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Abstract Although dependence in effect sizes is ubiqui-
tous, commonly used meta-analytic methods assume inde-
pendent effect sizes. We describe and illustrate three-level
extensions of a mixed effects meta-analytic model that
accounts for various sources of dependence within and
across studies, because multilevel extensions of meta-
analytic models still are not well known. We also present a
three-level model for the common case where, within stud-
ies, multiple effect sizes are calculated using the same
sample. Whereas this approach is relatively simple and does
not require imputing values for the unknown sampling
covariances, it has hardly been used, and its performance
has not been empirically investigated. Therefore, we set up a
simulation study, showing that also in this situation, a three-
level approach yields valid results: Estimates of the treat-
ment effects and the corresponding standard errors are
unbiased.
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Dependence

Three-level meta-analysis of dependent effect sizes

Meta-analysis refers to the statistical integration of the quan-
titative results of several studies. For instance, if several
experimental studies examine the effect of student coaching
on students’ achievement, a meta-analysis can be used to

investigate how large the effect is on average, whether this
effect varies over studies, and whether we can find factors
that are related to the size of the effect (for an introduction to
meta-analysis, see Borenstein, Hedges, Higgins, &
Rothstein, 2009). Most often, the effects that were observed
in the primary studies are not exactly the same as the ones
predicted on the basis of the meta-analytic model. Most
meta-analytic methods assume that these deviations of the
observed effect sizes from their expected values are inde-
pendent. This means, it is assumed that one specific ob-
served effect size does not give information about the
direction or size of deviation of another observed effect
from the value we would expect on the basis of the meta-
analytic model. Nevertheless, in practice, there are numer-
ous sources of effect size dependence, and therefore, meta-
analysts are very often confronted with dependent effect
sizes. For instance, if several studies were done by the same
research group, it is not unlikely that the effect sizes from
this research group are more similar than effect sizes from
two different research groups, because the effect sizes might
be influenced by common factors, including the way the
dependent and independent variables were operationalized,
the characteristics of the studied population, the way sub-
jects were sampled, and the observers or interviewers who
collected the data (Cooper, 2009). In the same way, study
results from the same country might be more similar than
study results from different countries, again inducing depen-
dence in observed effects.

Besides dependence over studies, there also might be
dependence within studies. For instance, a specific effect
can be investigated for several samples in a single study. In
this situation, factors such as the ones described above
possibly vary less within the same study than over studies,
possibly resulting in dependence.

The dependence within studies is most obvious if effect
sizes are based on a common sample (Becker, 2000; Gleser
& Olkin, 1994). Studies often do not use one single outcome
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variable but, instead, report the treatment effect on different
variables. These can refer to different but related constructs
(such as anxiety and depression), different aspects of a
construct (such as subscales of a psychological test), differ-
ent operationalizations of the same construct (such as two
instruments for anxiety), or repeated measures of the same
construct (e.g., a posttest and follow-up measures). Another
example of overlap in the samples is the case where multiple
(independent) treatment groups are compared with a com-
mon control group.

Stevens and Taylor (2009) discussed another source of
dependence, one that is not intrinsic to the design or the data
but is related to the way the effect sizes are calculated and
occurs when mean differences from independent groups are
standardized using a common within-group standard devia-
tion estimate—more specifically, the root MSE resulting
from an ANOVA for a between-subjects factor with more
than two levels.

Dependent effects sizes are less informative than inde-
pendent effect sizes. Suppose that two outcome variables are
perfectly correlated. Essentially, this means that both out-
comes refer to the same latent variable and that effect sizes
calculated for both outcomes will give exactly the same
information. If, in a meta-analysis, both of these effect sizes
are included as independent effect sizes, the same informa-
tion therefore is used twice. In general, when outcome
variables are correlated, information regarding one outcome
overlaps with information yielded by the other outcome. By
“inflating” the available information in this way, we will
overestimate confidence in the results of the meta-analysis.
In statistical terms, standard errors of the parameter esti-
mates are likely to be underestimated, resulting in too small
confidence intervals and too high a number of incorrect
rejections of the null hypotheses (Becker, 2000). There is
also another problem when ordinary meta-analytic methods
are used to combine dependent effect sizes: Studies or
groups of studies with multiple effect sizes will have a larger
influence on the results of the meta-analysis than will stud-
ies reporting only one effect size, potentially resulting in
biased estimates. For both reasons, it is important that the
dependence between effect sizes be taken into account in
our meta-analysis.

Yet the dependence over studies and, especially, the
dependence within studies including independent samples
are often overlooked, although recently, Stevens and Taylor
(2009) and Hedges, Tipton and Johnson (2010) discussed
the use of random effects for dealing with this kind of
dependence. Some authors even explicitly have stated that
if effect sizes are based on independent samples, effect sizes
can be regarded as independent even if they stem from the
same study (e.g., Littell, Corcoran, & Pillai, 2008).

The dependence within studies due to overlapping sam-
ples has received much more attention. Becker (2000) and

Littell et al. (2008) have given an overview of approaches to
accounting for this kind of dependence, as well as of the
corresponding problems or limitations. In general,
approaches boil down to three types: ignoring dependence,
avoiding dependence, and modeling dependence. Due to
reasons described above, ignoring dependence in principle
is not appropriate. Yet if only one or two studies in a large
set of studies based more than one effect size on the same
sample, treating the effect sizes as independent will proba-
bly not substantially influence the results of the meta-
analysis. In any case, if a researcher decides to treat multiple
effect sizes from the same studies as independent, sensitivity
analyses are recommended, comparing the results of the
analysis ignoring the dependence with one or more alter-
natives (Becker, 2000).

A second strategy is to avoid dependence, which means
that we restrict our analysis to one effect size per study. If
more or less the same outcome variables are measured in
each study, separate meta-analyses can be performed for
each type of outcome. Also, this approach is not without
problems or disadvantages. For instance, Rosa-Alcázar,
Sánchez-Meca, Gómez-Conesa and Marín-Martínez
(2008), investigating the effect of psychological treatment
of obsessive–compulsive disorder, performed five separate
meta-analyses for five types of outcome variables. Yet they
found that only 7 of the 24 studies reported the effect of
psychological treatment on social adjustment, a number that
is too small for accurately estimating the between-study
variance. Performing separate analyses even can become
unfeasible if there are a lot of different outcomes and,
especially, if chosen outcomes vary a lot over studies.
Moreover, when separate meta-analyses are performed for
different outcomes, testing differences between outcomes in
the mean treatment effect or in the moderating effects of
study characteristics is not straightforward. Finally, each
separate meta-analysis uses only a subset of the data, which
in principle results in less accurate estimates and less power
in statistical tests (Gleser & Olkin, 2009).

Another way of avoiding dependence is not taking the
individual effect sizes as the units of analysis but, rather, the
samples (i.e., using one effect size per sample), the studies,
or even research groups (Cooper, 2009). To obtain one
effect size per higher level unit, one of the observed effect
sizes from that unit can be selected, either randomly or
because the chosen effect size refers to the outcome variable
that is most of interest from a substantive point of view. A
common way to reduce multiple effect sizes per higher level
unit (e.g., per study) is to average them, an approach that
especially makes sense if outcomes refer to the same con-
struct. However, by simply averaging effect sizes within
studies, the variance between effect sizes is artificially re-
duced, and informative differences between outcomes get
lost (Becker, 2000; Cheung & Chan, 2008).
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The third and most complex strategy is to model the
dependence. Raudenbush, Becker and Kalaian (1988) pro-
posed a multivariate model for analyzing multivariate effect
size data. This model was extended by Kalaian and
Raudenbush (1996) to a multivariate mixed model, allowing
one to model variation between and within studies. The
model, which will be presented later, assumes that effect
sizes within the same study are possibly correlated. Whereas
an ordinary meta-analysis uses sampling variance estimates
of the effect sizes to approximate the optimal weights for the
effect sizes and to estimate unknown parameters and
corresponding standard errors, a multivariate meta-analysis
uses the estimated sampling covariance matrix of the
multivariate effect sizes. The multivariate approach has
several advantages: The treatment effect is estimated for
each outcome, all available information is used in one
single analysis, it is possible to test contrasts between
treatment effects of outcomes (e.g., whether the effect
on a first outcome is the same as the effect on two
other outcomes), and, similarly, it is possible to test
differential moderating effects of study characteristics.
The approach, however, is more complex to use, be-
cause it is not always implemented in software for
meta-analysis. A major disadvantage of the approach is
that for estimating the covariance matrix of the effect
sizes, the correlations between the outcomes are also
needed. If the results of standardized tests are used,
correlations reported in the test manuals might give an
idea about these correlations, but otherwise estimates of
these correlations are difficult to obtain, because only
rarely are estimates reported by the primary studies and
the raw data that could be used to estimate the correla-
tions are typically not available to the meta-analyst.
Therefore, multivariate meta-analyses are seldom used or are
used only on a subset of outcomes for which relatively accu-
rate intercorrelation estimates are available. In addition, the
multivariate approach, as well as the approach of separate
meta-analyses for each outcome variable, is feasible only if
there are only a few different outcomes.

