioned coarse problem and on the two parameters
chosen for the Chebyshev iteration. C(k) goes to 1 as k goes to oo; i.e., the condition
number approaches that of the two-level case. Finally, some computational results
are presented in section 7.

2. The two-level BDDC method. The two-level BDDC methods have been
studied extensively; see [4, 11, 12, 9]. In this section, we will briefly review this work
and introduce notation which will be used in the rest of the paper.

We will consider a second order scalar elliptic problem in a three-dimensional
region ) as follows: Find u € H}(2) such that

(2.1) /Qqu~Vv:/va Vv € Hy (),

where p(z) > 0 for all z € Q. We decompose (2 into N nonoverlapping subdomains
Q,; with diameters H;, i = 1,..., N, and set H = max; H;. We then introduce a
triangulation of all the subdomains. Let I' be the interface between the subdomains
and let the set of interface nodes I';, be defined by I'y, = (U;09Q; 1) \ 02, where 99, ,
is the set of nodes on 9€; and 9, is the set of nodes on 9. The nodes of the
different triangulations match across I'.

Let W) be the standard finite element space of continuous, piecewise trilinear
functions on £2;; the algorithms and theory developed in this paper work for other
lower order finite elements as well. We assume that these functions vanish on 0€Q.
Each W can be decomposed into a subdomain interior part Wgz) and a subdomain
interface part Wl(f ), ie., W = Wgz) G}Wl(f ), where the subdomain interface part

Wl(f ) will be further decomposed into a primal subspace Wg) and a dual subspace

WX), ie., Wl(f) = Wl(-}) &P WX). (They are called primal and dual in earlier works on
FETI algorithms, where the dual variables are controlled by Lagrange multipliers.)
Here, we will consider only edge average constraints over all the edges of all subdo-
mains as primal variables. We change the variables to make the edge average degrees
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of freedom explicit; see [7, section 4.2.1] and [9, section 2.3]. From now on, we assume
that all the matrices are written in terms of the new variables. '

We denote the associated product spaces by W := HN W( D), Wrp = H]\il Wlf),
Wp = Hl 1 WAZ), Wy = Hl 1 Wl({), and W HZ 1 W . Correspondingly, we
have W = W; P Wr, and Wr =W Wa.

The elements of W can be discontinuous across the interface. However, the finite
element approximation of the elliptic problem is continuous across I'.© We denote
the corresponding subspace of W by W. Similarly, we denote the corresponding
subspaces of W, Wa, and W by W, Wa, and Wy, respectively.

In order to define the BDDC preconditioner, we further introduce an interface
subspace Wp C Wr, for which all the edge average primal constraints are enforced.
The space Wr can be decomposed into W = WH P Wa. We also have Wp - Wp

The global problem has the following form: Find (ur,ua,un) € (W, WA, WH)
such that

A AN Al uy fr
(2.2) Anr Aan ALA ua | =| fa
Anr  Ana  Amm ur i

This problem is assembled from the subdomain problems

i )T T i i

A QT AG [ o
SN SNt
Ay Ana A un f

We also denote by Fr, f‘p, and ] f‘p the dual spaces, that is, the spaces of the right-hand
sides corresponding to Wy, Wr, and Wr, respectively.

In order to describe the BDDC algorithms, we need to introduce several restric-
tion, extension, and scaling operators between different spaces.

The restriction operators from the product spaces to the subdomain local spaces
are

AR(

o~ (4) (i) .
W S wl W AW(“ Wr—>W(” Wi 2L w9 and Wa 22w

Additionally, there are three restriction operators:
& Bo & wr Bra . Brin a7
WF —>WH, WF—>WA, and WF—>WH.
We also introduce two extension operators:
Wr 25 Wi B8 W,

where Rp is the direct sum of the operators ]%X) and EH, and Rr is the direct sum

of the operators Eg).
Multiplying each element of the matrix RX)7 which corresponds to a node x € 99;,

with 6 (x) gives us R() Here, we define the scale factor 6] (z) as follows: For
7 € [1/2,00),

1
(2.4) (Sj(l‘) = 1727(33) MRS 8Qi7h Ny,

Yjen, Py ()
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where N, is the set of indices j of the subdomains such that x € 99Q;, and p;(z) is
the coefficient of (2.1) at « in the subdomain ;.
)

The scaled extension operator Ep,p is the direct sum of the operators Iég A and

ﬁn. Equivalently, we can write ED’F = Dﬁp, where D is a diagonal scaling matrix.
The diagonal elements of D, corresponding to the primal variables, are 1, and all
others are given by 6! (z).

We also use the same restriction, extension, and scaled extension operators for
FF, FF, and FF.

We now reduce the global problem (2.2) to an interface problem. We first intro-
duce the subdomain Schur complement Sﬁz) by eliminating the subdomain interior

variables uy) in (2.3) as follows:

g0 _ [ ARa AN (AL A(ifl( AT A(z‘)T)
r Ag‘)A A(r})n A%)I 11 AT 111

and let

s
Sr =
s&v

The partially assembled Schur complement Sr is obtained from Sp by assembling
the primal variables on the subdomain interface, i.e.,

Sr = R} SrRr.
gp can be further assembled with respect to the variables of the WX) and the reduced
interface problem of (2.2) can be written as follows: Find ur € Wr such that

Eggrﬁrur = 8r,

L 4D So1
w-Sn {(8)- () ar el
=1 I 117

The preconditioned two-level BDDC equation is of the form

where

Mﬁlé%jg[‘épul" = Mﬁlgr,
where the preconditioner M~ = EEFS’VI? 1]§D7p has the following form:

(2.5)
N @ 46 \ !
~ T A A 0 B ~
RE - { RL, Z(O RY ) ( s > ( e ) Rra +®S7'®” 3 Rpr.
=1 A

Here & is the matrix given by the coarse level basis functions of minimal energy
defined by
N

B (0 8S) AY A\ T ATY
® = Rrp — Rra ORAZ i i T RHZ~
PISEION )
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The coarse level problem matrix Sp is determined by

(2.6)

. . —1 T
| . . A 4@ A .
Sn=Y RY Al - () afy) (| 8 L6 e )R,
Axr Aan A
TIA

which is obtained by assembling subdomain matrices; for additional details, cf. [4,
11, 9].
We know that, under certain assumptions, and for any ur € Wr,

(2.7) ul Mur < ul RESpRpur < C (1 4 log(H/R))? uk Mur.

