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Abstract

Data collected from multi-environment trials conducted for the purpose of

comparisons among genotypes are often in the form of a large three-mode

array; designated as genotypes by environments by attributes. We consider two

complementary ordination and clustering procedures, three-way principal com-

ponent analysis and three-way mixture approach to clustering, to analyse such

data. The application of these techniques enhance the researcher's ability to

make decisions in erop improvement programs where several attributes are

important and must be considered simultaneously when evaluating the impact

of selection strategies. They are illustrated using data from an experiment

which examined the grain yield adaptation of a sample of advanced wheat lines

from the International Maize and Wheat Improvement Center (CIMMYT) and

three Queensland cultivars in a series of water stress environments in

Queensland. Although grain yield adaptation was of major concern, examina-

tion of other attributes which may influence the adaptation is important and

maturity (days to anthesis) is included here. The interpretation of such analysis

of multi-environment data to make both genera! and detailed statements about

the relative performance of the lines and differences among the environments is

illustrated.

Introduction

The existence of significant genotype by environment (GxE) interactions has been

recognized by plant breeders as a complicating factor in selection and testing strate-

gies for many years. The interactions reflect differences in adaptation which may be

exploited by breeding for specific adaptation (emphasi/.ing favourable interactions)
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or broad adaptation (mmimizing interactions) hy selection, and by adjustments to

the test strategy. In order to make objective decisions, a ful l understanding of the

nature of such interactions is needed. Various methodologies have been proposed

for the analysis of univariate GxE data and they have each proved successful in cer-

tain situations.

Our concern is with multivariate or multiattribute GxE interactions where plant

breeders measure more than one attribute on genotypes in multi-environment trials

(METs). Then the collected data can be summarized in the form of a genotype by

environment by attribute (GxExA) array of means which is formally derined as a

three-mode three-way data set (Carroll and Arabic, 1983). We shall only discuss

techniques which act directly on three-mode data, rather than those that act on a

converted two-mode three-way data array, e.g. by computing a difterence measure

between each pair of genotypes within an environment to form a GxGxE matrix.

We want a simultaneous analysis of all three modes in that data set, rather than

separate univariate analyses, the results of which would then have to be combined.

Methods of Analysis

Two broad classes of analytical methods can be distinguished in the context of

three-way data: ordination and clustering techniques. As stated in Kruskal (1977)

and Arabic and Carroll (1980), the two types are largely complementary, and make

use of the same information in different ways. Multivariate analysis of variance can

also be applied to three-way data, hut with a reasonable number of genotypes,

environments and attributes, most interaction terms are nearly always significant.

DeLacy (1981), Gauch (1988) and Gauch and Zobel (1988) all argued that, even for

GxE data on a single attribute, the standard multivariate analysis of variance was

largely uninformative. Basford et al. (1991) believe that the main focus should be

on the structure of the interactions and the similarity of the genotypes, which can

primarily be evaluated via modelling techniques.

Hence, we shall discuss a clustering technique and an ordination technique suit-

able for analysing three-mode three-way data. As well as presenting the individual

analyses, the results of the cluster analysis will be displayed superimposed on the

results from the ordination to show how the two techniques are complementary and

can be used to enhance the understanding of the interactions.

Clustering

If the genotypes can be clustered or grouped such that the genotypes within a group

have similar response patterns for each of the attributes across environments, then the

plant breeder can examine a much smaller data set and hence more easily integrale

the information inherent in the trials. The mixture maximum likelihood method of

clustering (Basford and McLachlan, 1985) is a model-based technique which can be

applied in such cases to produce a grouping of genotypes (one of the modes) based

on the simultaneous use of attributes and environments (the other two modes).

