
Three main concerns in sketch recognition

and an approach to addressing them

James V. Mahoney and Markus P. J. Fromherz

Palo Alto Research Center
3333 Coyote Hill Road, Palo Alto, CA 94304

{ mahoney,fromherz] @ parc.xerox.com

Abstract
This paper discusses the problem of matching models of
curvilinear configurations to hand-drawn sketches. It
collects observations from our own recent research, which
focused initially on the domain of sketched human stick
figures in diverse postures, as well as related computer
vision literature. Sketch recognition, i.e., labeling strokes
in the input with the names of the model parts they depict,
would be a key component of higher-level sketch
understanding processes that reason about the recognized
configurations. A sketch recognition technology must meet
three main requirements. It must cope reliably with the
pervasive variability of hand sketches, provide interactive
performance, and be easily extensible to new
configurations. We argue that useful sketch recognition
may be within the grasp of current research, if these
requirements are addressed systematically and in concert.

1. Introduction
This paper discusses the problem of matching models of
curvilinear configurations to hand-drawn sketches. It
collects observations from our own recent research, which
focused initially on the domain of sketched human stick
figures in diverse postures, as well as related computer
vision literature. By sketch recognition or matching we
mean labeling strokes in the input with the names of the
model parts they depict. Such matching would be a key
component of higher-level sketch understanding processes
that reason about the recognized objects and
configurations.

Our view is that a sketch recognition technology must
meet three main requirements. First, and perhaps
foremost, it must cope reliably with the variability and
ambiguity that are so pervasive in sketches. Second, it
must provide interactive performance or better. And third,
it must offer easy or automatic extensibility to new shapes
and configurations. These requirements conspire to make
a problem that might at first appear to be child’s play into

Copyright © 2002, American Ass~’iation for Artificial Intelligence
(www.aaai.org). All rights re.fred.

a profound challenge. We believe, however, that useful
sketch recognition is within the grasp of current research,
if the three requirements are addressed systematically and
in concert; this paper outlines an approach we are
pursuing.

Fig. 1, Neat and sloppy stick figures. In sketchin& failures of
co-termination are a frequent variation from the ideal form.

Fig. 2. Example matching results. Labels denote model parts:
Head, Torso, Biceps_l, _Arml_, Leg 2, Shin2, _F.oot_2. etc.

Section 2 describes a framework for addressing input
variability, and the ambiguity that results from it, through
dedicated pre-processing that is guided by human
perceptual organization principles.

The need to handle articulated figures, and
configurations that are defined by abstract spatial relations
among their parts (e.g., connected, inside/oatside, parallel,
etc.), makes sketch recognition inherently a structural
modeling and matching enterprise. Section 3 argues that
although the worst-case complexity of structural matching
in this domain is exponential, exploiting the natural

105

From: AAAI Technical Report SS-02-08. Compilation copyright © 2002, AAAI (www.aaai.org). All rights reserved.

topological and geometric constraints of the problem to
the fullest leads to runtimes that are in a useful range for
problems of moderate size. Even so, because of the
potential for exponential growth, Section 4 argues that
various notions of focus ought to be brought to bear in
matching where possible.

Fig. 3. Matching must cope with self-crossings, due to
articulation.

Fig. 4. Matching must cope with interactions with background
context, e.g., crossings and accidental alignments.

Finally, Section 4 examines the issue of model
acquisition, and argues that even in the relatively simple
realm of hand sketches, manual entry of configuration
models is likely to be prohibitively tedious. At the same
time, machine learning-based schemes that require the
user to present many training examples will probably also
be too inconvenient in most cases. What is needed,
therefore, are methods that will build a useful model given
one or very few examples, possibly with incremental
refinement as further instances are provided at the user’s
convenience.

2. Handling variability and ambiguity through
dedicated pre-processing

It is hard to write reliable computer programs for
recognizing drawings, diagrams, and sketches, even

seemingly simple ones. The main obstacle is that these
kinds of inputs are highly variable in several respects, and
effective, general techniques for coping with this
variability have not been developed. The variability stems
from several distinct sources. To address this overall
concern, it is important to identify these sources and to
establish detailed generative models for each of them. Our
work on stick figure matching has focused on three such
sources: sloppy drawing, articulation, and interaction with
background context [13,14].