In this article, we describe and evaluate an alternative
approach to accounting for dependence within and over
studies: the use of multilevel models. First, we briefly intro-
duce multilevel models and their application for meta-
analysis. Next, we give some examples of meta-analyses
using three-level models, accounting for different kinds of
dependencies. In one of the examples, a three-level model is
used to account for sampling covariation. Because applying
the multilevel approach in this situation is not straightfor-
ward and has not been validated before, we explore its
performance with an in-depth discussion of the analysis
results for a simulated data set and by presenting the results
of an extensive simulation study. The article closes with a
discussion and conclusions.

Multilevel meta-analysis

In social and behavioral sciences, data often have a clustered
structure. For instance, if in educational research, first a set
of schools is sampled from a population of schools and, in a
second stage, students are sampled from the selected
schools, data are clustered: The students participating in
the study can be grouped according to the schools they
belong to, as illustrated in Fig. 1.

This structure can induce dependence in the data:
Students from the same school are, in general, more alike
than students from different schools—for instance, due to
(self-) selection effects or to effects schools have on their
students. Therefore, school membership has to be taken into
account when statistical analyses that assume independent
residuals are performed.

Multilevel models have been developed to deal with such
grouped data (Goldstein, 1987; Raudenbush, 1988). A sim-
ple two-level model (with a within- and a between-group
level) includes a regression equation (Eq. 1) regressing the
dependent variable Y on a predictor X, describing the vari-
ation over units (referred to with index i) within groups
(index j):

Yij ¼ b0j þ b1jXij þ eij: ð1Þ

Regression coefficients also get an index j, meaning that
they are allowed to vary over groups. This variation at the
group level is described using additional regression equa-
tions, possibly including group characteristics as predictors.
Equations 2 and 3 at this second level regress the within-
group intercepts and slopes, respectively, on a group char-
acteristic Z:

b0j ¼ g00 þ g01Zj þ u0j ð2Þ

b1j ¼ g10 þ g11Zj þ u1j: ð3Þ

Residuals at each level are typically assumed identically
and independently normally distributed with zero means,
and being independent over levels, this is

eij � N 0;σ2
e

� �
and

u0j
u1j

� �
� N

0
0

� �
;

σ2
u0

σu0u1 σ2
u1

� �� �
ð4Þ

School S1 S2 S3  S4 S5 S6

Student s … s s … s s … s s … s s … s s … s 

Fig. 1 A clustered structure in educational research
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Especially when there is a large number of groups, the
multilevel model is a very economic model, because regard-
less the number of groups that are included, the only param-
eters to be estimated are the regression coefficients at the
group level (the γ’s), and the (co)variances of the residuals
at the first and second levels (σ2

e ;σ
2
u0
;σu0u1 ;σ

2
u1
). If one is

interested in the individual level 1 regression coefficients
(the β’s), these coefficients can be estimated afterward using
empirical Bayes techniques. By borrowing strength from the
whole data set, empirical Bayes estimates are more efficient
than the estimates based on the scores from the specific
group alone (Raudenbush & Bryk, 2002).

An important strength of the multilevel model is its
remarkable flexibility, allowing one, for instance, to define
a third level describing the variation of the level 2 regression
coefficients over groups of groups, including additional
covariates at each of the levels, defining more complex
covariance structures, such as an autocorrelation structure,
or using a nonidentity link function for modeling discrete
dependent variables, such as proportions or counts. Thanks
to their flexibility, multilevel or mixed models have become
popular in several fields, including education, psychology,
economics, and biomedical sciences, for several kinds of
nesting (students in schools, repeated measurement occa-
sions within subjects, children in families, patients in doc-
tors, etc.).

One application of multilevel models is meta-analysis
(Hox, 2002; Raudenbush & Bryk, 2002). In a meta-
analysis, we have indeed a similar nested data structure:
Study subjects are nested within studies. Scores can
vary over subjects from the same study (level 1), but
there might also be differences between studies (level
2). For instance, if we want to combine the results of a
set of treatment effectiveness studies comparing a con-
trol and a treatment group, we define a predictor at the
subject level (Xij of Eq. 1) as a dummy treatment
indicator, having value 1 if subject i of study j belongs
to the treatment group and 0 if the subject belongs to
the control group. In this way, β0j of Eq. 1 is equal to
the expected value of a subject belonging to the control
group in study j, whereas β1j refers to the increase of
the expected value if a study subject belongs to the
treatment group and, therefore, can be interpreted as
the treatment effect. One or more study characteristics
can be included in the study-level regression equations
(Eqs. 2 and 3) in an attempt to explain possible varia-
tion over studies in the expected baseline levels, β0j, or
in the treatment effects β1j. If a study characteristic is
found to explain or describe the treatment effects, the
study characteristic has the role of a moderator variable.

There are, however, three major differences between an
ordinary multilevel analysis and a typical meta-analysis. A
first difference is that meta-analyses often combine results

of studies in which the dependent variable is not always
measured on the same scale, requiring a standardization of
the data. To compensate for multiplicative factors, scores of
each study can be divided by (an estimate of) the within-
study standard deviation σje. More generally, linearly equat-
able scales can be made comparable by dividing the devia-
tion of each score from the mean by the standard deviation.
Note that whereas, for the unstandardized scores, β1j is
equal to the difference in expected values for both control
and treatment conditions, by standardizing scores in either
way,β1j becomes the standardized mean difference that was
proposed by Cohen (1988) and has become a popular effect
size metric in social and behavioral research.

A second difference between ordinary multilevel analy-
ses and meta-analyses is that a meta-analyst often does not
have all raw data but, rather, depends on results reported in
the form of summary statistics, test statistics, or effect size
values. Fortunately, it is often possible to convert the results
of each study to a common effect size metric and combine
these effect sizes using a multilevel model. For instance, if,
for each study, we can obtain a standardized mean differ-
ence, which is an estimate of the population standardized
mean difference β1j, Eq. 1 is adapted as follows:

bb1j ¼ b1j þ rj: ð5Þ

The residual rj of Eq. 5 summarizes the effect of the
residuals eij of all individual subjects in study j on the
observed treatment effect. Differences over studies between
treatment effects can be described in the same way as for
raw data, regressing the β1j on one or more study character-
istics to investigate their moderating effects (Eq. 3). By
substitution, we can write the two-level meta-analytic model

(Eqs. 5 and 3) in one equation: bb1j ¼ g10 þ g11Zj þ u1j þ rj.

If this second-level equation does not include any predictor,
the multilevel meta-analytic model simplifies to the meta-
analytic random effects model described by DerSimonian

and Laird (1986) and Hedges and Olkin (1985), with bb1j
referring to an effect size estimate, γ10 to the overall effect,
and σ2

uj
to the systematic between-study variance. By includ-

ing predictor variables, we assume that the variation of
treatment effect over studies might be partly explained by
moderating study characteristics, whereas the other part
remains unexplained or random. Therefore, the multilevel
meta-analytic model is also called a mixed meta-analytic
model (Borenstein et al., 2009).

