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We present the three-loop result for the soft anomalous dimension governing long-distance singularities
of multileg gauge-theory scattering amplitudes of massless partons. We compute all contributing webs
involving semi-infinite Wilson lines at three loops and obtain the complete three-loop correction to the
dipole formula. We find that nondipole corrections appear already for three colored partons, where the
correction is a constant without kinematic dependence. Kinematic dependence appears only through
conformally invariant cross ratios for four colored partons or more, and the result can be expressed in terms
of single-valued harmonic polylogarithms of weight five. While the nondipole three-loop term does not
vanish in two-particle collinear limits, its contribution to the splitting amplitude anomalous dimension
reduces to a constant, and it depends only on the color charges of the collinear pair, thereby preserving strict
collinear factorization properties. Finally, we verify that our result is consistent with expectations from the
Regge limit.
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Infrared singularities are a salient feature of gauge-
theory scattering amplitudes, and their knowledge is key
to precision collider physics. Indeed, while cross sections
are finite, their perturbative computation is based on
amplitudes with a fixed number of on-shell partons, which
are separately infrared divergent. These divergences are at
the heart of factorization properties separating the physics
at different energy scales. Moreover, a detailed under-
standing of the divergences is needed to compute cross
sections at fixed order in αs, where separate divergent
components with different multiplicities are combined.
Finally, the cancellation of singularities may leave behind
large logarithms, which can be resummed once the struc-
ture of the corresponding singularities is determined. For
these reasons, there has been a continuous theoretical
interest in the factorization and exponentiation properties
of the singularities and their detailed structure, starting
from the analysis of the form factor early on [1–10] through
to many recent studies of multileg amplitudes of both
massless [9,11–28] and massive partons [29–39] at the
multiloop level and the formulation of the non-Abelian
exponentiation theorem in the multileg case [40–44].
In this Letter, we determine the infrared (IR) singularity

structure of any scattering amplitude of n colored massless
partons with momenta pi and any number of noncolored

particles to three loops. Long-distance singularities (both
soft and collinear) can be factorized as follows:

Mnðfpig;αsÞ¼Znðfpig;μ;αsÞHnðfpig;μ;αsÞ; ð1Þ

where μ is a factorization scale, αs ≡ αsðμ2Þ is the
renormalized D-dimensional running coupling, Hn is a
finite hard scattering function, and Zn is an operator in
color space collecting all IR singularities in the form of
poles in the dimensional regularization parameter
ϵ ¼ ð4 −DÞ=2. These singularities originate in loop
momenta becoming either soft or collinear to any of the
scattered partons (see, e.g., Ref. [45]). Collinear singular-
ities depend on the spin and momentum of that particle and
decouple from the rest of the process. In contrast, soft
singularities are independent of the spin, but they depend
on the relative directions of motion and the color degrees of
freedom of the scattered particles. Hence, soft singularities
are sensitive to the color flow in the entire process, and their
structure is a priori rather complex. Nevertheless, they are
significantly simpler than finite contributions to the ampli-
tude. They can be computed by considering correlators of
products of Wilson-line operators emanating from the hard
interaction, following the classical trajectory of the scat-
tered particles and carrying the same color charge.
Specifically, Zn can be obtained as a solution of a

renormalization-group equation as

Zn ¼ P exp

�
−
1

2

Z
μ2

0

dλ2

λ2
Γn(fpig; λ; αsðλ2Þ)

�
; ð2Þ
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where Γn is the so-called soft anomalous dimension matrix
for multileg scattering and P stands for path ordering of the
matrices according to the order of scales λ. Γn itself is finite,
and IR singularities are generated in Eq. (2) through the
dependence of Γn on the D-dimensional coupling, which is
integrated over the scale down to zero momentum. The
functional form of Γn is highly constrained: Owing to
factorization and the rescaling symmetry of the Wilson line
velocities [18–20], through three loops it must take the
form