Sloppy drawing leads to failures of co-termination,
where strokes overshoot or undershoot one another, rather
than meeting at their end points (see Fig. 1). The problem
resulting from articulation is that the simple preprocessing
techniques that are normally employed may over-segment
or under-segment the data if the strokes of articulated
figures intersect or accidentally align with one another
(Fig. 3). This is also the case when target figures interact
with background markings, through adjacency,
intersection, or overlap (Fig. 4). (There are several further
sources of variability that we will not address, including
sensor noise, which leads to dropouts and speckle, and
shape deformations of the figure lines.)

For matching purposes, all these forms of variability
corrupt the expected mapping between a prior model of
the figure and an instance of it in an input scene. The
simplest situation for a matching task occurs when
applying a segmentation process to the input produces
primitives that are in one-to-one correspondence with the
parts specified in the configuration model. Using
straightforward segmentation schemes, however, the
above types of variability often lead to a many-to-one or
one-to-many mapping. For example, if the input scene is
simply segmented into simple curves meeting at junctions
and comers, then gaps in figure lines, crossings of figure
lines with one another, or crossings of figure lines with
background lines would each entail a many-to-one
mapping from these simple curves to the parts in a
curvilinear configuration model. Conversely, accidental
alignments among figure lines or between figure lines and
background lines would entail a one-to-many mapping.

In this paper, the term ambiguity (or, more precisely,
segmentation ambiguity) refers specifically to this lack of
a one-to-one mapping between the primitives produced by
segmentation and the elements of the model, together with
the lack of any bottom-up (i.e., model-independent) basis
for establishing such a one-to-one mapping. In the
computer vision literature, the prevalent approach to
structural matching in the presence of segmentation
ambiguity is error-tolerant subgraph matching [26,23,15],
wherein the matching process explicitly accounts for
discrepancies in structure, by searching for a mapping that
minimizes the structural difference between the model and
any data subgraph. (The computation of this difference,
or edit distance, reflects a predeflned way of associating
costs with particular discrepancies.)

106

The drawback of this approach is that generalizing
from exact subgraph matching to error-tolerant matching
increases complexity: from O(mn) to O(mn2) in the best
case; from O(m"n2) to O(m"+ln2) in the worst case; m and
n being the node counts of the data and model graphs
respectively [15]. This added cost is typically incurred for
every model matched. (Hierarchical modeling and
matching may allow some of the added cost to be shared if
there is a lot of common structure among the modeled
configurations.) Error tolerant matching is also
algorithmicaily more complicated, and it rules out the use
of off-the-shelf subgraph matching implementations.

In [14], we proposed an alternative way of handling
ambiguity in a subgraph matching recognition framework
that avoids the added computational and algorithmic
complexity of error tolerant matching. Our method is a
two-stage process. The first stage, termed graph
elaboration, explicitly addresses ambiguity by adding
subgraphs to the data graph, G~, that constitute plausible
alternative descriptions of substructures already in the
graph This stage applies general perceptual organization
(P.O.) principles, such as good continuation and
proximity, to the specific goal of producing a data graph
in which the model is much more likely to find a direct
match, i.e., one containing a subset of nodes and links that
map to the model in a one-to-one manner. P.O.
principles are also used to rank the alternatives or to
associate preferences with them. The subsequent
matching phase is a constrained optimization process that
enforces mutual exclusion constraints among the related
alternatives, and finds solutions in descending order of the
aggregate preferences or rankings of their components.
When one alternative is strongly preferable to all others on
perceptual grounds, the initial stage may instead simply
rule out the other alternatives in a related process we call
rectification.

We have explored five graph elaboration/rectification
operations in particular. Proximity linking in effect fills
gaps in the data; an edge is added to GD between two free
ends if they satisfy a proximity constraint (Fig. 5). Link
closure adds redundant co-termination links to reduce
sensitivity to small distance variations. Virtual junction
splitting introduces proximity links between free ends and
neighboring non-end points (Fig. 6). Spurious segment
jumping enables the marcher to ignore curve segments
generated when other segments just miss coinciding at a
common junction (Fig. 7). If two segments satisfy
smooth continuation constraint, continuiO’ tracing adds a
new subgraph to Go that represents the alternative
interpretation of them as a single curve (Fig 8).