These estimates can be established directly by using methods very similar to those
of certain studies of the FETI-DP algorithms. Denote by Ep and Pp, respectively,
the average and jump operators (see [14, Formulas (6.4) and (6.38)]) on the space
Wr. Central to obtaining the condition number estimate for the preconditioned
two-level BDDC operator is a bound for the Fp operators (see [12, Theorem 25]).
Since Ep + Pp = I (see [14, Lemma 6.10]), we need only find a bound for the Pp
operator. We obtain a bound for the Pp operator by using [14, Lemma 6.36] under
[14, Assumption 4.3.1] for the triangulation and using [14, Assumption 6.27.2] for the
coefficient p(z) of (2.1).

3. A three-level BDDC method. For the three-level cases, as in [17], the
coarse problem matrix Sy defined in (2.6) will not be factored by a direct solver.
Instead, a new level is introduced and the coarse problem is solved approximately.
Call the new level the subregion level. To distinguish the spaces and operators for
the subregion level from those for the subdomain level, we use the subscript ¢ for the
former.

We decompose (2 into N, subregions / with diameters Hi ,J=1,...,N.. Each
subregion €/ is the union of N; subdomains QJ with diameters H . Let H max; Hi
and H = max; ; H yfor j=1,...,Ne,and i =1,...,N;. Then N, the total number
of subdomains, can be written as N = N; +--- 4+ Ny._.

We introduce the subregional Schur complement as

. . —1 N
i i i i A(Z) A(Z) A(Z) i
o s =Somy ath- () (A AR ) () par
AT AA

and note that the coarse problem matrix St can be assembled from the Sﬁj ),
In the two-level case, Sy is factored by a direct solver at the beginning of the
omputation cf. (2.5). Here, we build .S’H to approxnnate S’ . Replacing Sﬁl in

(2.5) with SH gives us the three-level preconditioner M~

BT T al OX AETZI) A% o 0 R
Rpr § Bra Z (0 Ry ) () ) ( (4) ) Rra +®S; ®° » Rpr.
i=1 Apxr Aaa LN

To define gﬁl in detail, we need to introduce several spaces and operators.
Let ', be the interface between the subregions; note that I'. C I'. For each
@

subregion !, we denote by WC) the space corresponding to the subdomain edge
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average variables in this subregion. Let W, = HzNz”l W((f) and let \/7\\76 be the subspace

of W, of elements that are continuous across I'.. ng) can be decomposed into

i)

a subregion interior part W( and a subregion interface part WS%, ie., ng) =

WSI @W(Z) We further decompose the subregion interface part W(i)c into a

primal bubspace W( )Hc and a dual subspace W( )A , ie., W(l) = VV(zH pw

Here, we will cons1der only the use of edge average constralnts over subreglon edges
Agam, we should change the variables for all local coarse matrices corresponding to
these edge average constraints. We will assume that all matrices are written in the
new variables. ‘

We denote the associated subregion interface product space by W, r_ := Hf\icl WEZ%C
We note that the elements in W, r_ can be discontinuous across the subregion inter-
face I'.. Let \/7\\/'C r, and WC r, be two subsets of W, .. The elements are continuous
across I'. in WC Tes whereas only the primal variables are continuous across l"C in

W . We have WC r, C VVc r. C W r,. We also need two extension operators Rp
and RI‘C,

o~

WCF —’WCF —’WCF

which are similar to RF and_ Rr, respectively.

We denote by F and Fr the dual spaces of W and Wc r,, respectively. We
use the same operators for F and Fp

We are now ready to explain how SH1 works on a vector in f‘c. Given a vector
U eF, lety= Sg'V and y = gﬁllll. We write ¥, y, and y in terms of interior
and interface parts, i.e., ¥ = (\Ilgi), ce \IlgiVC), Ur )y = (y(i), . ,y}N ), yr,)?, and
V=00 I )T

To obtain y, we can solve Siry = W by block factorization. This vector satisfies

Sy, o 0 Sﬁlﬁic Ry v
0 0 :
o 0 SI(IJYI) SI({: 1 R yY;V“)
RS, e TS s s, n )\ o
v
e )
UT,

where Rl(fj : WC r, — W( g . 1s a restriction operator.

We solve y§c) in terms of yr. and have

(3’2) ygi) = Sl(_lli;c (qj(llc) - Sl(_llicrc R(F?YFc) :
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We then obtain the subregion interface problem

(3.3)
O ()T o) 0 o @ | p@) S5 )T o) o) ()
Z RFC (SHFCFL. - SHFCIC SHI,_.IC SHFCIE )RFC yr. = \I/Fc - Z RFC SHFCIC SHI,_.IC \Illc .
=1 =1
Let

TG — Sgicrc _ ng S(ir1 S(i)T

el "Hier Ve,

be the subregion Schur complement in (3.3).
Denote their direct sum by 7"

As on the subdomain level case, we introduce a partially assembled Schur com-
plement of Sy, and denote it by 7. T' can be written as

(3.4) T =Ry TRr..
We define hr, € ﬁpc by
S RO o) ) gD
(3.5) hr, = Wp, — Y Ry Sy Sy @y
=1

The reduced subregion interface problem (3.3) can be written as follows: Find
yr. € W, r, such that

(36) él?c,fﬁpcypc = hpc.