This clustering method uses the measurements on a set of elements (genotypes
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here) to identify clusters in which the genotypes are relatively homogeneous, while

they are heterogeneous between the clusters. U is a non-hierarchical procedure

which requires the number of clusters, c, to be specified. Although each cluster is

allowed to have a different mean attribute vector in each environment, the covari-

ance matrix (which specifies the correlation structure among the attributes) for each

cluster is the same across environments, although it can differ from cluster to

cluster. By allowing the mean attribute vector for a cluster to differ across environ-

ments, the significant genotype by environment interaction (which is almost always

present) can be considered in the identification of groups of genotypes for which a

general behavioural description is required. Thus a group could perform well in one

environment and poorly in another environment. A covariance matrix particular to

each cluster is beneficial as it might be expected that in the underlying group struc-

ture, the correlations between attributes might differ across groups of genotypes.

For example, there could be a reasonable correlation between two attributes in one

group, but virtually no correlation between these attributes in another group. In the

current model, the correlation structure for an underlying group does not depend on

environment. However, it is possible that significant GxE interactions could result

in changes in correlations across environments.

Formally, if there are c groups (clusters) from which the genotypes have been

sampled in unknown proportions nm (m=\,...,c), then the distribution of the vector

of attribute values for genotype / (/=!,...,#) in environment j (/=! ..... e) is given by:

ƒ(*„)= £«„ƒ„<*„> (14.U
m=\

where

is the usual assumption of the underlying distribution of the attribute vector in each

group being multivariate normal with mean vector u (depending on the group and

the environment) and covariance matrix Zm (depending on the group). The unknown

parameters, i. e. mean vectors, covariance matrices and mixing proportions, are

estimated using maximum-likelihood methods. In this process, the genotypes do not

have to belong outright to only one of the groups as each genotype has a probability

of belonging to each group, i.e. the posterior probability that genotype / belongs to

group m, given the parameter estimates. is:

jc ĵiiUi)
where

(14.4)

is the vector containing the attribute vectors for all c environments. This non-alloca-

tion of the individuals to a group during the iterative process is particularly

advantageous. Hierarchical procedures have been criticized because some of the ini-

tial fusions of individuals into groups (the process starts with n groups of one

individual and finishes with one group of n individuals) may prove to be unfor-

tunate at the later stages (when there are few groups). Non-overlapping groups
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(clusters) are obtained by allocating each genotype to the group to which it has the

highest estimated probability of belonging. The resulting clustering enables an over-

view of the information inherent in the data.

This mixture method of clustering requires the number of underlying groups or

clusters to be specified. From a given starting allocation of the genotypes into

groups, the EM algorithm (Dempster et al., 1977) converges to a local maximum of

the log likelihood. Hovvever, there is no guarantee that a global maximum will be

reached. An approximate test on the log likelihood can be used to give an indication

of the appropriate number of groups (McLachlan and Basford, 1988), but this is not

exact and more research is being undertaken. A subjective assessment of the estim-

ated probabilities of group membership and the rate of increase in the log likelihood

values can also be used to determine an appropriate group number to adequately

summarize the data. For the purpose of evaluating differences in adaptation among

genotypes in METs, it is not necessary that the allocation of the genotypes into

groups represents the 'true' grouping of the data, but rather that a satisfactory sum-

mari/.ation is obtained. A decision on whether a satisfactory summary is obtained

must be judged by the plant breeder in context with the objectives for conducting

the METs.

The mixture method of clustering was applied using the program MIXCLUS3,

an updated version of that appearing in the Appendix of McLachlan and Basford

(1988). A copy of the program can be obtained from the first author of the chapter.

Ordination

If we want to know more detail about the relative performance of the genotypes, we

need to consider an ordination procedure in which scores on a small number of

components or factors are used to summarize the data. Two available techniques are

three-mode principal component analysis (Kroonenberg, 1983) and parallel factor

analysis (Harshman and Lundy, 1984). We shall only discuss the former, principally

because we have more experience with it. In three-mode principal component

analysis (which has some of the interpretational flavour of factor analysis), com-

ponents (or factors) are derived for each of the modes. Each mode has its own

number of components, and these components can be interpreted separately.