Each of these operations is controlled by a single
parameter, with the exception of link closure, which has
none. In our current implementation these parameters
have been tuned manually to give roughly equal matching
accuracy across several example sets that each emphasize
a distinct sort of local variability. One topic for future

investigation is automatic estimation of these parameters
from training data.

Fig. 5. Proximity linking: Links are inserted by an extension of
Kruskal’s Minimum Spanning Tree algorithm that builds a
"close-to-minimal spanning graph".

I

I-
I

(a) Co) (c)

Fig. 6. Virtual junction splitting. (a) Input configuration. (b)
Exploded view showing links defined before junction splitting.
Small circle on left indicates virtual junction point detected in
relation to free end circled on right. (c) Two new segments are
added with links to the free end and also to the segments
previously linked to the original segment.

(a) (b) (c)

Fig. 7. Spurious segment jumping. (a) A spurious segment
created by the two vertical segments failing to coincide. (b)
Exploded view of (a), showing co-termination links defined prior
to segment jumping. (c) Links added by segment jumping
(dashed lines) enable the marcher to ignore the spurious
segment.

3. Efficient structural matching by
constrained optimization

Structural matching is an inherently complex search task.
We see two main ways of maximizing matching
efficiency. First, we may attempt to exploit to the fullest
whatever constraint is intrinsic to the matching problem

107

itself. This inherent constraint includes general
perceptual organization constraints and the topological
and geometric constraints implicit in the configuration
models being matched. Second, we may apply any
available extrinsic constraints, such as knowledge about
the user’s current goal, to focus and limit this search to
what makes the most sense. The first aspect is the topic of
this section. Section 4 makes brief suggestions for future
work on ways of applying extrinsic constraints through
focused processing.

(a) (b) (c) (d)

Fig. 8. Continuity tracing. (a) Input figure. (b) Exploded
showing links defined before continuity tracing. (c) A new
segment added by continuity tracing, along with associated links.
(d) All segments added by repeating continuity tracing
convergence.

Algorithmic formulations of structural matching, such
as subgraph matching [6], graph rewriting [3], parsing of
graph grammars [1], etc., have exponential worst-case
complexity. Structural matching is feasible, however,
because most practical problems do not entail the worst
case. For example, in our subgraph matching approach to
sketch recognition, the preprocessing stage by design
produces a data graph that is not totally connected, but
rather whose links reflect perceptually salient spatial
relations in the input. Thus, the preprocessing discussed
in Section 2 is a key determiner of matching performance;
it attempts to produce data graphs that are as concise as
possible while still providing the needed alternative
interpretations in ambiguous circumstances. Similarly, we
design configuration models to make explicit only those
relations required for matching and discrimination.
Having met these conciseness requirements on the data
and model graphs, it remains to specify a matching
scheme that can take full advantage of the implicit
structural and geometric constraint. The rest of this
section outlines a constrained optimization approach to
subgraph matching that we developed for the sketching
recognition application [14,6].

The data graph, Go, is constructed using standard
image processing operations. The image is binarized and
thinned; the simple curve segments, extracted by tracing,
are then split into smooth segments at salient comer
points. (Corners are detected based on a technique in

[22].) For each of the resulting segments, its graph
representation is added to GD. The graph representation
of a segment consists of two nodes, one for each end point,
connected by a type of edge we call a bond. For each pair
of curves terminating at the same junction or corner,
another type of edge, called a (co-termination) link,
connecting their co-terminal end nodes, is added to the
graph. The data graph then, consists of a single type of
node, representing a curve segment end point, and two
types of edges (links and bonds).

A simple syntax for expressing stick figure
configuration models is illustrated below. Each limb
statement defines a part of the figure. The optional
modifier allows a part to be missing in the data. The
linked statement asserts an end-to-end connection
between two curvilinear parts. Two optional integer
arguments allow the modeler to specify with which end of
each part the link is associated. For example, the (default)
values (2,1) indicate that the link goes from the second
end of the first named part to the first end of the second,
where "first" and "second" are assigned in an arbitrary but
consistent manner. The syntax also allows constraints on
part attributes to be specified. For example, the minimi*e
statement in this example specifies ideal relative limb
lengths.

model stick_figure {
14~h head, torso, bicepsl, ...;
optional limb hand1, hand2 ;
llnk(head, torso);
llnk(torso, biceps1, 1, 1);

minimize (torso.len-2*head.len)A2
+ (2*torso.len-3*bicepsl.len)
÷ ...;

}))end model stick_figure

Subgraph matching may be formulated as a constraint
satisfaction problem (CSP) as follows. Mirroring the data
graph, a limb in the model is represented as a pair of
nodes, representing the limb’s ends, connected by a bond.
A link statement in the model specification gives rise to
links between the specified nodes. A CSP variable is
defined for each node in the model graph. The initial
domain of each variable is the set of data graph nodes plus
the label null for a missing part, since our models may
specify some parts as optional.