To obtain the approximation y = gﬁ ', we do not solve (3.6) exactly. Instead,
we compute yr, as

(3.7) yr.=RE, . T 'Rp, r.hr,.

Here ]TBDC’FC is a scaled operator which is similar to ED’F; we can write ]TBDC’FC =
DCEFC, where D, is a diagonal scaling matrix. The diagonal elements of D., cor-
responding to the primal variables, are 1, and all others are given by 6Il(x) Here
621(1‘) is similar to 8] (), which is defined in (2.4), except that 621(90) is defined for
the subregion interface instead of the subdomain interface nodes. For an x on the

subregion interface, 61 ;() is defined as follows: For 7 € [£, 00), 61 J(x) = %,
) ’ JENG Pi T

where N, is the set of indices j of the subregions such that z € 9/ and p;(x) is the
coefficient of (2.1) at z € 9Q7. (In our theory, we assume the p; are constant in the
subregions.)

We will maintain the same relation between §(IZC) and yr_ as for ygi) and yr, in
(3.2), i.e.,

(i N—1 . . N

(39 7 = st (v - st 75,

4. Some auxiliary results. In this section, we will collect a number of results
which are needed in our theory. In order to avoid a proliferation of constants, we
will use the notation A =~ B. This means that there are two constants ¢ and C,
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independent of any mesh parameter and the coefficients of (2.1), such that cA < B <
CA, where C < oo and ¢ > 0. For the definition of discrete harmonic functions, see
[14, section 4.4].

LEMMA 4.1. Let D be a cube with vertices A1 = (0,0,0), By = (H,0,0), C, =
(H,H,0), D; = (0,H,0), A, = (0,0,H), By = (H,0,H), Cy = (H,H,H), and
Dy = (0,H, H) with a quasi-uniform triangulation of mesh size h. Then, there exists
a discrete harmonic function v defined in D such that va,p, = 1+log %, where V4, B,
is the average of v over the edge A1Bi, |v\§{1(D) ~ H (1 + log %), and v has a zero
average over the other edges of the cube.

Proof. This lemma follows from a result by Brenner and He [1, Lemma 4.2]. Let
N be an integer and Gy the function defined on (0,1) by

Gn(z) = ZN: <4n1_ - sin ((4n 3)7rx)> .

n=1

G n () is even with respect to the midpoint of (0, 1), where it attains its maximum

in absolute value. Moreover, we have
2 ~ ~ 1
‘GN|H362(0,1) ~ 14 log N and ||GN||L2(0,1) ~ 1;

see [1, Lemma 3.7].

Let [—H,0] and [0, H] have a mesh inherited from the quasi-uniform meshes on
D1 Ay and A; By, respectively, and let gp(z) be the nodal interpolation of GN(E;HH).
Then, we have

H H
(4.1) lgnll oo (— b, 1) = 1 + log T ‘ghﬁ{ggz(fH,H) ~ 1+ log 7

and ||gh||L2(—H7H) =~ .I:I7

see [1, Lemma 3.7] or [17, Lemma 1].
Let 7,(z) be a function on [0, H] defined as follows:

}%7 ngghh
Th(T) = %L} hy <x < H — ha,

—*, H—hy<z<H,

hy

where h; and ho are the lengths of the two end mesh intervals of [0, H]. Then the
following estimates hold:

H
(4.2) ||77LH%2(O,H) ~H and |Th‘§{352(0ﬂ) ~ 1+ log W

see [1, Lemma 3.6].

Define the discrete harmonic function v as 0 everywhere on the boundary of D
except on the two open faces A1B1C1 D, and A1 B1BsAs. On these two faces it is
defined by

’U(I’l,I’Q,O) = gh(fﬂg)Th(l'l) fOI‘ (1’1,1'2) S AlBlc’lDla

v(21,0,23) = gn(—x3)Th(x1)  for (z1,23) € A1 B1BoAs.
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It is clear that ¥4, 5, = 1+log % and that v has a zero average over the other edges.
Since v is discrete harmonic in D, we have

M%P(D) ~ |v|?{1/2(ap)

[ |2 2 2 2
~ |gh‘Héé2(_H7H)HTh”LZ(O,H) + ‘Th|Hé({2(O’H)||gh||L2(—H,H)

zH(qulogI;),

where we have used (4.1), (4.2), and [1, Corollary 3.5]. O

Remark. In Lemma 4.1, we have constructed the function v for a cube D. By
using similar ideas, we can construct functions v for other shape-regular polyhedra
which will satisfy similar properties and bounds.

LEMMA 4.2. Let 2 be the subdomains of a subregion ', j =1,...,N;, and let
Vlh] be the standard continuous piecewise trilinear finite element function space for
the subdomain 2% with a quasi-uniform fine mesh with mesh size of order h. Denote
by &, k =1,..., Kj, the edges of the subdomain ;. Given the average values of u,
ug, over each edge, let u € Vlhj be the minimal energy extension in each subdomain

Q; with these average values given on the edges of 937 j=1,...,N;. Then, we have
N, K
<1 +log — ) Z |U|H1(Ql ~ Z Z Hlug,, — ﬂgkz‘z'
G=1ky,ka=1

Proof. Without loss of generality, we assume that the subdomains are hexahedral.
Denote the edges of the subdomain Q; by &, k =1,...,12, and denote the average
values of u over these 12 edges by g, , k =1,...,12, respectively.