A third difference between raw data multilevel analyses
and effect size meta-analyses is that for most commonly
used effect size metrics, (a good approximation of) the
sampling variance σ2

rjcan be calculated prior to performing

the meta-analysis, and therefore, the variance of the resid-
uals at the subject level does not have to be estimated in the
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meta-analysis anymore (Raudenbush & Bryk, 2002). We
want to remark that the multilevel model (Eqs. 5 and 3)
are applicable for other measures of effect size (such as log
odds ratios or Fisher’s Z-transformed correlation coeffi-
cients), as long as their sampling distributions are approxi-
mately normal, with a variance that can be estimated, and
the same effect size metric is used for all studies.

Because a multilevel analysis of the raw data is similar to
a two- or multistage analysis in which the subject-level
regression coefficients (the βs from Eq. 1) are estimated
and used as the dependent variable in new regression anal-
yses, analyzing raw data or analyzing effect sizes (which can
be regarded as standardized regression coefficients at the
subject level) will give essentially the same results. An
advantage of the analysis of the raw data (in medical scien-
ces known as individual patient data), however, is that it
allows for the incorporation of covariates at the subject
level—that is, in Eq. 1—as discussed by Higgins, Whitehead,
Turner, Omar, & Thompson, 2001. Moreover, using maxi-
mum likelihood estimation procedures, as is common for
multilevel models, or using traditional estimation procedures
for meta-analysis, such as the method of moments in
DerSimonian and Laird (1986), will give very similar results,
even if the normality assumption that is made for the maximum
likelihood procedure is violated (López-lópez, Viechtbauer,
Sánchez-Meca, & Marín-Martínez, 2010; Van den Noortgate
& Onghena, 2003b). The major strength of using the multilevel
modeling framework for meta-analysis is, however, its
flexibility. In the following section, we will discuss one
extension of the two-level meta-analytic model that is
only very rarely used in practice: the inclusion of an
additional level to account for dependence in the effect
sizes.

Three-level meta-analyses for dependent effect sizes

Suppose that several teams performed more than one study,
possibly resulting in dependent study results. The equation
at the first level—that is, the subject level—states that due to
sampling variation, the observed effect size from study j
from team k possibly deviates from the “true” treatment
effect for that study:

bb1jk ¼ b1jk þ rjk with rjk � N 0;σ2
rjk

� 	
: ð6Þ

Because the sampling variance, σ2
rjk
, depends on the

study—especially on the study size—it also gets an
index for the study and the team. Additional equations
state that the true treatment effect β1jk can vary ran-
domly over studies from the same team around a team-
specific mean effect (θ10k from Eq. 7, the second-level
model) and that this team-specific mean effect, in turn,

can vary randomly over teams around an overall mean
effect (γ100 from Eq. 8, the third-level model):

b1jk ¼ θ10k þ u1jk with u1jk � N 0;σ2
u

� � ð7Þ

θ10k ¼ g100 þ v10k with v10k � N 0;σ2
v

� �
: ð8Þ

In order to try to explain this variation over studies and
research teams, characteristics of these studies and teams
can be included as predictors at the respective levels. It is
even possible to allow the effect of a study characteristic to
vary (partly) randomly over research teams.

The use of the three-level model is illustrated below
using three examples of our own research. For all three
analyses, use was made of the restricted maximum likelihood
estimation procedure implemented in Proc Mixed from SAS
(Littell, Milliken, Stroup,Wolfinger, & Schabenberger, 2006).
Codes for running the analyses can be obtained from the
authors.

Example 1: studies with multiple experiments

Van den Bussche, Van den Noortgate and Reynvoet (2009)
performed a meta-analysis of the results of 54 studies, to
assess the magnitude of psychological subliminal prim-
ing effects and to explore what factors are associated
with the strength of the priming effects. In each study,
subjects performed a number of tasks (e.g., indicating
whether a number is larger or smaller than 5) after been
given a congruent stimulus (e.g., a number larger than 5
is preceded by a number larger than 5) or an incongru-
ent stimulus (e.g., a number larger than 5 is preceded
by a number smaller than 5). Because the meta-analysis
focused on subliminal priming, only studies were in-
cluded that presented primes below the threshold for
conscious perception—for instance, by presenting stim-
uli for very short durations. A priming effect is man-
ifested as faster responses on congruent than on
incongruent trials. For each subject, the priming effect
can be estimated as the mean reaction time on incon-
gruent trials minus the mean reaction time on congruent
trials. The outcome used to quantify the observed prim-
ing effect in a primary study was defined as the mean
difference over subjects, divided by the standard devia-
tion of the differences.

In most of the 54 studies, more than one experiment was
conducted, 156 in total, that differed from each other in one
or more factors. Experiments from the same study cannot be
regarded as independent, because they were done by the
same researchers, and often with more similar research
groups or more similar stimuli or procedures than in experi-
ments from different studies. Therefore, we used a three-
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level model to analyze the data. We have a set of studies
(level 3), experiments nested within studies (level two), and
a sample of subjects for each experiment (level 1) (see
Fig. 2). There are, therefore, three sources of variance:
population differences between study population effects,
population differences between effects of experiments from
the same study, and, finally, sampling variance.

Two separate meta-analyses were performed on a set
of 23 studies (88 experiments) containing semantic cat-
egorization tasks and a set of 32 studies (68 experi-
ments) containing lexical decision and naming tasks.
Using a three-level extension of the common meta-
analytic random effects model—that is, a model without
predictors at the experiment and study level—resulted
for the first set of studies in a mean effect estimate of
0.80, but significant variance was found between stud-
ies, as well as between experiments within studies.
Next, we investigated the moderating effect of several
characteristics of the experiments and studies and found
that, with only two predictors (prime novelty and cate-
gory size), the variance at the experiment and study
levels was reduced by 87 % and 40 %, respectively.
For the second set of studies, a mean effect of 0.47 was
found, and effects were found to vary over studies, but not
over experiments, within studies. With two predictors (prime
duration and target set size), the variance over and within
studies was reduced by 99 % and 44 %, respectively.

Example 2: single-subject experimental designs

In single-subject experimental designs (SSEDs), subjects
are measured repeatedly under different conditions—for
instance, during a baseline phase without a treatment, a
treatment phase, and a second baseline phase. The effect
of the treatment for a subject can be evaluated by comparing
the mean score of the subject during the baseline phase(s)
and the mean during the treatment phase(s). To explore
generalizability, SSED studies often include more than 1
subject, resulting in hierarchical data: Measurements are
grouped or “nested” in subjects. If we have several SSED
studies, subjects in turn are grouped in studies, meaning that
three hierarchical levels can be distinguished (Fig. 3).

In SSED studies, data are typically reported using graph-
ical displays, and conclusions are based on a visual analysis
of these plots. The tradition of graphically presenting data

means that the raw data can often be retrieved from the
research reports, permitting one to combine the data of
several subjects, using an ordinary two-level model to ana-
lyze data of one SSED study or an ordinary three-level
model to combine the results of several studies (Van den
Noortgate & Onghena, 2003a). This approach was illustrat-
ed by Van den Noortgate and Onghena (2008), reanalyzing
the meta-analytic data set of Shogren, Fagella-Luby, Bae
and Wehmeyer (2004), consisting of the results of 30 study
subjects from 13 SSED studies that evaluated the impact of
providing choice-making opportunities on problem behav-
ior. In some of these studies, the intervention allowed sub-
jects to choose the order of the task, whereas in other
studies, subjects could make a choice between two tasks.
Problem behavior refers to, for instance, aggressive behav-
ior, destructive behavior, and off-task behavior. To compare
results over studies, scores within studies were standardized
by dividing the scores for each subject by the within condi-
tion standard deviation.