Moreover, a set of parameters is derived which describe the relationships between

the components. Generally, the emphasis is not so much on the interpretation of the

components themselves, but on the interpretation of the structures of the genotypes,

environments and attributes, as well as their interrelationships. The technique is

used to reduce the data to such an extent that the main patterns can be inspected.

In order to apply three-mode principal component analysis (or a parallel factor

analysis), the mean response of genotype i (i=l #) in environmenty (j=\ <"' f°r

attribute k (k=\ a), xl]k, must be centred and scaled (Basford et ai, 1991). The

chosen form is that recommended by Fox and Rosielle (1982) and Cooper and

DeLacy(1994),i.e.:

V K,*-V/v
 (14

'
5)

Thus the data are centred by subtracting the environment mean for that attribute, x^
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and scaled by dividing by the environment standard deviation for that attribute, ,vy/[.

Formally, given P, Q and R components for genotypes, environments and attri-

butes, respectively, the model becomes:

where a( , b and ckr are the component coefficients for genotypes, environments

and attributes, respectively, and the g parameters weight combinations of com-

ponents of the three modes. When a g value is large compared with other

weights. that combination of the /rth, qti\ and rth component is more imponant in

estimating the data values than when it is small. Therefore, these weights can be

used to select the component combinations for interpretation (Kroonenberg, 1983,

Section 6.9).

It is possible to portray the relationships between the genotypes and attributes

for each component of the environment (or the genotypes and environments for

each component of the attributes) in a joint plot, a variant of Gabriel's (1971 ) biplot.

The term, joint plot (Kroonenberg, 1983), is used rather than the term biplot,

because Information from all three modes is used jointly to construct the plot. Given

an interpretation of an environment component, such a plot indicates which geno-

types have comparatively high or low scores on which attribute for that environment

component. Thus, a very detailed statement about the relative performance of all the

genotypes can be made from this analysis.

Just as the number of underlying groups must be specified for the mixture

method of clustering, the three-mode principal component analysis requires the

number of components for each mode to be determined. As explained in Basford et

al. (1991), the number of components should be determined by the detail with

which one wants to examine the data. This is in contrast to the view that a search

should be made for the 'correct' number of components for each mode. The analogy

is to the 'correct' magnification required when using a microscope, where the

general rule is to use the lowest magnification compatible with observing the pheno-

mena of interest.

The ordination was applied using the program TUCKALS3 (Kroonenberg,

1994). A copy of this program can be obtained from the second author of this chapter.

Application

Experimental details

The data used to illustrate these techniques come from an experiment on 49

advanced wheat lines subjected to a range of water stress environments in a MET

conducted in Queensland. The details of the experimental material, test environ-

ments. experimental design and measurements were given by Cooper et al. (1994a)

and are not repeated here in depth. In summary, the 49 wheat lines were 40

advanced lines from the International Maize and Wheat Improvement Center

(CIMMYT) in Mexico used in the selection study of Cooper et al. (1993), six other

CIMMYT lines and three Queensland cultivars (Hartog, Banks and Kite). They

were tested in six environments generaled by imposing an irrigated and dryland
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trealment at three locations. The environments are referred to as Brookstead dryland

(BD) and irrigated (BI ) . Cecil Plams dryland (CPD) and irrigated (CPI), and Gatton

dryland (GD) and irrigated (GI). All trials were managed to prevent disease and

weeds influencing the relative performance of the lines. The Gatton irrigated

environment was considered to provide the yield potential condition for comparison

with the other environments.

Although grain yield adaptation was of major concern, grain yield, yield com-

ponents, phenology and dry matter production and partitioning attributes were

measured on all lines in each environment. In the current study, two attributes, grain

yield (g m"
2
) and maturity (days to anthesis), were analysed simultaneously.