Γnðfpig; λÞ ¼ Γdip
n ðfpig; λÞ þ ΔnðfρijklgÞ; ð3Þ

with

Γdip
n ðfpig; λÞ ¼ −

1

2
γ̂KðαsÞ

X
i<j

log

�
−sij
λ2

�
Ti · Tj

þ
Xn
i¼1

γJiðαsÞ; ð4Þ

where −sij ¼ 2jpi · pjje−iπλij , with λij ¼ 1 if partons i and
j both belong to either the initial or the final state and
λij ¼ 0 otherwise; Ti are color generators in the represen-
tation of parton i, acting on the color indices of the
amplitude as described in Ref. [11]; γ̂KðαsÞ is the universal
cusp anomalous dimension [7,46,47], with the quadratic
Casimir of the appropriate representation scaled out
(Casimir scaling of the cusp anomalous dimension holds
through three loops [46]; it may be broken by quartic
Casimirs starting at four loops); γJi are the anomalous
dimensions of the fields associated with external particles,
which govern hard collinear singularities, currently known
to three loops [28,48]. Equation (4) is known as the dipole
formula and captures the entirety of the soft anomalous
dimension up to two loops.
According to the non-Abelian exponentiation theorem

[44], the color factors in Δn must all correspond to
connected graphs as shown in Fig. 1. Tripole corrections
correlating three partons, with color factors of the form
ifabcTa

i T
b
jT

c
k, which could appear starting from two loops,

are not present in Δn at any order because the correspond-
ing kinematic dependence on the three momenta is bound
to violate the rescaling symmetry constraints [18–20].

While a constant correction proportional to ifabcTa
i T

b
jT

c
k

is excluded by Bose symmetry, kinematic-independent
corrections involving three lines of the form
fabefcdefTa

i ;T
d
i gTb

jT
c
k (last two diagrams in Fig. 1) are

admissible and do indeed appear. The first admissible
corrections involving kinematic dependence in Eq. (3)
are then quadrupoles, because four momenta can form
conformally invariant cross ratios (CICRs),

ρijkl ≡ ð−sijÞð−sklÞ
ð−sikÞð−sjlÞ

; ð5Þ

which are invariant under a rescaling of any of the
momenta. Since diagrams with four color generators first
appear at three loops, Δn in Eq. (3) starts at this order:

ΔnðfρijklgÞ ¼
X∞
l¼3

�
αs
4π

�
l
ΔðlÞ

n ðfρijklgÞ: ð6Þ

Three-loop graphs can connect at most four lines, so the
general form of the three-loop correction is completely
determined by the four-parton case and can be written as

Δð3Þ
n ðfρijklgÞ ¼ 16fabefcde

×

� X
1≤i<j<k<l≤n

½Ta
i T

b
jT

c
kT

d
lF ðρikjl; ρiljkÞ

þ Ta
i T

b
kT

c
jT

d
lF ðρijkl; ρilkjÞ

þ Ta
i T

b
l T

c
jT

d
kF ðρijlk; ρikljÞ�

− C
Xn
i¼1

X
1≤j<k≤n
j;k≠i

fTa
i ;T

d
i gTb

jT
c
k

�
; ð7Þ

where C is a constant and F is a function of two CICRs.
Both C and F are independent of the color degrees of
freedom. Moreover, Eq. (7) is the most general three-loop
ansatz consistent with Bose and rescaling symmetry, so C
and F are independent of the number of legs n. Note that
the terms in this sum are not all independent because of the
antisymmetry of the structure constants and the Jacobi

identity. A special property at three loops is that Δð3Þ
n is

independent of the matter content of the theory and is
completely determined by soft gluon interactions. In

particular, this implies that Δð3Þ
n is the same in QCD and

in N ¼ 4 super Yang-Mills, and it is therefore expected to
be a pure polylogarithmic function of weight five. Its
functional form has been constrained by considering
collinear limits and the Regge limit [18–26], but it has
so far remained unclear whether three-loop corrections to
the dipole formula are at all present. In this Letter, we