The primary constraint of the problem, termed link
support, is that a link/hond, l, between two model nodes,
ml, m2, requires the existence of a corresponding
link/bond between the associated data nodes dl, d2.
(Details of this constraint that allow specified parts to be
missing in the data are given in [14].) The unique
interpretation constraint requires that each data node may
be assigned to at most one model node. This is

108

implemented as a global cardinality constraint. These two
constraints are sufficient to establish a purely topological
match between the model and data graphs. This is often
adequate for matching to isolated instances, but spurious
matches arise if the data contains spurious strokes, gaps,
or self-crossings. To find reliable matches in such cases,
further quantitative criteria that rank topologically
equivalent solutions, e.g., based on geometry, must also be
applied. We have explored three such criteria.

The minimal total link length criterion prefers
interpretations with smaller total length of links
participating in the match. (A link participates in the
match if it corresponds to a link in the model.) The
optimal part proportions criterion prefers interpretations
in which the length ratios of the segments closely
approximate those specified in the model. The maximal
part count criterion prefers matches that leave fewer
model parts unassigned; it is needed because the
constraints above allow optional model parts to be missing
and make no distinction between solutions with differing
numbers of missing optional parts.

(a) (b)

Fig. 9. (a) A stick figure with 20 distractor lines. (b)
corresponding graph with labels and links produced by the image
analysis stage. The strokes that matched the model are shown as
bold lines.

To handle ambiguity, as represented in an elaborated
data graph, two global mutual exclusion constraints and a
quantitative criterion are added. The first constraint
enforces mutual exclusion among links that are in the
same mutual exclusion set. The second constraint
enforces mutual exclusion among data subgraphs that
have primitive segments in common; if a given segment is
assigned to a model part, no other segment built from any
of the same primitive segments may be assigned to any
model part. The added quantitative criterion prefers curve
segment chains that contain more segments. This
emulates the fact that long smooth curves are normally
perceived as more salient than their constituent segments.

One of our implementations solves the above CSP using
a branch-and-bound state-space search framework. A
state consists of an assignment to the set of CSP variables.
(In the initial state, all variables are unassigned. In a goal
state, all variables are assigned such that all constraints
are satisfied.) The successor state function, which is
given a state taken from the search queue and returns a set

of new states to be added to the queue, selects an
unassigned CSP variable and creates a new state for each
possible assignment of this variable. It applies the
specified constraints to effect possible reductions in the set
of new states generated.

The quantitative criteria are incorporated into the
objective function that is optimized by the search process.
All four optimization criteria are combined into a single
function as a weighted sum. The link length and part
proportion criteria have equal weights while the part count
criterion is given a much higher weight; i.e., the first two
criteria only come into play among solutions with equal
part counts. The segment count criterion is assigned a
weight in between these other two values.

xt¢

MG
a
t4

Q
h3

t2
I
m1

eo
i i t i i

0 5 10 15 20 25
Number of distractors

Fig. 10. Mean match time (in milliseconds) for a figure with
through 28 random distractor lines. The error bars indicate the
standard error over 100 runs (10 test figures, at 10 runs each).

M6

aGt
c4
h

3
t2i
mt
eo

2 3 4 5 0
Number of ~.res

Fig. 11. Mean match time (in milliseconds) for composite
images containing 1 m 6 figures. The error bars indicate the
standard error over 20 different composites.

Our evaluations of the approach have focused so far on
how runtime and accuracy scale with data graph
complexity. Input complexity was varied in two ways: by
adding random distractor lines to images of isolated
figures, and by composing multiple figure scenes at

109

random from individual example figures. Figures 10 and
11 show runtime results for these experiments, for a Java
implementation running on a 600 MHz Pentium III
processor. Figure 9 shows an example figure with
distractor lines, its data graph, and the associated
matching result. Figures 12 and 13 show an example
composite input and its matching result.