Significant (P<().()5) line variation was reported for both attributes in each environ-

ment when the lattice analysis of variance was used (Cooper et al.. 1994a). The

lattice adjusted data were used in subsequent analyses. From the combined analysis

of variance, significant (P<0.()5) genotype and GxE interaction was identified for

both attributes. The relative si/.e of the genotypic (a2) and GxE interaction (o ,7.)

components of variance estimated using a REML (residual maximum likelihood)

procedure were; yield (0^=2871120; 0^=10821161) and maturity (0^=5.5811.33;

O jf=4.6810.52). Previous analysis of these data by Cooper et al. (1994a) was based

on correlations between the attributes across environments.

Clustering

Using both the approximate test on the log likelihoods and subjective assessment of

the estimated probabilities of group membership for determining underlying group

number. the seven-group solution (Table 14.1) was found to be most appropriate for

summari/ing the variation in the data. Although line 38 was the only one allocated

to Group G. other lines had sorne (smal l ) probability of belonging to this group;

otherwise the EM algorithm could not have converged to this solution. (A variance

cannot be estimated from a sample of si/.e 1.) Study of the log likelihoods for each

starting solution indicated that even though there were many local maxima (depend-

ing on starting allocation), that reported in Table 14.1 was by far the best solution.

The naming of the groups from A to G is in order of increasing mean yield over all

environments.

Table 14.1. Membership of the seven group summary of the 49 wheat  lines from the mixture
method of clustering

Group  Membership

A  48,49

B  10,24,25

C  1, 2, 7,12,13.17, 21, 33, 41, 42, 43, 44, 47

D  18,19, 20, 22, 23, 26, 27, 28, 29, 30, 31, 34, 36, 37, 39, 45, 46

E  6 ,8 ,9 ,14,15,16,32,35,40

F  3,4,5,11

G  38
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The absolute values of the estimated correlation coëfficiënt between yield and

maturity for each cluster were generally less than 0.02, although it was 0.33 for

Group E and -0.76 for Group A. The latter value should not be interpreted with

much confidence as it was effectively calculated from only two lines (4X and 49).

This conditional independence of the attributes, i.e. zero correlation among them. is

often found in the underlying groups and is sometimes specined in the analysis

(Aitkin et al., 1981), although that was not the case here.

For comparison, the composition of the current seven groups is tabulated

against that of the six groups obtained from Cooper et al. (1994b) who analysed

yield alone (Table 14.2) with an hierarchical agglomerative technique (with squared

Euclidean distance as the proximity measure and incremental sum of squares as the

criterion). Using their composition as an initial allocation for the simultaneous

analysis of yield and maturity, a better solution (in terms of log likelihood) at the six

group level was obtained using the mixture method of clustering. However, the

seven-group solution presented here was chosen as more appropriate. As expected,

there were both similarities and differences in the two groupings (Table 14.2) with

those of Cooper et al. (1994b) being allocated across a number of the groups

obtained here.

The response pattern of these seven groups across environments for yield and

maturity is shown in Fig. 14.1. The ordering of the environments on the horizontal

axis is that of increasing mean attribute value over all lines. Basford et al. (1994)

investigated the standard errors of the estimated means from the mixture method of

clustering. They stated that if the underlying groups are widely spaced and the fitted

posterior probabilities of group membership are either close to zero or one, an

approximate minimum value could be determined by taking the square root of the

estimated variance (of the attribute in question) divided by the sum of the posterior

probabilities of belonging to the group. Basford and Tukey (1996) suggest

underlap-overlap bars which are ±1.5 times the standard error of plotled means. It

Table 14.2.  Comparison of groupings from mixture method of clustering (in the rows) with
that obtained from Cooper et al. (1994b)  (in the columns)  using yield alone

Table 1
Grouping  91 (7)*

A  (2)  48,49

B (3)  10,24,25

C  (13)

D  (17)  19,37

E  (9)

F (4)

6(1)