Results of the three-level meta-analysis revealed that, on
average, the amount of problem behavior during the base-
line phase was about 2.72 points, whereas the average
standardized mean difference between phases was −1.72.
This 63 % reduction of problem behavior was statistically
significant, z 0 4.91, p < .0001. Estimates of the between-
study (co)variance of the baseline level and the choice effect
were small and statistically not significant. Within studies,
however, there was significant variation over subjects, both
in the baseline level and in the choice effects. There was also
some evidence for a negative covariation between baseline
level and effect, suggesting that the intervention has a
smaller effect for subjects with a relatively high baseline
level of problem behavior, but this covariation was statisti-
cally not significant at the .05 significance level. Van den
Noortgate and Onghena (2008) explored whether variation
in baseline levels and in the effect sizes could be explained
with a characteristic of the subjects (age) and a characteristic
of the study (the kind of choice that was given), but neither
of the two characteristics was found to have an effect and to
reduce the variation.

Although this meta-analysis is atypical, in that raw data
were analyzed rather than effect sizes, we found that com-
bining effect sizes (more specifically, standardized regres-
sion coefficients for each subject) for this example gave
almost identical parameter estimates and corresponding
standard errors for the mean treatment effect, the variance

Study Study 1 Study 2 … Study K

Experiments E1 E2 E1  E1 E2 E3

Participants p … p p … p p … p  p … p p … p p … p 

Fig. 2 Three-level hierarchical structure in the priming study meta-
analysis

Study Study 1 Study 2 … Study K

Subjects S1 S2 S1  S1 S2 S3

Measurements m … m m … m m … m  m … m m … m m … m

Fig. 3 Three-level hierarchical structure in a set of SSED studies
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of the treatment effect over subjects and studies, and the
moderating effects of both predictors.

Example 3: multiple outcomes per sample

Geeraert, Van den Noortgate, Grietens and Onghena (2004)
performed a meta-analysis on 40 studies evaluating the
effect of early prevention programs for families with young
children at risk for physical child abuse and neglect.

Whereas the ultimate goal of each of the evaluated early
support programs was to reduce child abuse and neglect, the
evaluation of a reduction of child abuse and neglect due to
the program is not straightforward, because parents try to
hide these aspects. We found that there were large differ-
ences between studies in the criteria used to evaluate the
effect of the programs. Some studies used direct reports of
child abuse or neglect by child protective services, some
studies used indirect indications of child abuse and neglect,
such as reports of hospitalization, the frequency of medical
emergency service visits, contacts with youth protection
services, and out-of-home placements. A lot of studies also
evaluated the reduction of risk, looking at, for instance, the
well-being of the child, parent–child interaction character-
istics, and social support. Most studies calculated the effect
for more than one outcome variable. The number of effect
sizes per study varied from 1 to 52, with an average of
almost 15 effect sizes per study. A complicating factor for
this analysis of dependent effect sizes, therefore, was that
a lot of very different outcome variables were used in the
studies. Even after categorizing the outcomes in broad
categories, we ended up with 11 types of outcomes.
Moreover, because the criteria do not refer to well-
studied standardized measurement instruments, we did
not have a clue about the correlation between these (types
of) outcomes. In this situation, the use of a multivariate
model is not feasible.

Therefore, Geeraert et al. (2004) used a three-level mod-
el, modeling the sampling variation for each effect size
(level 1), variation over outcomes within a study (level 2),
and variation over studies (level 3), as shown in Fig. 4.

Geeraert et al. (2004) found a small but statistically
significant overall standardized mean difference, equal to
0.29, z 0 6.59, p < .001, but also strong evidence for
systematic differences between studies and within studies.
Because a large part of the studies evaluated one specific

program (the Healthy Families America program), an indi-
cator was included to evaluate whether the effect for this
intervention differed from the effect of other programs, but
the difference was statistically not significant. A set of ten
dummy variables was used to explore whether the type of
outcome explained part of the variance within and between
studies, but an omnibus test revealed that there were no
differences between the 11 outcome categories.

Whereas in the first two examples, the use of three-level
models for meta-analysis is straightforward (for other exam-
ples with separate effect sizes for different subsamples, as in
our first example, see Marsh, Bornmann, Mutz, Daniel, &
O'Mara, 2009; Thompson, Turner, & Warn, 2001), this is
not the case for the third example, in which several out-
comes are based on the same sample. Indeed, it is clear from
Fig. 4 that the structure assumed for the analysis does not
correspond to the real data structure. Whereas, in reality, we
have samples (level 1) nested in studies (level 2), with
multiple effect sizes for each sample, the structure assumed
in the three-level analysis implies that each sample corre-
sponds to one outcome—in other words, that outcomes are
calculated for independent samples. Therefore, the multilev-
el approach in principle incorrectly assumes that the result-
ing effect size measures are independent at the sample level.
Yet it might be expected that the dependence between out-
comes from the same study is taken into account by using an
intermediate level of outcomes within studies. Although the
multilevel approach is appealing, especially in situations in
which we have a lot of outcome variables and/or correla-
tions between outcomes are unknown, it has not been vali-
dated yet. In the remainder of the article, we will evaluate
the three-level approach by comparing its results with those
of a multivariate model and a traditional two-level model,
by means of a simulation study.

An evaluation of three-level meta-analyses
with sampling covariation

“Remember that all models are wrong; the practical question
is how wrong do they have to be to not be useful” (Box &
Draper, 1987, p. 74). In this paragraph, we will evaluate the
use of a meta-analytic model incorrectly assuming indepen-
dent samples at the first level, but including an intermediate
outcome-within-study level. To illustrate how parameter
estimates are affected, we start with one large simulated
data set and next look at the results of an extensive
simulation study. All data were simulated using SAS
and were analyzed using the restricted maximum likeli-
hood procedure implemented in SAS Proc Mixed
(Littell et al., 2006).

Although the focus of this article is on the meta-analysis
of effect sizes, we do not simulate effect sizes directly but,

Study Study 1 Study 2 … Study K

Outcomes O1 O2 O1  O1 O2 O3

Participants p … p p … p p … p  p … p p … p p … p 

Fig. 4 Three-level hierarchical structure assumed for the child abuse
meta-analysis
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rather, simulate raw data and calculate for each study a
standardized mean difference. In this way, we can com-
pare the results of an ordinary multilevel raw data
analysis with those of a meta-analysis on effect sizes.
Moreover, whereas the use of a multivariate model for
effect sizes is difficult in practice because of a lack of
information about the sampling covariation, a compari-
son of the results of a three-level analysis with those of
a multivariate analysis on the raw data can give further
insight into the three-level approach.

Understanding the three-level analysis

In order to understand better the interpretation of the results
of a three-level analysis for effect sizes based on the same
sample, one data set was simulated and analyzed, and results
of the (two-level) multivariate model and of the (univariate)
three-level model were compared. Data were simulated
using the following bivariate model, with Yijk referring
to the value for outcome j (j 0 1, 2), for study subject i
from study k:

Yi1k ¼ b01k þ b11k Treatmentð Þik þ ei1k
Yi2k ¼ b02k þ b12k Treatmentð Þik þ ei2k




with
ei1k
ei2k

� �
� N 0;

σ2
e1

σe2e1 σ2
e2

� �� � ð9Þ

b01k ¼ g010 þ w01k and b11k ¼ g110 þ w11k

b02k ¼ g020 þ w02k and b12k ¼ g120 þ w12k



with wk � N 0;Wwð Þ

ð10Þ

Because we have two outcome variables that possibly
are related, the covariance matrix at the subject level
(level 1) is a 2 × 2 matrix, with a positive value for
σe2e1 indicating that if, in a study, a subject is sampled
who has a high score on Y1, this person is also likely to
have a high score on Y2. At the study level, we have a
random residual for each outcome for the expected
value in the control condition (w01k and w02k), as well
as a random residual for each outcome for the treatment
effect (w11k and w12k), and therefore, the covariance
matrix at this level is a 4 × 4 matrix (Ωw). The dis-
cussion and illustration of what happens if we use a
three-level model ignoring sampling covariance, instead
of a two-level multivariate model accounting for sam-
pling variance, will be split up in three steps. First we
discuss what happens to the parameter estimates if the
mean effect is estimated, rather than the effect for each

outcome variable separately. Second, we look at the
effect of ignoring the sampling covariance (i.e., the
covariance at the first level, the subject level), and
finally, we discuss the use of a three-level model.