compute Δð3Þ
n and, hence, determine soft singularities of

any massless multileg amplitude at three loops. SinceC and

4

1 2

3 4

1 2

3 4

1 2

3

FIG. 1. Representative three-loop connected webs contributing
to the soft anomalous dimension.
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F can be extracted from Δð3Þ
4 , we restrict our computation

to the case n ¼ 4 without imposing momentum conserva-
tion among colored particles. Before presenting the final
result, we give a brief summary of the computation. A
complete account of the computation will be presented in a
forthcoming publication [49].
We set up the calculation of the soft anomalous dimen-

sion through the renormalization of a product of semi-
infinite Wilson lines with four-velocities βk, with β2k ≠ 0.
By considering nonlightlike lines, we avoid collinear
singularities and obtain kinematic dependence via cusp

angles γij ≡ 2βi · βj=
ffiffiffiffiffiffiffiffiffi
β2i β

2
j

q
. We eventually extractΔð3Þ

n for

massless scattering by considering the asymptotic lightlike
limit β2k → 0, where the kinematic dependence reduces to
CICRs as in Eq. (5).
In organizing the calculation, we use the non-Abelian

exponentiation theorem and we compute only webs. Aweb
can be either an individual connected diagram, as in Fig. 1,
or a set of nonconnected diagrams which are related by
permuting the order of gluon attachments to the Wilson
lines [40–44]; representative diagrams from such webs are
shown in Fig. 2. In either of these cases, the contribution to

Δð3Þ
4 is associated with fully connected color factors, the

classification of which was done in Ref. [44]. The sum of
all two-line diagrams may be written as

G2ð1; 2Þ ¼ dipole − fabefcdefTa
1;T

d
1gfTb

2;T
c
2gH2ð1; 2Þ;

where “dipole” stands for a term with a color factor
proportional to T1 · T2, which contributes to Γdip

n . The
component involving four generators via anticommutators
is relevant for the calculation of Δn; its kinematic depend-
ence is contained in H2ð1; 2Þ ¼ H2ð2; 1Þ. Similarly, the
sum of all three-line diagrams takes the form

G3ð1; 2; 3Þ ¼ fabefcde
X

ði;j;kÞ∈ð1;2;3Þ
j<k

fTa
i ;T

d
i gTb

jT
c
kH3ði; j; kÞ;

with H3ði; j; kÞ ¼ H3ði; k; jÞ. We omitted here the tripole
term, proportional to fabcTa

1T
b
2T

c
3, which vanishes for

lightlike kinematics where γij → −∞. Furthermore, in this
limit H2 and H3 are necessarily polynomials in logð−γijÞ.
Finally, three-loop webs connecting four lines can be cast
into the form

G4ð1; 2; 3; 4Þ ¼ Ta
1T

b
2T

c
3T

d
4½fabefcdeH4ð1; 2; 3; 4Þ

þ facefbdeH4ð1; 3; 2; 4Þ
þ fadefbceH4ð1; 4; 2; 3Þ�; ð8Þ

where the kinematic function H4 satisfies H4ð1; 2; 3; 4Þ ¼
−H4ð2; 1; 3; 4Þ ¼ H4ð3; 4; 1; 2Þ; this function depends on
logarithms of cusp angles as well as on nontrivial functions
of CICRs.
Another important element in organizing the calculation

is color conservation. The anomalous dimension Γn is an
operator in color space that acts on the hard amplitude,
which is a color singlet and must therefore satisfy [12]

�Xn
i¼1

Ta
i

�
Hn ¼ 0: ð9Þ

Hence, when computing Δð3Þ
4 one may systematically

eliminate T4 in favor of Ti, 1 ≤ i ≤ 3, thereby reducing
all four-line color factors such as fabefcdeTa

iT
b
jT

c
kT

d
l to

three-line ones, fabefcdefTa
i ;T

d
i gTb

jT
c
k. Consequently,

color conservation relates sets of diagrams that connect
different numbers of Wilson lines. Summing over all
subsets of two and three lines out of four and using color
conservation, we find that the function F and the constant
C can be expressed in terms of the kinematic functions Hn
as follows:

F ðρijkl; ρilkjÞ ¼ H4ði; j; k; lÞ −
2

3
½H3ði; j; kÞ −H3ði; j; lÞ

−H3ðj; i; kÞ þH3ðj; i; lÞ þH3ðk; i; lÞ
−H3ðk; j; lÞ −H3ðl; i; kÞ þH3ðl; j; kÞ�;

ð10Þ

C ¼ 1

3
½H3ði; j; kÞ þH3ðj; k; iÞ þH3ðk; j; iÞ�; ð11Þ

where H3ði; j; kÞ ¼ H3ði; j; kÞ þH2ði; jÞ þH2ði; kÞ. The
above equations put strong constraints on the kinematic
functionsHn: The functionF depends on CICRs, whileHn
on the right-hand side of Eq. (10) depend on logarithms of
cusp angles; these must therefore conspire to combine into
logarithms of CICRs. In addition, C is a constant, so the
kinematic dependence of the functions Hn must cancel in
the sum in Eq. (11). Our computation satisfies all these
constraints, which provides a strong check of the result.
The calculation of the individual graphs is rather lengthy,

and we will describe only the main steps, deferring a
detailed exposition to a dedicated publication [49]. We set
up the calculation in configuration space, with four non-
lightlike Wilson lines with four-velocities βk. The position
of the three- and four-gluon vertices off the Wilson lines are
integrated over in D ¼ 4 − 2ϵ dimensions. Following
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FIG. 2. Representative nonconnected three-loop diagrams of
webs which contribute to Δð3Þ

4 .
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Refs. [38,43], we introduce an infrared regulator which
suppresses exponentially contributions far along theWilson
lines. This is necessary to capture the ultraviolet singularity
associated with the vertex where the Wilson lines meet.
Upon performing the integral over the overall scale, we
extract an overall 1=ϵ ultraviolet pole, and the contribution
to the soft anomalous dimension is the coefficient of that
pole, which is finite for each of the diagrams in Fig. 1 (they
have no subdivergences) and can be evaluated in D ¼ 4
dimensions.
Next, we observe that the integrals over the positions of

the three- and four-gluon vertices give rise to one- and two-
loop off-shell four-point functions, for which we derive
multifold Mellin-Barnes (MB) representations. After inte-
gration over the position of the gluon emission vertex along
the Wilson lines, we obtain a MB representation of each of
the connected graphs for the general nonlightlike case,
depending on the velocities through the cusp angles γij. To
proceed, we use standard techniques [50] to perform a
simultaneous asymptotic expansion for γij → −∞ corre-
sponding to the lightlike limit, where we neglect any term
suppressed by powers of 1=γij. We then obtain a sum of
lower-dimensional MB integrals. These are converted into
parametric integrals using the methods of Ref. [51], which
can be performed using modern integration techniques
[52]. The sum over all connected graphs is expressible as a
linear combination of products of logarithms of cusp angles
γij and single-valued harmonic polylogarithms [53,54] with
arguments zijkl and zijkl, related to the CICRs (5) by

zijklzijkl ¼ ρijkl and ð1 − zijklÞð1 − zijklÞ ¼ ρilkj: ð12Þ

We observe that individual graphs are not pure functions,
but they involve pure functions of weight five multiplied by
rational functions in zijkl and zijkl. These rational functions
cancel in the sum over all connected graphs, leaving behind
a pure function of weight five, in agreement with the
expectation that scattering amplitudes in N ¼ 4 super
Yang-Mills have a uniform maximal weight. Moreover,
mixed weight terms do appear in two-line and three-line
webs but cancel out in the sum.
Adding up all the contributions, we find the following

results for the function F and the constant C:

F ðρijkl; ρilkjÞ ¼ Fð1 − zijklÞ − FðzijklÞ;
C ¼ ζ5 þ 2ζ2ζ3; ð13Þ

with

FðzÞ ¼ L10101ðzÞ þ 2ζ2½L001ðzÞ þ L100ðzÞ�; ð14Þ

where LwðzÞ are Brown’s single-valued harmonic poly-
logarithms (SVHPLs) [53] (see also Ref. [55]). Note that
we kept implicit the dependence of these functions on z.