According to Lemma 4.1, we can construct 11 discrete harmonic functions ¢,,,
m=2,...,12, on Qj such that

(®,,)¢., :{ (e, — ue,) (L+1log ), m =k,

0, m # k,
and with
2 _ _ 2 H _
(4.3) |¢m\H1(Q§)%(u,gm—u‘gl) H 1+1ogﬁ , m=2,...,12.
Let v; = m(zgﬂ ¢m) + g, ; we then have (7;)¢, = ug,, for k=1,...,12, and
h

12
1
2 =12
|11j|H1(Q§) = ‘m (Z ¢m> —l—Ugl\Hl(Q;_)

=2

2 2 12
Z¢m gll( ) Z b1 0

<1+log h) (@) 1+ log

12

m=2
1 ? H
<|———-+| H|(1+Ilog— e — g, )>
= <61/2(1—|—logf)> ( + log h) Z(uf U, )

m=2

H(a U .
1—|—log W) Z &~ e, )”
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Here, we have used (4.3) for the penultimate inequality.
By the definition of u, we have

ZH u;;k U,51) .

2 2
| ‘Hl(ﬂj) —= | J|H1(Qj) — +10g h

Summing over all the subdomains in the subregion Q¢, we have

N; 12
<1+10g > Z|U|Hl(ﬂl < ZZ ng _u51) .
G=1 k=1

This proves one side of the equivalence.
We prove the other side as follows:

N; 12 N; 12

2> Hlus —ue)’ =3 > Hlu=ie)g, "

j=1k=1 j=1k=1
N; 12 N;
- 1 _ 2 - H 2
>3t | <€ | X2 (14108 7 ) ol

<C(1—|—1og h) z:|u|Hl Qi)

Here, we have used a standard finite element Sobolev inequality; see [14, Lemma 4.30]
for the second inequality and [14, Lemma 4.16] for the penultimate inequality.

We complete the proof of the other side of the equivalence by using the triangle
inequality. a

We now introduce a new mesh on each subregion; we follow [3, 13]. The purpose
of introducing this mesh is to relate the quadratic form of Lemma 4.2 to one for a
more conventional finite element space.

Given a subregion €2’ and subdomains Qé, j=1,...,N;, let T be a quasi-uniform
subtriangulation of ) such that its set of vertices includes the vertices and the mid-
points of the edges of Q; For the hexahedral case, we decomposed each hexahedron
into eight hexahedra by connecting the midpoints of the edges. We then partition the
vertices of the new mesh 7 into two sets. The midpoints of edges are called primary
and the other vertices of the new mesh 7 are called secondary. We call two vertices in
the triangulation 7 adjacent if there is an edge of 7 between them, as in the standard
finite element context; see Figures 1 and 2.

Let U (€2) be the continuous piecewise trilinear finite element function space with
respect to the new triangulation 7. For a subregion Q, Uy (Q?) and Uy (0QF) are
defined as restrictions:

U (Q) = {u|qi : v eUg(Q)}, U (090 = {ulpai = u € Ug(Q)}.
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1 Subdomain

— Original subdomain mesh
New mesh

®  Primary node

o Secondary node

Fic. 1. The new mesh and primary and secondary modes in one subdomain of a subregion.
(Note that all the lines of the original subdomain mesh are drawn in the same way.)

1 Subregion with 4 subdomains

— Original subdomain mesh

--- New mesh

® Primary node

O Secondary node

FiG. 2. The new mesh and primary and secondary nodes in a subregion with four subdomains.
(Note that all the lines of the original subdomain mesh are drawn in the same way.)

We define a mapping I IS} of any function ¢, defined at the primary vertices in QF,
to U () by

(4.4)
¢(x) if x is a primary node;

the average of the values at all adjacent primary nodes
on the edges of Q* if x is a vertex of Q;

the average of the values at two adjacent primary nodes
on the same edge of Q* if x is an edge secondary node of 2*;

the average of the values at all adjacent primary nodes on the
. boundary of Q¥ if = is a face secondary boundary node of Q;
Iy o(x) =
the average of the values at all adjacent primary nodes

if  is an interior secondary node of 2* with some adjacent
primary nodes;

the average of the values at all adjacent nodes
if x is an interior secondary node of Q' without any adjacent
primary nodes;

the result of trilinear interpolation using the vertex values
if & is not a vertex of 7.
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We recall that ng) is the discrete space of the values at the primary nodes given
by the subdomain edge average values. I?Ii can be considered as a map from Wg) to
U () or as a map from Uy () to Ug (7).

Let Igﬂi be the mapping of a function ¢ defined at the primary vertices on the
boundary of Q¢ to Uy (99Q%) and defined by Igﬂi(b = (Ig ®e)|oqi, where ¢, is any
function in W&i) such that ¢.|gni = ¢. The map is well defined since the boundary
values of [ If}i ¢ depend only on the boundary values of ¢..

Finally, let
Un(Q) = {¢ = I 6, ¢ € U ()}, U (00) = {¢]oqi, ¥ € Un(Q)}.

II‘?IQi also can be considered as a map from WEZ%L to Up (091).
Remark. We carefully define the operators Ig' and Igﬂl so that, if the edge
averages of w; € Wiz% and w; € WEJIZ over an edge £ are the same, we have

(Iggiwi)g = (II‘?IQj wj)e. Here we need to use a weighted average which has a larger
weight at the two end points since we consider an edge as an open set and the two
end primary points have only one neighboring secondary node on the edge. But this
will not affect our analysis. We could also define a weighted edge average of w; and

w; and obtain (1% w;)e = (I&¥ w;)¢ for the usual average.