The parameter values that were used to simulate data for
300 studies (K 0 300), each with two groups of size 50 (n 0 50),
are given in the second column of Table 1.

Model 1

The first model we used for analyzing the simulated
data (model 1 from Table 1) is the multivariate model
we used to generate the data (Eqs. 9 and 10). Parameter
estimates are close to the parameter values used to generate
the data.

Model 2

Sometimes, we might be interested not in the effect for each
outcome separately but, rather, in the mean effect over out-
comes. In the second model, we did not estimate the mean
intercept and the mean effect for each outcome variable
separately but, instead, estimated one overall intercept (γ00, with
b01k ¼ g00 þ w01k and b02k ¼ g00 þ w02k ) and one overall
effect (γ10, with b11k ¼ g10 þ w11k and b12k ¼ g10 þ w12k ).
As a result (compare models 1 and 2), the between-
study variance of treatment effects increases (because,
in general, deviations of the treatment effects from the
overall treatment effect become larger), but the between-study
covariance decreases (because deviations within studies are
less similar than before; one deviation increases, the other
decreases). The estimated treatment effect now is in the mid-
dle of the previously estimated treatment effects for both
outcomes.

Model 3

In the third model, we assume
ei1k
ei2k

� �
� N 0;σ2

e

� �
. We thus

estimated only one variance parameter for both out-
comes at the subject level (which is not a real restric-
tion because, if the within-study variance cannot be
assumed the same, scores are typically standardized).
But more important, we assumed that the covariance is
zero, whereas in fact, in the simulated data set, it is
0.79. Table 1 shows that as a result, the study level
covariances between intercepts and between treatment
effects become larger. This can be understood as fol-
lows. In the multivariate model, the intercept β0jk refers
to the expected value (or population mean) for outcome
j in the control condition of study k, and this expected

Behav Res (2013) 45:576–594 583



value varies over studies. Due to the fact that within a
study only a sample of subjects is used, rather than the
whole population, the observed mean is not necessarily
the same as the expected value. More specifically, the
sampling variation of the observed mean in the control

condition for an outcome j is equal to
σ2ej
n . Because the

residuals at both levels are independent, the total vari-
ance in the observed effect sizes is equal to the sum of
the variance over studies in the expected control group

level, and the sampling variance is σ2
w0j

þ σ2ej
n . Similarly,

the sampling covariance between the means for out-

comes is equal to
σejej0
n , and the total covariance is σw0jw0j

0

þ
σejej0
n . When the full multivariate model 1 is used, the

observed variation and covariation in the intercepts is
split up over the two levels. The results of the analysis
show that if the covariance at the first level is not
explicitly included in the model (model 3), the estimated
sampling covariance in the control condition study means is
added to the estimated covariance at the between-study level:
0:055 ¼ 0:040þ 0:790

50 .
The covariance in the treatment effects is affected in a

similar way. The effect of the treatment dummy variable,
β1jk, refers to the difference in the expected values for the
experimental and the control groups for outcome j in study k.
The observed mean difference again varies, due to

sampling variation and due to between-study variation.
More specifically

Y :jkjexperimental � Y :jkjcontrol

¼ b0jk þ b1jk þ e:jkjexperimental
� �� b0jk þ e:jkjcontrol

� �
¼ g1j0 þ w1jk þ e:jkjexperimental � e:jkjcontrol

ð11Þ
where Y :jkjexperimental and Y :jkjcontrol refer to the observed means
in study k for outcome j in both conditions and e:jkjexperimental
and e:jkjcontrol refer to the mean residual in both conditions.

Because residuals from the subject and study levels are
independent and the residuals in both groups are independent,
it is easy to show that the covariation between the mean

differences for both outcomes is equal to σw1jw1j
0 þ

2σejej0
n .

Again, results of the example show that ignoring the sampling
covariance (the covariance at the subject level) has as conse-
quence that the estimated sampling covariation in the coeffi-
cients is added to the estimated between-study covariance:
0:038 ¼ 0:006þ 2*0:790

50 .
We conclude that, by ignoring the sampling covariation

at the subject level, the covariation is still accounted for by
overestimating the study level covariation by the same
amount. Therefore, all other parameters and standard errors
remain unchanged.

Table 1 Parameter values and estimates (and standard errors) for a two-level multivariate data set

Parameter values Model 1 (multivariate) Model 2 (no outcome indicator) Model 3 (no level 1 covariance)

Fixed effects

Intercept −0.019 (0.020) −0.019 (0.020)

Outcome 1 0.000 0.002 (0.022)
Outcome 2 0.000 −0.009 (0.026)

Treatment effect 0.209 (0.021) 0.209 (0.021)

Outcome 1 0.100 0.109 (0.025)
Outcome 2 0.300 0.310 (0.025)

(Co)variances

Level 2 (study)

Intercepts
0:100
0:050 0:100

� �
0:080
0:040 0:112

� �
0:080
0:040 0:111

� �
0:080
0:055 0:111

� �
Treatment effect

0:100
0:020 0:100

� �
0:089
0:016 0:090

� �
0:098
0:006 0:100

� �
0:098
0:038 0:100

� �
Level 1 (subjects)

1:000
0:800 1:000

� �
0:990
0:790 0:994

� �
0:990
0:790 0:994

� � 0.992

Note. Standard errors of the estimates are given between parentheses. To simplify the table, at the study level, only the covariance between
intercepts and the covariance between treatment effects is given, not the covariances between intercepts and treatment effects. Population values for
these covariances were −0.025.
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Model 4

In a third step, we look at the results of the three-level
analysis, with samples, outcomes, and studies as the units
at the respective levels. More specifically, we analyze the
data using the following model:

Yijk ¼ b0jk þ b1jk Treatmentð Þik þ eijk with eijk � N 0;σ2
e

� �

b0jk ¼ θ0k þ v0jk with
v0jk
v1jk

� �
� N 0;

σ2
v0

σv0v1 σ2
v1

� �� �
b1jk ¼ θ1k þ v1jk

8<
:

θ0k ¼ g00 þ u0k with
u0k
u1k

� �
� N 0;

σ2
u0

σu0u1 σ2
u1

� �� �
θ1k ¼ g10 þ u1k

8<
:

ð12Þ
Equation 12 states that the intercept and treatment effect

of outcome j and study k can (co)vary over outcomes within
studies, as well as over studies. Whereas β0jk and β1jk refer
to the control group level and treatment effect for outcome j
in study k, θ0k and θ1k refer to the mean control group level
and treatment effect (over outcomes) in study k, and γ00 and
γ10 to the overall control group level and effect (over out-
comes and studies). Parameter estimates for Eq. 12 are given
in Table 2 (model 4).

A comparison of the results of the three-level model
(model 4 from Table 2) and the multivariate model without
a covariance at the first level (model 3 from Table 1) reveals
that in the three-level analysis, the variance in the intercepts
from the multivariate model is split up in variance over
studies and variance over outcomes from the same study:
0.055 + 0.040 0 0.095, which is in the middle of the

between-study variances of the intercepts for both outcomes
in the multivariate model (0.080 and 0.111). Similarly, the
variance over studies of both treatment effects (0.098 and
0.100) from the multivariate model is split up in the three-
level model into variance over studies and variance over
outcomes: 0.038 + 0.061 0 0.099.

The part going to the between-study level is equal to
the covariance between the outcomes: 0.055 for both
intercepts, 0.038 for the treatment effects. This is not
surprising: In a multilevel analysis with units within
groups, the variance between groups is equal to the
covariation within groups (Snijders & Bosker, 1999).
Also, intuitively, this makes sense: The larger the co-
variation between outcomes, the smaller the differences
are within studies, and the larger the differences are
between study means. If outcomes do vary over studies
but do not covary, we expect to find differences between
outcomes in a study, but on average, there will be no differ-
ence between studies.