SVHPLs can be expressed in terms of ordinary harmonic
polylogarithms (HPLs) [54] in z and z. The result for F in
terms of HPLs is attached in computer-readable format to
this Letter [56].
Let us now briefly discuss the main features of the final

result. First, we note that, while FðzÞ is defined everywhere
in the physical parameter space, it is single-valued only in
the part of the Euclidean region (the region where all
invariants are negative) where z and z are complex
conjugate to each other. Single-valuedness ensures that

F , and hence also Δð3Þ
n , have the correct branch cut

structure of a physical scattering amplitude [55,57]: It is
possible to analytically continue the function to the entire
Euclidean region while the function remains real through-
out [58]. Next, note that if one considers FðzÞ as a function
of two independent variables z and z (not a complex
conjugate pair) this function has branch points for z and z at
0, 1, and ∞. Crossing symmetry, i.e., crossing some
momenta from the final to the initial state, is realized by
taking monodromies around these points. This determines
the analytic continuation of the function F from the
Euclidean to the physical scattering region.
Next, let us discuss the symmetries of the final answer

for the three-loop corrections to the soft anomalous
dimension. In the four-line case, Bose symmetry is realized
on the function F of CICRs by the action of the group S3
which keeps the momentum p1 fixed and permutes the
remaining three momenta. This group naturally acts on the
space of SVHPLs by a change of arguments generated by
the transformations ðz; zÞ ↦ ð1 − z; 1 − zÞ and ðz; zÞ ↦
ð1=z; 1=zÞ, with z≡ z1234. Geometrically, this symmetry
simply acts by exchanging the three singularities at
z ∈ f0; 1;∞g. Moreover, it is known that the space of
all HPLs, and hence also SVHPLs, is closed under the
action of this S3, giving rise to functional equations among
HPLs, i.e., relations among HPLs with different arguments.
Consequently, it is possible to express all the terms in
Eq. (14) in terms of SVHPLs with argument z.
An additional symmetry group Z2 arises from the

definition of (z, z) in Eq. (12), which is invariant under
the exchange z ↔ z. Hence, FðzÞ must be invariant under
this transformation; i.e., it is even: FðzÞ ¼ FðzÞ. This
symmetry is realized on the space of SVHPLs by the
operation of reversal of words; namely, if w is a word made
out of 0’s and 1’s and ~w the reversed word, then we have
LwðzÞ ¼ L ~wðzÞ þ � � �, where the dots indicate terms pro-
portional to multiple zeta values. Even functions then
correspond to “palindromic”words (possibly up to multiple
zeta values), and indeed Eq. (14) is palindromic.
Let us now comment on the momentum-conserving limit

of Δð3Þ
4 , which is of particular interest because it corre-

sponds to two-to-two massless scattering. In this limit we
have z ¼ z ¼ s12=s13 ¼ −s=ðsþ tÞ. It follows that for two-
to-two massless scattering FðzÞ can be expressed entirely in
terms of HPLs with indices 0 and −1 depending on s=t, in
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agreement with known results for on-shell three-loop four-
point integrals [39,59,60]. Furthermore, specializing to the
Regge limit and expanding Eq. (14) at large s=ð−tÞ [61],
we find no α3s lnp ½s=ð−tÞ� for any p > 0: Re

h
Δð3Þ

4

i
simply

tends to a constant in this limit. This is entirely consistent
with the behavior of a two-to-two scattering amplitude in
the Regge limit [23,24,62]; indeed, the dipole formula
alone is consistent with predictions from the Regge limit for
the real part of the amplitude through next-to-next-to-
leading logarithms at three loops [62].