We list some useful lemmas from [3]. For proofs of Lemmas 4.3 and 4.4, see [3,
Lemmas 6.1 and 6.2], respectively.

LEMMA 4.3. There erxists a constant C > 0, independent of H and |Q|, the
volume of O, such that

115} Sl oy < Clolm oy and |15} @llr2on < Cllollrziy Vo € Un ().

LEMMA 4.4. For ¢ € Uy (097,

_inf Mol @iy = 19l a2 000)
U (), ¢lyqi=¢

_inf Nl iy = 19l a1/2000)-
¢€UH(QZ)a (z)lagi:d)

LEMMA 4.5. For all w; € Wg%, we have
;C |I‘(miw|2 n~(14+1o i (T w;, w;)
pPil1ltyg LIHY/2(0Q1) ™ g L iy Wi)s

where (TOw;, w;) = wl TOw; = |wif2,, and TO = S

() g "
~ 85 sy .S

7. " r 1. °
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Proof. By the definition of 7)), we have

H - H
1+4log — ) (TWw;, w;) = (1 +log — inf lv|2
h h) vew®, V] i =wi S
N,
H i
= inf i | 14+ log — inf w2 o
veW, V| i =w; P ( . h) ;uevf“j, g, =vi, ECON; | |H (%)

N K
: = -2
inf Pi E E Hlug, — ug,,|

(0 _
VEWL, wlgqi=wi o1 gy ky=1

N, K
inf Piz Z Hlvy, — vp, [*

VEWE, wlgni=wi G0 g hpet

Q

Q

- . Q12 ~ . 2
~ (i)lnf pillyr U‘Hl(m) ~ inf 5 Pi|¢|H1(Qi)
VEWET, vlpqi=ws $EUL (), $loqi=1F" w;

~ pil TG Wil g2 o -

We use Lemma 4.2 for the third bound, the definitions of 1% and I&?" for the fourth
and fifth bounds, and Lemma 4.4 for the final bound. 0

To be fully rigorous, we assume that there is a quasi-uniform coarse triangulation
of each subregion. We can then obtain uniform upper and lower bounds for each
subregion as is required in Lemma 4.5. . o

We define the interface average operator Ep, on W, as Ep, = chRﬂ,w
which computes the averages across the subregion interface I'. and then adopts these
averages at the boundary points of the subregions.

The interface average operator Ep_ has the following property.

LEMMA 4.6.

N 2
H
|Ep,wr, |5 < C (1 + log H) lwr, %

for any wr, € Wc’r‘c7 where C is a positive constant independent of H, H, h, and
the coefficients of (2.1). Here T is defined in (3.4).

Proof. Let w; = RgZWFC € WS%C, where E%) is the restriction operator from

W.r, to WS%C We rewrite the formula for v := wr, — Ep wr, for an arbitrary
element wr, € chrc, and find that for i = 1,..., Ng,

(45) vi(x) = (wr () — Ep,wr,(z))i = Y 6 (wi(z) —w;(x)), x€dNT..
JEN

Here N is the set of indices of the subregions that have x on their boundaries.
We have

Nc Nc Nc NC
|Ep.wr,|% =Y |wi = vilfe <2 |wilfw +2) [ilfe and [wr |2 = [wilf-
i=1 i=1 i=1 i=1

We can therefore focus on the estimate of the contribution from a single subregion €2°
and proceed as in the proof of [14, Lemma 6.36].
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We will also use the simple inequality

2
(4.6) pidl; < min(p;, p;) for v € [1/2,00).
By Lemma 4.5,
i 1 7
(4.7) (T, 0;) < C PilIE" ()32 000

T (1+1logf

Let I; = Igﬂi (v;). By using a partition of unity as in [14, Lemma 6.36], we have
L= Y T70rL)+ > I"(0eh)+ > ovli(V
FCoqi Ecoqi Vveoqi

where I is the nodal piecewise linear interpolant on the coarse mesh 7. We note

that the analysis of face and edge terms is almost identical to that in [14, Lemma

6.36]. But the vertex terms are different because of Il‘?IQi. We need only consider

the vertex term when two subregions share at least an edge. This make the analysis
simpler than in the proof of [14, Lemma 6.36].
Face terms. First, consider

I (051;) = IH(efJW((s; (i —w;))).
Similar to [14, Lemma 6.36], we obtain, by using (4.6),
(4.8)
pil IO IZY (87 5 (wi — wi)) e oy

= o8] [T (ORI (i — w32 a0)

< min(ps, )T (O (I wi — (TP wi) 7) — (I5 w; — (I w)) 7)
+ (IG5 wi) 7 — (I w;) 7 )))|H1/2(am)

< 3min(p;, p;) (IIH(Gf(IzQsz (IBT) ))|H1/2(SQ7)
+ [T OF (I w; — A5 w5) 7)) a2 o0
+ 0 (IG5 wi) 7 — (Igﬂiwj)]:”Hl/?(aQ’i)) :

By the definition of Igﬁi,

O w))) = IT 0I5 wy))  and (132 w;)r = (19 w;) 7.

By [14, Lemma 4.26], the first and second terms in (4.8) can be estimated as
follows:

min(pi,pj><|fH<ofuz%z I3 wi) 2) o oaey
|IH(97-‘(IH wj — (Iam )))‘Hl/Q aQ))
= min(pi, p) ([T (O (I wi — (I3 w) ) 3290
I 07 (5 wy — (I w) 7)o 00

2

H 00 i
<C (1 + log H) (PiUIde Wil oy + A3 wjﬁ{l/z(am)) ~
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Let £ C 0F. Since the edge averages of w; and w; are the same, we have, by
the definition of 15" and I, that (18 w;)e = (I5” w;)e. As we have pointed out
before, we use a weighted average which has a larger weight at the two end points.