Importantly, the mean effect estimate and corresponding
standard error from the three-level model (model 4) are
exactly the same as those of the multivariate model (model
3, but also model 2).

Model 5

Finally, we summarized, for each outcome and study, the
data in a standardized mean difference, estimated the
corresponding sampling variance (Hedges & Olkin, 1985),
and analyzed these effect sizes using a three-level meta-
analytic model (Eqs. 6, 7, 8). Comparing the results (see
Table 2, model 5) with those of model 4 illustrates that the
meta-analysis of the effect sizes gives almost identical pa-
rameter estimates as the analysis of the raw data.

Simulation study

In order to evaluate in a more systematic way the three-level
modeling approach, we simulated a number of data sets in
the same way as the example data set. The following
parameters were varied: the number of outcomes (J 0 2
or 5), the covariance between outcomes at the subject
level (σejej0

¼ 0; 0:4; 0:8), the covariance in treatment

effects between outcomes at the study level (σw1jw1j
0 0 0, 0.02

or 0.04), the overall mean effect size (0, 0.20, 0.40), the
deviation of the outcome effects from the overall mean effect
(all two or five outcomes have same effect vs. deviations of
−0.20 and +0.20 for outcomes 1 and 2 or −0.20, −0.10, 0,
0.10, and 0.20 for the five outcomes), the number of studies
(K 0 30 or 60), and the group sizes (n 0 25 or 50). Values for
the mean effects were chosen to be representative for the small
and moderate effects commonly found in social and

Table 2 Parameter estimates (and standard errors) using three-level
models

Model 4 (three-level
model for raw data)

Model 5 (three-level
model for effect sizes)

Fixed effects

Intercept 0.003 (0.021)

Treatment effect 0.210 (0.021) 0.207 (0.021)

(Co)variances

Level 3 (study)
0:055
�0:035 0:038

� � 0.035

Level 2 (outcomes
within studies) 0:040

0:012 0:061

� � 0.061

Level 1 (subjects) 0.992 *

* For the effect size analysis, the sampling variance, σ2
rjk
, depends on

the study and is estimated before the actual meta-analysis is performed.
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behavioral sciences (Cohen, 1988). The value used for
the between-study variance in effect sizes (0.10) results
in a realistic ratio with the sampling variance of ob-
served effect sizes (about 0.08 for studies with n 0 25
and 0.04 for studies with n 0 50) and avoids the
possibility that the effects of correlation at either level
become ignorable (Riley, 2009). Covariances at the sub-
ject level were chosen to cover the range of possible
values of correlation coefficients (covariances corre-
spond with correlation coefficients of 0, .4, and .8).
Whereas a high correlation at the first level is not
unlikely in reality (e.g., when outcomes may refer to
different instruments for the same construct), correlation
coefficients at the second level are likely to be small
(Lipsey & Wilson, 2001). Therefore, we used relatively
small covariances at this level, corresponding to corre-
lation coefficients of 0, .20, and .40. Differences be-
tween the effects of the outcomes were chosen to be
relatively large (e.g., for two outcomes and an overall
mean of .20, the outcome-specific mean effects are
equal to 0 and .40), to be sure that a possible effect
on the performance of the different models would be
visible.

In total, we therefore have 2 × 3 × 3 × 3 × 2 × 2 × 2 0 432
combinations. For each combination, we simulated
1,000 data sets, 432,000 in total. Each data set was
analyzed using the multivariate model, but including
only one parameter for the treatment effects for all
outcomes (model 2 from Table 1), with a three-level
model (model 4 from Table 2), and with a traditional
meta-analytic model that ignored the dependence of out-
comes within studies (Eqs. 5 and 3)—that is, a two-
level model without the third level, the study level. In
addition, we summarized the data for each outcome
within each study by calculating standardized mean
differences, using the simulated raw data, and analyzed
the resulting effect sizes with three-level and two-level
models equivalent to the raw data models.

We want to stress that if we have the raw data, the
multivariate model can be used because the sampling co-
variance can be estimated using the raw scores, and there is
no reason to use the three-level approach unless the number
of outcomes is very large and we are simply interested in the
mean effect. Yet, if we only have effect sizes, often not
enough qualitative information is available regarding the
sampling covariances, and a multivariate model is not
applicable.

Results of the simulation study

A first important result is that for all conditions, param-
eter estimates regarding the treatment effects (mean
effects and standard errors, as well as variance components)

are almost identical when performing multilevel meta-
analyses of the effect sizes, rather than performing mul-
tilevel analyses on the raw data. Therefore, only the raw
data results will be discussed, but conclusions equally
apply to the meta-analyses of effect sizes. Moreover,
because we are interested in the treatment effects—more
specifically, the average effect and the variation in treat-
ment effects—we will not discuss the results for the
intercepts (referring to the level of performance in the control
conditions).

Second, regarding the mean effects, we did not find
important bias in any of the conditions (with absolute
bias estimates never exceeding 0.006), and therefore,
bias estimates are not further discussed here. We also
found that the estimates of the mean effects are very
similar for each of the models, with correlations of .99
and more. Estimates of the overall effects were even
exactly the same for the univariate two- and three-level
models. As was expected, the MSE of the estimates
decreases with an increasing number of studies, an
increase in the size of studies, and a decreasing covari-
ance at the subject or study level. Bias and MSE esti-
mates can be found in the Appendix.

Of major interest in our simulation study are the estimat-
ed standard errors for the mean effects, because these are
used to test the mean effects and to construct confidence
intervals. We evaluated the standard error estimates in two
ways. First, standard errors corresponding to a parameter
estimate refer to the standard deviation of the sampling
distribution of the parameter estimator. Because we simulat-
ed a large number of data sets for each condition, it can be
assumed that the standard deviation of the parameter esti-
mates within each condition is a good approximation of the
standard deviation of the sampling distribution and,
therefore, can be used as a criterion to evaluate the
standard error estimates. Figure 5 shows the mean stan-
dard error estimates and the standard deviations of the
estimates for n 0 25, K 0 50, a study level covariance
of .02, a mean effect of 0.4, and two outcome variables
(trends are similar for other conditions). When we have
a common outcome effect (Fig. 5a), the standard devi-
ation of the estimates is slightly larger when the multi-
variate model is used, as compared with using the
multilevel model. This is because, in the multivariate model,
more parameters are estimated using the same amount of data
and, therefore, the estimates are more fluctuating.
Nevertheless, the mean standard error estimates are slight-
ly smaller for the multivariate model than for the three-
level model. In sum, whereas the standard errors for the
three-level model are accurate, for the multivariate mod-
el they are somewhat too small. It is also clear from the
graph that the variation in parameter estimates increases
with an increasing covariance: If outcomes covary
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substantially, a large deviation of the scores on one
outcome in a study is less likely to be compensated
for by the scores on the other outcome. Standard errors
for both the multivariate approach and the three-level
approach follow this increasing trend. This is not the
case if a two-level model is used: Standard errors do
not depend on the sampling covariation. Therefore,
whereas standard errors for this model are only slightly
too small if there is no sampling covariation (due to
between-study covariation of the outcomes), their nega-
tive bias become much more pronounced with increas-
ing sampling covariance.

If the effect is not the same for each outcome but the
same models are used to estimate the mean effect
(Fig. 5b), estimates for the multivariate model vary
much more. Yet standard errors of the multivariate and
three-level models remain the same. Whereas standard
errors of the three-level model are still relatively accu-
rate, with only a small positive bias when there is no
sampling covariance and a small negative bias if there
is a strong sampling covariance, for the multivariate
model they are severely negatively biased. The results
suggest that the multivariate model does not work well
for estimating the mean effect. The standard errors for
the two-level model are larger than when there is no
variation between outcomes (and can even be positively
biased if there is no sampling covariation), but again
they do not increase with increasing sampling covari-
ance, resulting in negative bias if there is large sam-
pling covariance.