Fig. 12. Sketch with three stick figures and a distractor figure,
with labels and links produced by the image analysis stage.

D,-tl

t -~ I I~-~

P P

Fig. 13. Interpretation of the data of Fig. Z, with part labels
preceded by the index of the instance.

4. Reducing matching complexity through
focused processing

The approach of Section 3 gives runtime performance
in a useful range for interactive applications, when applied
to problems of moderate size. But as inputs and model
sets grow large, performance degrades substantially, and
the approach does not rule out the possibility of
exponential growth. Additional criteria must be applied to
focus and limit the search for a match to the most
promising data and models. We can distinguish four main
notions of focus applicable to sketch recognition, to be
explored in future work: anchors, salience, grouping, and
model bias.

We have an anchor when part of the target match is
given a priori. E.g., one or more strokes in the data may
be known a priori to belong to the target figure, perhaps
based on an interactive indication by the user. During
matching an anchor may be treated as including one or
more strokes of the target figure, or as including all
strokes of the target figure. Typically, the latter
interpretation of an anchor would give more restriction on
search but it requires more careful user selection. In an
interactive context, the user would somehow specify in
which of these ways an anchor should be interpreted.

Salience refers to a prior labeling of data elements that
reflects how promising they are for matching. Salience
criteria may be bottom-up or top-down. Bottom-up,
salience criteria reflect general perceptual principles or
phenomena. An example of such a phenomenon is pop-
out, in which an element is singled out for focused
processing based on how different it is from neighboring
elements, or the global distribution of elements, with
respect to properties such as length or orientation. TOP-
down criteria involve domain or task-specific knowledge.
For example, the set of configuration models currently
selected for matching by the user can be used to rank
scene elements with respect to their goodness of fit to that
set of models. The fit of an element is measured in terms
of its local relations and relative attributes.

Salience information may be exploited in two ways.
First it can be applied directly to controlling the search
order; i.e., more salient elements may be tried first.
Second, it may be used to define anchors: i.e., a threshold
may be applied to the salience values, and search may be
restricted to the above-threshold elements.
Grouping defines coherent subsets of the data. Groups

may be treated as independent matching sub-problems that
are not only more manageable in size that the entire input,
but being visually coherent, also more sensible. Criteria
for defining groups include the Gestalt principles of
similarity, proximity, good continuation, closure, and
symmetry. There is a significant research challenge in
developing computational formulations of these grouping
criteria that are useful in the sketch interpretation domain,
but there is some promising work to suggest that this
research direction will be fruitful. E.g., Saund presents
techniques for grouping sketched curves by good
continuation [20] and closure [21]. Thorisson [25]
presents techniques for similarity and proximity grouping
that are applicable to sketched data.

Groups may also influence which models are selected as
promising candidates for matching, and in what order they
are tried. For example, we may rule out models that have
too many parts compared to the number of strokes in a
given group.

Model bias is the a priori specification of which sets of
models should be applied in a given matching operation.
E.g., matching may be restricted to a given domain-

I10

specific family of models, or a set of models a user has
interactively selected.

5. Automating model acquisition

Part of the appeal of a structural modeling approach is that
the matcher may be manually extended to a new
configuration in an intuitive way, by specifying by name
its constituent parts and relations. In practice, however,
for all but the simplest configurations, manual entry of
models is not very convenient. A structural model for a
curvilinear configuration of even moderate complexity
may involve dozens of statements specifying parts,
attributes, and relations. Moreover, the statements that
specify geometric attributes, such as length proportions
and angles, involve numerical parameters that are usually
not readily accessible to introspection. (Also, as was noted
in Section 3, a number of additional parameters are used
to specify the relative importance of the various matching
constraints. These are not associated with individual
models, but they may depend on the domain being
modeled, or the sketching style of particular users.) Add
to this the fact that an effective recognition system might
incorporate dozens or hundreds of models, and new
configurations are continually being designed or
improvised by users.

It seems clear that for sketch recognition to be useful,
the burden on users of entering models must be kept to a
minimum. One approach is to develop techniques that
would automatically or interactively learn models from
user specified examples. Our exploration of this problem
is just beginning, but it is possible to state some broad
requirements at the outset. The advantage of learning over
manual entry is greatly diminished if the user must
initially draw or collect many examples and non-
examples. Therefore, the learning scheme should require
as few training examples as possible, and preferably only
positive examples. Ideally, learning should be
incremental, generating a useable model from a single
positive example, and then gradually refining that model
as new examples are presented at the user’s convenience.