We then have

(I wi) 7 — (I wy) F)I?

<2 (|(I§Q"wi)g — (I wi) F|? + [(IFY wy)e — (Igmwj)ﬂQ) '

(4.9)

It is sufficient to consider the first term on the right-hand side. Using [14, Lemma
4.30], we find

(I wi)e — (I wi) 7 [?

= (I wi — (I3 wi) p)el* < C/HATE wi — (I3 wi) #1172 ¢

and, by using [14, Lemma 4.17] and the Poincaré inequality given as [14, Lemma
A.17], we have

(I wi)e — (IFwi)#[* < [ (1 + log H) T3 wi — (T wi) £ 31 -

(2

Combining this with the bound for 67 in [14, Lemma 4.26], we have

min(p;, p;) |07 (T2 w;) 7 — (Igmwj)f)ﬁ{lﬁ(am)
ﬁ 2
<(C (1 + log H) (pﬂ.[gglwiﬁp/z(agi) + Pj|1?10]wj|?{1/2(am)> :

Edge terms. We can develop the same estimate as in [14, Lemma 6.34]. For
simplicity, we consider only an edge & common to four subregions Q¢, 7, QF, and Q.
Then,

Pi\IH(efli)\?ql/z(am)
< i (17 (0I5 (61 5 (w05 = w3) s 2o
+ (17 (0I5 (8] (wi — wi))) 2112 ey

(4.10) 1 (01 (8] (wi = w) s o) -

We recall that 6I,j, 61 io» and 52[ are constants.

By the definition of Igm, Ing, Izm, and Igﬂl, we have
k3 j i k (3 1
Os (I wy) = 0 (15 wy), (TG wy) = 0 (15 wi), (15 wi) = O (I w),

and

(IF wi)e = (IFY wi)e = (TG wi)e = (IF wi)e.

We assume that € shares a face with (7 as well as Q! and shares an edge only
with QF.
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First, we consider the second term in (4.10). By [14, Lemmas 4.19 and 4.17] and
(4.6), we have

pi|IH(GgIgQi(5Z7k(wi - wk)))@pm(am)
< C’piéf,cHIH(@g(Igini — (1% w;)g) — O (15 wy, — (%)8))”%%5)
< 2C (pall 17 (O (15 ws = (I wi)e)) 3 e)
+ ol I (0 (157 wy, — (%)s))”%w))

i o & R
<20 (PiHI?{Q wi — (I5 wi)e 1726y + prllIE" wi — (Iﬁ“kwk)g||i2(5))

<2C (1 + log H) (Pi\lgﬂ wi‘?{l/Z(]:i) + pk‘II[?IQ wk|§{1/2(]:1«)>
<20 (14108 ) (pul 122 wy? 1922
= + OgH Pz‘ H wZ‘H1/2(QQi)+pk| H wk|H1/2(an) s

where F is a face of Qf, F* is a face of Q% and F* and F* share the edge &.

The first and third terms can be estimated similarly.

Vertex terms. We can apply techniques similar to those of the proof in [14,
Lemma 6.36]. We have

(4.11) ,0i|‘9vli(v)|?ql/2(agi) = Pz‘|9V(Izmvi)(V)ﬁilﬂ(a(li)'

By (4.5) and the definition of Igﬂi, we see that (Igﬂivi)(V) is nonzero only when
two subregions share one or several edges with a common vertex V.

In the definition of I?IL, we denote by & ,,, m =1,2,3,..., the edges in Q" which
share V. Denote by p; » the primary nodes on the edges &; ,,, which are adjacent to
V.

By the definition of I, (4.11), and |9y‘?{1/2(69i) < CHj;, we have

Pl U ) V2 g00) < Cpil 3 0i0im) P10 T2 002

(4.12) < Cp;H; Z |vi (pim) |-

Let us look at the first term in (4.12); the other terms can be estimated in the
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same way. We find that
piH;i|vi(pi1)|?
=piH| Y 8L (wipia) — wi(pin))]

J, £i,1COQY

C Z min(p;, pj)Hilwi(pi,1) — w;(pi)|®
gy Ei,1COQI

ST min(ps, o) Hol 19 wi(piy) — I8 w; (pi1) 2
J, €i,1COQI

C ) min(pspy)H; (|I?IQlwi(pi,1) — (Ig wi)e,
j, EiaCO0

+ 115wy (pig) — (I?Iijj)giJF)

<Cc Y min(psp) (Hil (15 wi = (157w, ) (pi)
j, £i1COQI
+ H;l (If_’,“’wj - (I?ﬁjwj)si,l) (pi,l)\z)
<c Y min(prpy) (Y 0 — I wi)e, R,
7, £i,1CO0NI

07 j
I w0y = (T wy)e, e, )

IN

I
Q

2

IN

H N’ Q!
< C Z (1 + log H) (pi‘IH wi‘ijl/Z(BQi) + pj|IH wjﬁ{l/z(mi)) .
3, £i,1CO0
For the third equality, we use that p; ; is a primary node. For the fourth inequality, we
use that (1% w;)e, , = (I%¥ w;)e, ,. We use [14, Lemmas B.5] for the sixth inequality
and [14, Lemma 4.17] for the last inequality.
Combining all face, edge, and vertex estimates, we obtain

A\ 2
i H i
(413) plllgg (’Ui)‘?{l/Q(@Qi) < C <1 + IOg H) Z p]|II(9{Q (wj)|§-11/2(3ﬂj)'
j: 0QINONIAD