A second way to evaluate the standard error estimates is
by looking at the coverage proportion of the confidence
intervals calculated using these standard error estimates.
Table 3 gives the coverage proportions for 90 % confidence
intervals for two and for five outcomes.1 A dimension that is

not included in the tables (but does not affect the coverage
proportion) is the mean effect: In each condition, the cover-
age proportion is calculated over the three parameter values
of the mean effect.

In line with the evaluation of the standard errors by
comparing them with the standard deviation of the pa-
rameter estimates, we see that the coverage proportions
for the 90 % confidence intervals are accurate for the
three-level models in almost all combinations. Only if
there is no covariation at either level and there are
differences between outcomes is the coverage proportion
slightly too high.

For the multivariate model, coverage proportions are, in
general, slightly too small if the mean effect is the same for
all outcomes, again suggesting that the standard errors are
too small. When there are real differences between out-
comes in the treatment effects (right side of the table), the
coverage proportions are much too small for all combina-
tions, suggesting that the multivariate model does not work
well for estimating the mean effect. Also, for the two-level
model, coverage proportions often are too small, unless
outcomes do not covary at either level. As could be
expected, conclusions are similar but more pronounced if
we have five outcomes instead of two outcomes per study,
resulting in much too small coverage proportions for the
traditional two-level model.

If the mean effect is zero, the coverage proportion
also refers to the proportion of confidence intervals
including zero and, therefore, to the probability of not
making a type I error. If the dependence is ignored, for
some conditions, the proportion of type I errors is very
substantially inflated (up to 36%, instead of the nominal 10%
significance level; i.e., when there is substantial covariation at
each level and we have five outcomes with a common mean
effect).

The models give not only mean effect and corresponding
standard error estimates, but also estimates of the between-
study (and for the three-level model, the between-outcome)
variance. In our simulation study, we saw the same patterns
as in the elaborated simulated example discussed above: In
the three-level model, the total variance between effect sizes

0.063

0.058

0.053

0.048

0.043

0.038
0 0.2 0.4

SE Multivariate SE Two-level SD Three-levelSE Three-level SD Multivariate SD Two-level

Sampling covariance

a b

Sampling covariance
0.6 0.8 0 0.2 0.4 0.6 0.8

0.063

0.058

0.053

0.048

0.043

0.038

Fig. 5 Standard deviation (SD)
of the overall effect estimates
and mean standard error
estimates (SEs) for the
multivariate model, the three-
level model, and the two-level
model ignoring dependence.
Left graph: same effect for all
outcomes; right graph:
outcome-specific effects

1 For the data with five outcomes, we estimated only the meta-analytic
models for combining effect sizes because raw data analyses, and
especially the multivariate analysis, were very time consuming.
Therefore, Table 3 does not include results for the multivariate model
for five outcomes.
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is split up into two parts, one referring to the variation
between outcomes within a study, one referring to the var-
iation between studies. Figure 6 shows this split-up; in the
case in which the sample size n 0 25, the number of out-
comes is two, the treatment effect is common to all out-
comes, and the study-level covariance between outcomes is
equal to 0 (left graph) and 0.04 (right graph). As was
discussed above, the variance between studies refers to the

total covariation between outcomes, σu11u12 þ 2σe2e1
n , which

for the simulated conditions is equal to 0.00, 0.032, and
0.064 (left graph) and 0.040, 0.072, and 0.104 (right graph),
depending on the sampling covariance. Figure 6 shows that
in the three-level model, the variance estimate at the study
level is an unbiased estimate of the total covariance between
outcomes. Only in the condition where the total covariance
between outcomes is equal to 0.104 is the estimated study-
level variance slightly smaller. More specifically, the study-
level variance does not exceed the between-study variance
of the model used to simulate the data (0.100). Furthermore,
Fig. 6 also shows that in the three-level model, the variance
between studies (0.100) is split up into a variance at the
study level and a variance at the outcome level, although the
sum of both variance estimates is typically slightly smaller.
This negative bias is especially visible if there is no covari-
ance: The total variance is now only 0.090, instead of 0.100.
Figure 6 also shows that the estimate of the between-study
variance when using the two-level model (ignoring the
dependence) is always almost equal to the between-study
variance of the multivariate model (0.10). Similar patterns
are found for other conditions.

Conclusions

In this article, we described the use of three-level models for
dealing with dependent outcomes in meta-analysis and il-
lustrated this approach using several real data examples.
Whereas most traditional approaches for combining depen-
dent effect sizes involve choosing a proper unit of analysis
(Cooper, 2009), multilevel models were exactly developed
“for the analysis of data sets comprising several types of unit
of analysis” (Snijders, 2003, p. 674). Three-level models are

suitable when studies are clustered—for instance, in re-
search groups or countries—or when, within studies, we
have several effect sizes calculated on independent groups,
two situations in which dependencies are typically ignored.
Sometimes, it is even explicitly stated that as long as there is
no overlap between samples, multiple estimates from the
same studies are truly independent (Littell et al., 2008). Our
simulation study nonetheless shows that ignoring covari-
ance at the study level also might result in biased standard
errors and confidence interval coverage proportions, even if
samples are independent.

An important conclusion is that, although the multilevel
model we proposed for dealing with multiple outcomes
within the same study in principle assumes no sampling
covariation (or independent samples), our simulation study
suggests that using an intermediate level of outcomes within
studies succeeds in accounting for the sampling covariance
in an accurate way, yielding appropriate standard errors and
interval estimates for the effects. This is true for both the
three-level model for raw data and the three-level model for
analyzing effect sizes, which gave very similar results. In
this article, we mainly presented the results for the analysis
of raw data, because in this way we could compare the
results with those of a multivariate approach. Whereas a
multivariate approach, in principle, is also possible for the
analysis of effect sizes, estimating the sampling covariance
is often not feasible without having the raw data, making the
multivariate approach not always feasible in practice. The
simulation study also showed that using a random effects
meta-analytic model assuming independent effect sizes
might result in flawed inferences. This is especially true if
the outcome variables are more correlated and the number of
outcomes per study is higher. For instance, coverage pro-
portions of the 90 % confidence intervals for the mean
effects were typically between .65 and .75 if the number
of outcomes was five, with intercorrelations of .80. This
result is not unexpected: In general, the underestimation of
the standard errors when clustered data are treated as inde-
pendent data depends on the intraclass correlation (ICC) and
the cluster size. For a two-level structure, for instance, Kish
(1965) showed that the design effect—that is, the efficiency
loss when cluster sampling is used for estimating a popula-
tion mean rather than using simple random sampling—is

0.12

0.1

0.08

0.06

0.04

0.02

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Three-level model:
between study level

Three-level model:
between outcome level

Two-level model:
between outcome level

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

va
ri

an
ce

 e
st

im
at

e

Sampling covariance Sampling covariance

0.12

0.1

0.08

0.06

0.04

0.02

0

va
ri

an
ce

 e
st

im
at

e

Fig. 6 Median variance
estimates for the two- and three-
level models if the covariance at
the study level is zero (left) or
0.04 (right) (n 0 25)

Behav Res (2013) 45:576–594 589



equal to 1þ n� 1ð ÞICC, with n being the cluster size. If the
size of the clusters does not vary too much over clusters, the
design effect is approximated well by replacing n by the
average cluster size.

Although already, at the early development of multilevel
analysis theory, the link was made with meta-analysis
(Raudenbush & Bryk, 1985), meta-analysts seem to have
failed to take advantage of the power of multilevel models
for meta-analysis. Three-level analyses, for instance, are still
very uncommon. We see nevertheless several important
advantages to using a multilevel approach.