Several distinct literatures appear to be pertinent to this
specification of the problem. It may be possible to ground
future work on learning curvilinear configuration models
in a combination of methods and insights from all of
them. One key division is between schemes for inductive
learning of the part-relation (graph) structure of the model
(i.e., learning structural descriptions), and methods for
estimating ideal values or ranges for the numerical
parameters of a pre-defined structure (i.e., parameter
estimation).

AI techniques for learning structural descriptions
[27,16] ought to be explored in the sketch recognition
domain. As originally presented, these methods may often
require negative examples and/or a more careful selection

of examples by the teacher that we would like. However,
it may be possible to adapt these techniques to meet our
requirements. For example, an interesting application of
version spaces to learning from small numbers of
examples, in the programming-by-demonstration domain,
is given in [11,12].

The literature on grammatical induction contains
various incremental techniques for learning regular
grammars [3,17,18,19]. For use in sketch recognition,
these methods may need to be extended to the case of tree,
graph, or plex grammars [7,8]. Structural models of the
type introduced in Section 3 can be derived from
grammars. Alternatively, one may attempt to adapt
insights from the grammar induction work to the problem
of learning model graphs directly.

These structure learning and grammatical induction
methods are not applicable to the problem of learning the
model’s numerical attributes. A computational model -
applicable to both parameter estimation and structure
learning -- of how humans are able to learn concepts from
small numbers of positive examples is presented in [24].

Note that the graph elaboration ideas of Section 2 will
likely play a key role in enabling learning. Without them,
as in the case of matching, appropriate error tolerance
must be built into the learning process itself, to cope with
variability and noise. Most learning techniques in the
literature make no provision for such error tolerance.
Prior elaboration should mitigate the complexity of
learning no less than that of matching.

6. Conclusion

This paper proposed a framework for the design of
effective sketch recognition systems. The three pillars of
that framework are (i) dedicated pre-processing to address
the effects of drawing variability; (ii) a constrained
optimization, subgraph matching approach to recognition,
possibly applied in a focused manner to mitigate the
inherent complexity of the problem; and (iii) automated
model acquisition through incremental and highly
effective learning techniques.

Our research so far has realized only parts of this
program; we are turning to the rest in ongoing work.
There are certain segmentation ambiguities, such as
corners, that we have identified but for which we have not
developed elaboration operations. We plan to explore
ways of estimating the parameters of the elaboration
operations automatically, possibly subject to the influence
of given sets of configuration models. We intend to
experiment with a wider range of configuration models,
with control schemes for matching multiple models, and
with input data drawn from diverse users and domains.

The approach in this paper deals mainly with
curvilinear configurations, and the models we have tested
are defined primarily by end-to-end connectivity relations.
We believe the matching approach will extend naturally to

III

other abstract relations among strokes, such as
inside/outside, left/fight, perpendicularity, parallelism, etc.
However, it must be noted that some recognition problems
in the sketch domain, such as recognition based primarily
on curve shape, may fall outside the scope of a structural
modeling and matching approach altogether.

Acknowledgements

We are grateful to David Fleet, Eric Saund, and Dan
Lamer, of the Perceptual Document Analysis Area at
Xerox PARC, and Allan Jepson, of the University of
Toronto, for helpful discussions over the course of this
research.

References
1. S. Chok, K. Marriot. Parsing visual languages. Proc. 18th

Australasian Computer Science Conf., 27(1), 1995: 90-98.
2. T. Cormen, C. Leiserson, R. Rivest. Introduction to

Algorithms. Cambridge, MA: M.I.T. Press, 1990.
3. F. Denis, Learning regular languages from simple positive

examples, Machine Learning, voi. 44 (1/2):37-66, July
2001.

4. P. Dupont. "Incremental regular inference. In Grammatical
Inference: Learning Syntax from Sentences, ICGr96,
number 1147 in Lecture Notes in Artificial Intelligence,
pages 222-237. Springer Verlag, 1996.

5. H. Fahmy and D. Blostein. A graph-rewriting paradigm for
discrete relaxation: application to sheet music recognition.
Int. Journal of Pattern Recognition and Artificial
Intelligence, vol. 12, no. 6, Sept. 1998,pp. 763-799.