Grouping from Cooper et al  (1994b)

92(17)

12,13,17,

21,41,42,

43, 44, 47

18,20,23,

30,34

8,16

11

90(8)

2

26, 27, 28,

39, 45. 46

32

89 (6)  87 (9)  77 (2)

33  1,7

29, 36  22, 31

6,35,40  9,14,15

3,4  5

38

* Number in each group given after group name.
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Flg. 14.1. (a) Group mean yields across environments (environment code given in Table 14.3). (b)
Group mean maturity across environments (environment code given in Table 14.3).

the bars overlap in comparing any two means, then we are confident that they are

not significantly different. The group with the largest estimated Standard error of the

mean is Group G for both yield (21.0) and maturity (0.79); not surprisingly as this is

effectively a single member group. Instead of individual group bars, ±1.5 times this

maximum has been used on each plot in Fig. 14.1. This is a very conservative estim-

ate and will stop us interpreting too many differences on these displays.

Nevertheless, there is still considerable line group by environment interaction for

both attributes. For the two environments BD and CPI, where line mean yield was

low (Fig. 14. l a), the conservative Standard error suggests that line groups do not

differ for yield but do differ for maturity (Fig. 14. l b). Since significant (P<0.05)
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line variation was identified for yield in each environment, this suggests that the

grouping has not adequately described the yield variation among the lines in these

two environments.

Ordination

After examining several solutions, it was decided that the 3x3x2 solution (three

components for lines, three components for environments and two components for

attributes), which accounted for 65% of the variation, was an appropriate summary

of the data on the 49 wheat lines.

The two components for attributes were almost equivalent to the original two

attributes, and it was decided to consider a varimax rotation for both the environ-

ment and attribute components, while leaving the line components unchanged. The

transformed (rotated) components for the environments and the attributes are shown

in Tables 14.3 and 14.4, respectively. They account for 25%, 25% and 14% of the

variation for environments and 28% and 37% of the variation for attributes. The

variation accounted for by the various components from the original analysis was in

decreasing order, but the rotation can change this (as was the case here). The two

(rotated) attribute components are directly representative of the original attributes,

yield and maturity, respectively (Table 14.4). By ignoring the small component

values in Table 14.3, it can be seen that the first environment component primarily

represents BI, CPD and CPI, the second primarily represents GD and GI, while the

third primarily represents BD.

When the components are rotated, the core matrix must be counter-rotated in

order to see which combinations of (rotated) components account for most of the

variability. These are displayed in Table 14.5 where the explained variability is now

distributed over a larger number of elements than in the original core matrix, which

is not shown. For grain yield (really the yield slice), most weight is on the combina-

tion of first line component with the first environment component (0.051) and the

second line component with the second environment component (0.088). For matur-

ity (really the maturity slice), most weight is on the combination of first line

Table 14.3. Rotated environment components from the threemode principal  component
analysis of the 49 wheat  lines.

Environment

Brookstead dryland (BD)
Brookstead irrigated (BI)
Cecil Plains dryland (CPD)
Cecil Plains  irrigated (CPI)
Gatton dryland (GD)
Gatton irrigated (GI)

ff

1

0.02

0.42

0.71

0.56

0.04

0.01

0.25

Component

2

0.03
0.13
0.05

0.13
0.68
0.71

0.25

3

0.91
0.32

0.24
0.10
0.05

0.04

0.14
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Table 14.4.  Rotated attnbute components from the threemode principal component analysis
of  the 49 wheat  lines

Component

Attnbute  1

Yield  100  0.00
Maturity  000  1.00

R2  028  0.37

Table 14.5.  Counterrotated core matrix  givmg the proportion of variation accounted for  by the
combmations of components

Environment  components

Yield slice
Line components

1
2
3

Maturity slice
Line components

1
2
3

0051
0.033
0.010

0.156
0.000
0001

0.020
0.088
0019

0.125
0000
0001

0.001
0028
0030

0028
0.001
0.055

component with the first and second environment components (0.156 and 0.125,

respectively).