Using (4.13), Lemma 4.5, and (4.7), we obtain

o) pil I (Ui)ﬁ-]lm(agi)
h

TOv,v;) = vl < C——
(000) = oo < O

N2
(l—Hog%) )
on’ 2
m Z ijIIH (U’j)|H1/2(an)
j: O0INANI#

N
i _
. <1—|—log H) g (T w;,w;)

j: 003 NANI£D

A\ 2
H
c (1 +10g H) Z ‘wj|§w(j). I:l

j: QI NN AD

<

Q

IA
|Q

| Q
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LEMMA 4.7. Given any ur € ‘/7\\/}, let ¥ = @Tép)pup. We have,
i 2
vTs e < wTSHw < ¢ (1 + log H) uTs v,
Proof. Using (3.2), (3.5), and (3.6), we have

TS = Z\I/()y)Jr‘I/ryr
i=1
. A" (g™t (M () (@) o ()" o(i) @~ g :
= vy <SHICIC(\I}IC — Sty r, Rr)’m)) + (hFc +> Ry Stir, . Sty ‘I’IC> yr.

i=1 i=1

=z

-1

Nc
i i )T o)™t 53 5T 75
=3 S ewfye = Y0 S0 W nf (RETR) b
i=1 i=1
Using (3.8), (3.5), and (3.7), we also have

Nc
VTS e =30y, o + OF g,
=1
T

N
i 1 i i)~ i (D)~ G ~
S (597 ) s ) + (hp +zR Hifwgg)

N Ne
N (i ~ )T o))t g (6 D 7-1p
_ Z \I,gc) Sl(_licl gl ) +hly Z \Ilgc) Sﬁjalc\llgc) +h{ (REC,FCT 1RDC,FC) hp, .
i=1 i=1

We need only compare hf (RL TRr,) 'hr, and hf (R}, . T~'Rp, r,)hr, for any

hr, € ﬁrc. We follow the proofs of [8, Theorem 1].
Let

(4.14) wr, = (E%Cfépr) hpC S WC,FC and vr, = TﬁlEDC,I‘ChI‘C € chfc'

Noting the fact that EREDC,FC = Egmrcépc = I and using (4.14), we have

oy~ ~ -1 ~ ~
h, (R%;TRFC) hr, = hi wr, = hi Rp_r Rr.wr,

~ ~ ~~ ~ ~ T
=h{ R}, p, T 'TRr.wr, = (T_lRDC,FChFc> TRr, wr,

=vE TRy wr, = (vr.,Rr.wr,)7

<A{vr,,vr, > <RF wr,, Rr Wr, >T/

- (u (R T oY) (u (R TR )

We obtain

bf (RFTEr.) hr, <bf (Bh r T 'Rp.r,)hr,.
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On the other hand,

bf (Rb. . T Rp.r.)br. = wi (RE TR, ) (Rb, o T Rp.r.) br.

— »T T-1pn _ nT
= <WFC7RDC,FC (T RDchhFc)>(RT TRr,) - <WFC7RDC,FCVFc>(§T TRr,)
Te c Te c
~ ~ 1/2
1/2 T T
< <WFcaWFU>(13L1§ TRr,) <RDC,FCVFC7RDC,FCVFC>(§T Thr,)
c c Te Te
1/2 1/2

o~ o~ -1 ~ o~ ~ o~
= (hlq:c (R%CTRFC) hrc> <RFCR,1[;C,FCVFC’RFCREC,FCVFC>Z:
o 1 1/2
= <h11—:C (RITCTRFC) hpc> |EDCV1"C|7N~
IjI o 1 1/2
<C(1+log (h{ (RLTHR:.) hpc) Ivr,
1/2

i N1 1/2 ~ SO
=C (1 + log H) <h%1 (RITCTRFC) hre) (hIT (Rgc,rchlRDC,Fc) hrc) )

T

where we use Lemma 4.6 for the penultimate inequality.
We finally obtain

N 2
~ SO baa e e N1
nf, (RTDC,FCT1RDC,FC)hrCsc<l+logH> <h?c (RE Thr,) hrc)- D

5. Condition number estimate for the new preconditioner. In order to
estimate the condition number for the system with the new preconditioner M1, we
compare it to the system with the preconditioner M -

LEMMA 5.1. Given any ur € Wr,

2
~ H
(5.1) ulM'ur <ul M tur < C (1 + log H) ul M ur.

Proof. We have, for any ur € \/7\\/}7

ul M tap

N 0 46 \ !

~ Ay [ A% A 0 ~

=ulRpr{ Ria (0 RY ) < A{é A(Ii)A ) ( (i) )Rm Rp rur
=1 AT AA

+ ugég)F¢Sﬁl¢T}~3D7pup
and
ug/]\zflulﬂ
N @ 4@ \ 7!
~ T A A 0 ~
ZU%R%F RIZA (0 R(A) ) ( {5 (Iz)A ) ( (1) )RFA Rp rur
i=1 Axr Aaa

+ u%ﬂﬁgypq)gﬁlq)jjﬁp’pulﬂ.
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We obtain our result by using Lemma 4.7. |

THEOREM 5.2. The condition number for the system with the three-level precon-
ditioner M~Yis bounded by C(1 + log 2)2(1 4 log #)2.

Proof. Combining the condition number bound, given in (2.7) for the two-level
BDDC method, and Lemma 5.1, we find that the condition number for the three-level
method is bounded by C(1 + log £)2(1 + log ££)2. O

6. Using Chebyshev iterations. Another approach to the three-level BDDC
methods is to use an iterative method with a preconditioner to solve (3.6). Here, we
consider a Chebyshev method with a fixed number of iterations and use E};)C)Fcf—lé D..T.
as a preconditioner. Denoting the eigenvalues of (EECICT“E’,DC’FC)(Eafﬁpc) by A;,
we need two input parameters [ and u, which are estimates for the minimum and max-
imum values of );, for the Chebyshev iterations. From our analysis above, we know
that [ = 1 and max; \; < C(1 + log £)?(1 + log ££)2. We can use the conjugate
gradient method to obtain an estimate for the largest eigenvalue at the beginning of
the computation to choose a proper u.