First, the multilevel model is a very flexible model.
Whereas in meta-analysis the mixed effects meta-analytic
model with a random study effect is often regarded as the
ultimate model because it can account for moderator varia-
bles without making the strong assumption that these mod-
erator variables explain all systematic variation between
studies, the multilevel model is even more general than this
two-level model, allowing one to define additional levels. In
this way, it is possible to account for several sources of
dependence at the same time. In our simulation study, we
showed that a three-level model can account for sampling
covariance, but the model can easily be extended with an
additional upper level to account for a possible nesting of
studies. If we have multiple outcomes based on the same
sample, a multilevel model without predictors can be used to
estimate the mean effect over all samples. Yet we can also
include a characteristic of the outcomes as a predictor var-
iable to explore whether the effect depends on the type of
outcome. We even can include an outcome indicator as a
predictor (as a set of dummy variables) to estimate the mean
effect for each outcome, as is done in a typical multivariate
model. Moreover, if we are interested in the treatment effect
of each specific outcome, we could also perform separate
meta-analyses, although an advantage of performing a mul-
tilevel meta-analysis with an outcome indicator over sepa-
rate meta-analyses is that we can perform an omnibus test of
differential mean effects—that is, a test of the effect of the
outcome indicator. Moreover, contrasts can be estimated and
tested—for instance, for evaluating whether the treatment
effect is the same for two specific outcomes or for evaluat-
ing whether the effect for outcome one differs from the
effect of outcomes four and five, tests that are less straight-
forward when performing separate meta-analyses for each
outcome. The model can also easily be extended by includ-
ing other covariates at each of the levels, in an attempt to
explain variation at that level. An interaction term (or con-
trasts) can be used to estimate and test differential moderat-
ing effects of a predictor for various outcomes or for various
types of outcomes. An important property of the multilevel
model is that it does not require that the number of outcomes
be the same for each study: If one study reports the effect for
one outcome and another study the effect for five outcomes,

all effects are used in the analysis. We further want to note
that although, in our examples and discussion, we used
standardized mean differences as the effect size metric, the
multilevel meta-analytic model is equally appropriate for
combining other commonly used metrics, such as odds
ratios or Pearson’s correlation coefficients. The approach
assumes, as do most meta-analytic approaches, only that
the sampling distribution of the metric is normal and, there-
fore, that a normalizing transformation of the effect sizes,
such as the logarithmic transformation of odds ratios or the
Fisher’s Z transformation of correlations, might be required.

A second strength of the multilevel approach is that it is a
relatively simple and intuitive way to account for dependen-
cies. This is partly because multilevel models are discussed
in several excellent handbooks (e.g., Hox, 2002;
Raudenbush & Bryk, 2002) and software is widely available
to use them—more specifically, specialized software, such
as MLwiN and HLM, or general (statistical) software, such
as SAS. Although depending on the situation, other
approaches may be very helpful, these other approaches
sometimes oversimplify the problem of dependency (e.g.,
by simply ignoring the dependency), inefficiently use only
part of the data for each analysis, or are complex to imple-
ment because of a lack of necessary information, as de-
scribed above.

A third strength of the approach is that multilevel models
automatically account for the hierarchical structure in the
data. If, for instance, one study results in 20 effect size
estimates, this study will not contribute 20 times as much
to the estimation of the mean effect, as compared with a
study reporting only 1 effect size. Rather, this study is
regarded as only one study yielding information about one
study-specific mean effect in the distribution of study mean
effects. The exact weight of each study will depend on the
dependence between effect sizes from the same study: The
smaller this dependence, the less the weight given to each of
the individual effect sizes depends on the number of effect
sizes reported in the study.

Specifically for accounting for sampling covariance, we
see three major advantages of the multilevel approach for
analyzing multivariate effect size data, as compared with a
truly multivariate meta-analytic model. First, the multilevel
approach does not require that the sampling covariance of
the effect size estimates is “known” in advance. The covari-
ation rather is taken into account by using the between-study
variance as a “stand in” for this covariance. This is an
important advantage, because the problem that, often, no
or little information about the covariances is available is
exactly the reason why multivariate meta-analyses are only
seldom used. A second advantage is that because the sam-
pling covariance is not to be known in advance, the multi-
level model is also more applicable for metrics for which the
formula for calculating the sampling covariance has a very

590 Behav Res (2013) 45:576–594



complex form, gives biased estimates, or is unknown (see
Becker, 2000, for a discussion of the multivariate distribu-
tion of commonly used effect sizes).

Finally, in the example of Geeraert et al. (2004), we
saw that especially for dependent variables that are diffi-
cult to operationalize, there can be much variation be-
tween studies in the outcome variables used. Whereas
this makes the multivariate model practically infeasible,
the three-level model assuming a distribution of out-
comes within studies is still easy to use. We recognize,
however, that although the possibility of making esti-
mates of the mean effect over outcomes is attractive,
using the type of outcome or an outcome indicator as a
predictor variable is to be preferred, for both conceptual
and statistical reasons: If the effect varies over outcomes,
the mean effect is less informative because effects might
obscure each other. In addition, if one type of outcome is
more often reported in the set of studies, the effect of
this outcome will have a stronger influence on the aver-
age effect, possibly inducing bias. An example is where
studies are less likely to report effect sizes for outcomes
that are less affected by the treatment, resulting in a
positive reporting bias. Moreover, the simulated data
illustrate that including a moderator variable reduces
standard errors, as well as the bias in the standard errors.

Although results of the simulation study are very
promising, we are aware of some limitations of the
study. Conclusions are, in principle, restricted to the
conditions for which data were generated. More specif-
ically, we generated data only for a relatively large set
of studies (K030 or 60). It is known from the literature
on multilevel analysis (e.g., Maas & Hox, 2005) or
multilevel meta-analysis (e.g., Van den Noortgate &
Onghena, 2003b; Viechtbauer, 2005) that when
(restricted) maximum likelihood procedures are used,
smaller numbers of units at the highest level (in this case,
the study level) might result in underestimated standard errors
and, therefore, inflated type I error rates for testing the regres-
sion coefficients (in this case, the overall effect size and/or the
moderator effects), but especially in biased estimates of the
variance at the highest level and of the corresponding standard
error. Because, in multilevel literature, 30 units is often
regarded as the smallest acceptable number of units at the
highest level (e.g., Kreft & De Leeuw, 1998), we did not
simulate data sets with less than 30 studies.

Furthermore, we simulated only balanced data sets,
with the same sample size and the same number of
outcomes for each study. In practice, it often occurs
that part of the studies report only one effect size,
whereas another part of the studies report two or more
effect sizes. In line with the design effect described by
Kish (1965), we expect that also in this situation, the
multilevel approach will outperform the approach

treating all effect sizes as independent, with a benefit
that depends on the average number of effect sizes
reported per study. Moreover, in our simulation design,
we varied the size of the between-study variance of the
treatment effect, but we assumed that this heterogeneity
variance is equal for each outcome variable. We also
varied the between-study covariance in the treatment
effects—a positive covariance meaning that if, in a
study, the treatment effect of an outcome is relatively
large, the treatment effect of the other outcome variable
also is likely to be large—but assumed a common
covariation for all pairs of outcomes. These limitations
can also explain why the three-level model performed
even slightly better than the multivariate model when
the effect was the same for all outcomes, although the
multivariate model was used to generate the data:
Whereas the multivariate model in which each outcome
is regarded as a separate dependent variable includes a
separate between-study variance parameter for each out-
come and a separate between-study covariance parame-
ter for each pair of outcomes, the three-level model
assumes a common variance and covariance, resulting
in a more parsimonious model to estimate with the
same amount of data, resulting in more stable estimates.
Whereas these assumptions are common in simulation
studies (e.g., Hedges et al., 2010), they are often vio-
lated in practice. For instance, if two outcomes are
measures of the same construct variable (e.g., two de-
pression scales), the dependence is likely to be larger
than for two outcomes referring to two different con-
struct variables (e.g., a depression and an anxiety scale).
Another situation where the covariation between out-
comes can depend on the pair of outcomes is where
studies include more than one (independent) sample and
multiple outcomes were calculated for each sample:
Outcomes from independent samples from the same
study still are dependent, but less dependent than out-
comes based on the same sample. We are currently
investigating the performance of the proposed three-
level approach by means of a simulation study set up
in much the same way as the present study, for situa-
tions in which the number of outcomes varies over
studies, if the between-study variance depends on the
outcome, if the covariance between outcomes varies
over pairs of outcomes, if samples sizes vary over
studies, and if outcome effects are randomly sampled.
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