Finally, let us comment on the behavior of Δð3Þ
n in

the limit where two final-state partons become collinear.
Awell-known property of an n-parton scattering amplitude
is that the limit where any two colored partons become
collinear can be related to an (n − 1)-parton amplitude:

Mnðp1; p2; fpjg ⟶
1∥2

Spðp1; p2ÞMn−1ðP; fpjgÞ; ð15Þ

where P ¼ p1 þ p2 and pj are the momenta of the (n − 2)
noncollinear partons. The splitting amplitude Spðp1; p2Þ is
an operator in color space which captures the singular terms
for P2 → 0. All elements in Eq. (15) have infrared
singularities, and these must clearly be related.
Furthermore, Sp is expected to depend only on the
quantum numbers of the collinear pair [63] to all orders
in perturbation theory and, hence, also its soft anomalous
dimension

ΓSp ¼ ðΓn − Γn−1Þj1∥2 ¼ Γdip
Sp þ ΔSp ð16Þ

must be independent of the momenta and color degrees of
freedom of the rest of the process. This property is
automatically satisfied for the dipole formula, but it is
highly nontrivial for it to persist when quadrupole correc-
tions are present, as these might introduce correlations
between the collinear pair and the rest of the process. In
Refs. [19,22], this property was used to constrain Δn, but
this was done under the assumption that C in Eq. (7)

vanishes. Given our result for Δð3Þ
n , we may now compute

the nondipole correction to the splitting amplitude at three
loops:

Δð3Þ
Sp ¼ ðΔð3Þ

n − Δð3Þ
n−1Þj1∥2 ¼ −24ðζ5 þ 2ζ2ζ3Þ

× ½fabefcdefTa
1;T

c
1gfTb

2;T
d
2g þ

1

2
C2
AT1 · T2�: ð17Þ

We note that Δð3Þ
Sp depends only on the color degrees of

freedom of the collinear pair and is entirely independent of
the kinematics and, hence, fully consistent with general

expectations [63,64]. We emphasize that Δð3Þ
Sp is indepen-

dent of the value of n that was used to compute it, which is
remarkable. Indeed, the fact that the difference in Eq. (17)

is independent of n requires intricate relations between
different sets of diagrams and thus provides a highly
nontrivial check of the calculation.
In summary, we have computed all graphs contributing

to the soft anomalous dimension in multiparton scattering
and determined the first multiparticle correlations going
beyond the dipole formula. We find that these appear
already for three colored partons in the form of a nontrivial
color structure multiplied by a constant of weight five.
Starting from four colored partons, multiparticle correla-
tions involve kinematic dependence via conformally invari-
ant cross ratios with a remarkably simple functional form in
terms of single-valued harmonic polylogarithms of uniform
weight five.
In conclusion, we have determined the complete three-

loop soft anomalous dimension, which is the last ingredient
needed to predict long-distance singularities to this order.
As such, our result provides a strong constraint on multileg
amplitudes at this order, and it will therefore serve as a
check for any such future computation. It is also an
essential ingredient in the development of future subtrac-
tion schemes for fixed-order computations and provides the
basis for the resummation of large logarithms at high
accuracy. Beyond these immediate applications, our result
constitutes a first step into the unexplored analytic structure
of multileg scattering amplitudes at three loops. In par-
ticular, it sheds light on the behavior of amplitudes in both
the Regge limit and collinear limits.
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Higgs Centre” (E. G.) and by The University of Edinburgh
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Note added in the proof.—Recently, we became aware of
Ref. [66], which reports on the computation of the three-
loop four-gluon amplitudes in N ¼ 4 in super Yang-Mills.

Upon specialising our result for Δð3Þ
4 to the four-particle

momentum-conserving limit they consider, Ref. [66] finds
consistency with the infrared singularities of their ampli-
tude, thus providing a check of both computations.

*On leave from the “Fonds National de la Recherche
Scientifique” (FNRS), Belgium.
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