Let a = lfu, w= Z—fﬁ, and o; = 1 —a);. As for the two-dimensional case in [17,
section 6], we have the following theorem. No new ideas are required.

THEOREM 6.1. The condition number using the three-level preconditioner M1

with k Chebyshev iterations is bounded by Cgfglzg (1+1log %)2’ where

cosh(k cosh™ (uo;)) >
cosh(kcosh™ () /)’

C1 (k) = min <1 -

B B cosh(k coshfl(,UUj))
Ca(k) = max (1 cosh(k cosh™" (1)) ) 7

dczgk; — 1 as k — 0.

7. Numerical experiments. We have applied our two three-level BDDC algo-
rithms to the model problem (2.1), where Q = [0,1]3. We decompose the unit cube
into N x N x N subregions with the side-length H = l/N and each subregion into
N x N x N subdomains with the side-length H = H/N. Equation (2.1) is discretized,
in each subdomain, by conforming piecewise trilinear elements with an element diam-
eter h. The preconditioned conjugate gradient iteration is stopped when the norm of
the residual has been reduced by a factor of 1076.

We have carried out two different sets of experiments to obtain iteration counts
and condition number estimates. All the experimental results are fully consistent with
our theory.

In the first set of experiments, we use the first preconditioner M~1. We take the
coefficient p = 1 in case 1. In case 2, p is constant in one direction with a checkerboard
pattern in the cross sections, where we take p = 1 or p = 100. The coefficients in
both cases satisfy [14, Assumption 6.27.2]; i.e., for all pairs of subdomains which have
a vertex but not an edge in common, there exists an acceptable edge path (see [14,
Definition 6.26]) between these two subdomains. Table 1 gives the iteration counts
and condition number estimates with a change of the number of subregions. We find
that the condition numbers are independent of the number of subregions. Table 2 gives
results with a change of the number of subdomains and the size of the subdomain
problems.
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TABLE 1
Eigenvalue bounds and iteration counts with the preconditioner M~ with a change of the

number of subregions, % =3 and % =3.

Case 1 Case 2
Num. of subregions | Iter. Cond. # | Iter. Cond. #
3x3x3 9 2.6603 9 2.2559
4x4x4 10 2.8701 10 2.5245
5x5x5 11 2.9668 11 2.8074
6X6XxX6 11 3.0190 11 2.8477
TABLE 2

FEigenvalue bounds and iteration counts with the preconditioner M~ with a change of the
number of subdomains and the size of subdomain problems with 3 X 3 X 3 subregions.

Case 1 Case 2 Case 1 Case 2
% Iter. Cond. # | Iter. Cond. # % Iter. Cond. # | Iter. Cond. #
3 9 2.6603 9 2.2559 3 9 2.6603 9 2.2559
4 9 3.0446 10 2.5183 4 9 2.7261 10 2.3299
5 10 3.3570 11 2.7782 5 10 2.8381 10 2.4353
6 10 3.6402 11 3.0078 6 10 2.9601 11 2.5488

TABLE 3 .

Figenvalue bounds and iteration counts with the preconditioner M~1', u = 2.3, 3 x 3 x 3

subregions, % =6, and % =3.

Tter. C1(k) Amin Amax Cond. #
13 0.6061 | 0.6167 | 2.3309 3.7797
9 0.9159 | 0.9255 1.8968 2.0496

8 0.9827 1.0000 1.8835 1.8836

8 0.9964 | 1.0016 | 1.8854 1.8825

8 0.9993 | 1.0009 | 1.8797 1.8780

Y | W N =] &

TABLE 4
Figenvalue bounds and iteration counts with the preconditioner M—1, u = 3, 3x3x 3 subregions,

%:6, and%:&

Tter. | C1(k) | Amim | Amax | Cond. #
15 | 0.5000 | 0.5093 | 2.0150 | 3.9562
10 | 0.8571 | 0.8678 | 1.9744 | 2.2753
0.9615 | 0.0900 | 1.8821 | 1.9012
8 | 0.0807 | 1.0015 | 1.8955 | 1.8927
8 0.9972 1.0020 1.8903 1.8866

Y | W N =] 3
co

In the second set of experiments, we use the second preconditioner M~ and take
the coefficient p = 1. We use the preconditioned conjugate gradient (PCG) to esti-
mate the largest eigenvalue of (E%C’Fcf_lé DU,FC)(ER TRr,), which is approximately
2.3249. For 18 x 18 x 18 subdomains and % = 3, we have a condition number esti-
mate of 1.8767 for the two-level preconditioned BDDC operator. We select different
values of u, the upper bound eigenvalue estimate of the preconditioned system, and
of k to see how the condition number changes. We take v = 2.3 and uw = 3 in Tables
3 and 4, respectively. We also evaluate Cy(k) for k = 1,2,3,4,5. From these two
tables, we find that the smallest eigenvalue is bounded from below by C;(k) and the
condition number estimate becomes closer to 1.8767, the value for the two-level case,
as k increases. We also see that if we can get a more precise estimate for the largest

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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eigenvalue of (EEC7FCT71EDC7PC)(E%LTEFC), we need fewer Chebyshev iterations to

get

a condition number close to that of the two-level case. However, the iteration

count is not very sensitive to the choice of u.
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