6, M. Fromherz and J. Mahoney. Interpreting sloppy stick
figures with constraint-based subgraph matching. 7th Int.
Conf. on Principles and Practice of Constraint
Programming. Paphos, Cyprus: 2001.

7. K. Fu, Syntactic pattern recognition and applications,
Prentice-Hall, NJ, 1982.

8. R. Gonzalez and M. Thomason, Syntactical Pattern
Recognition. Addison-Wesley, 1978.

9. D. Isenor and S. Zaky. Fingerprint identification using
graph matching. Pattern Recognition, vol. 19, no. 2, 1986,
pp. 113-122.

10. J. Larrosa and G. Valiente, Constraint satisfaction
algorithms for graph pattern matching. Under consideration
for publication in J. Math. Struct. in Computer Science,
2001.

I 1. T. Lau, P. Domingos, and D. Weld, Version Space Algebra
and its Application to Programming by Demonstration,
ICML 2000, Stanford, CA, June 2000, pp. 527-534

12. T. Lau, S. Wolfman, P. Domingos, and Daniel S. Weld,
Programming by Demonstration using Version Space
Algebra. to appear in Machine Learning.

13. J. Mahoney and M. Fromberz. Interpreting sloppy stick
figures by graph rectification and constraint-based
matching. 4th IAPR Int. Workshop on Graphics
Recognition: Kingston, Ontario: Sept., 2001

14. J. Mahoney and M. Fromherz. Handling Ambiguity in
constraint-based recognition of stick figure sketches.

Document Recognition and Retrieval IX: San Jose,
California: Jan., 2002

15. B. Messmer. Efficient graph matching algorithms for
preprocessed model graphs. PhD thesis. Bern Univ.,
Switzerland, 1995.

16. T. Mitchell. Version spaces: an approach to concept
learning. PhD dissertation, Stanford University, Dept. of
Electrical Engineering, 1978.

17. Parekh, R. and Honavar V., An Incremental Interactive
Algorithm for Regular Grammar Inference. 3"~ Int.
Colloquium on Grammatical Inference (ICGr96),
Montpellier, France. September 24-27, 1996. Lecture Notes
in Computer Science vol. 1147 pp. 238-250

lg. Parekh, R. and Honavar, V., Learning DFA from Simple
Examples. 8th Int. Workshop on Algorithmic Learning
Theory (ALT97), Sendai, Japan. Oct. 6-8, 1997. Lecture
Notes in Computer Science vol. 1316 pp. 116-131.

19. Parekh, R., Nichitiu, C. and Honavar, V., A Polynomial
Time Incremental Algorithm for Learning DFA. 4th Int.
Colloquium on Grammatical Inference (ICG198), Ames,
IA. 1998. Lecture Notes in Computer Science vol. 1433 pp.
37-49.

20. E. Sannd, Labeling of carvilinear structure across scales by
token grouping. Proc. IEEE Conf. on Computer Vision
and Pattern Recognition, 1992: 257--263.

21. E. Saund. Perceptually closed paths in sketches and
drawings. 3"~ Workshop on Perceptual Organization in
Computer Vision. Vancouver, Canada, July, 2001.

22. E. Sannd. Perceptual organization in an interactive sketch
editor. 5th Int. Conf. on Computer Vision. Cambridge,
MA: 1995: 597-604.

23. L.G. Shapiro and R. M. Haralick. Structural descriptions
and inexact matching. In IEEE Trans. on Pattern Analysis
and Machine lntelligencl, vol. 3, no. 5, Sept. 1981, pp. 504-
519.

24. J. Tenenbaum. Bayesian modeling of human concept
learning. Advances in Neural Information Processing
Systems 11, 1999.

25. K. Thorisson. "Simulated perceptual grouping: an
application to human-computer imeraction. " Proc. 6rh

Annual Conf. of the Cognitive Science Society. Atlanta,
Georgia, Aug 13-16, 1994: 876---881.

26. W.H. Tsai and K.S. Fu. Subgraph error-onrrecting
isomorphisms for syntactic pattern recognition. IEEE Trans.
on Systems, Man, and Cybernetics, 13(I):48--62, Jan-Feb
1983

27. P. Winston. Learning structural descriptions from
examples. In The Psychology of Computer Vision.
McGraw-Hill, 1975.