When looking at the joint plots with attribute as the reference mode, we inter-

pret the rotated attribute components, and when looking at the joint plots with

environments as the reference mode, we interpret the rotated environment com-

ponents. The joint plots of lines and environments are displayed in Fig. 14.2 for the

attribute components, yield and maturity, while the joint plots of lines and attributes

are displayed in Fig. 14.3 for the three environment components, (a) mainly BI,

CPD and CPI, (b) mainly GD and GI, and (c) mainly BD, respectively. In these joint

plots, the wheat lines have been labelled according to the membership of the seven-

group solution from the mixture method of clustering.

Consider the joint plots where attributes are the reference mode (Fig. 14.2). We

shall in i t ia l ly discuss these, hut the same can be said for the joint plots where

environments are the reference mode (Fig. 14.3). Arrows (vectors from the origin)

are drawn for the environment vectors (Fig. 14.2), while the wheat lines are shown

as pomts m these displays. The length of a vector for a particular environment indi-

cates the importance of that environment to the differences in the component in the

reference mode. To describe the performance of any particular wheat line with
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Fig. 14.2. (a) Joint  plot  of Component  1 vs Component 2 for yield  (b) Joint plot  of Component 1 vs
Component 3 for  yield. (c) Joint plot  of Component 2 vs Component 3 for yield.  (d) Joint  plot of
Component  1 vs Component 2 for  maturity

respect to a particular environment, drop a perpendicular to the corresponding vec-

tor. This is equivalent to finding the inner product between the vector to a particular

wheat line and the environment vector. A positive value indicates a larger than aver-

age performance in that environment while a negative value indicates a smaller than

average performance in that environment. Parallel environment vectors indicate that

the environments influence the performance of lines m a similar way. while vectors

at 180° indicate dissimilar performance. Environment vectors at 90° indicate inde-

pendent performance. For example, in the joint plot of the h'rst versus second

components for yield performance (Fig. I4.2a), the dryland and irrigated treatments

at each site are quite similar, whereas the performace at Gatton appears to be
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Fig. 14.3. (a) Joint  plot of Component  1 vs Component 2 for  Environment  Component 1 (BI,  CPD, CPI).
(b) Joint plot  of Component  1 vs Component 2 for  Environment  Component  2 (GD, Gl). (c) Joint  plot of
Component  1 vs Component 2 for  Environment Component 3  (BD).

independent of the performance at the other sites. As Brookstead and Cecil Plains

are in close proximity on the Darling Downs whereas Gatton is in the Lockyer

Valley, this is reflecting genotype by location interactions.

From Fig. 14.2a, the unique response of Group G (containing line 38) is appar-

ent, as is the average to high yield shown by members of Group D in Brookstead

and Cecil Plains, but not in Gatton. Similarly, Groups F and E showed average to

high yield at Gatton, but low yield at the other locations. This reflects the indepen-

dence of the response at Gatton compared with that at Brookstead and Cecil Plains.

Although yield under the water stress environments (Brookstead dryland and Cecil
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Plains, in particular) generally differed from that under yield potential conditions,

Group G did well everywhere. In Fig. 14.2b, Group F showed specific adaptation to

Cecil Plains dryland, while in Fig. 14.2c, this group does well at Gatton and Cecil

Plains dryland, but poorly at Brookstead dryland. Fig. 14.2d emphasizes early ver-

sus late flowering groups on the first component, while the second component

suggests Group F was particularly later flowering at Brookstead dryland.

It is clear from the joint plots for the three environment components (Fig. 14.3),

that yield and maturity are independent of one another as they are at right angles.

This is consistent with results from the cluster analysis where these attributes were

basically independent for each group, except possibly Group E. This result was

somewhat surprising given the importance of phenology for yield in Queensland

(Woodruff and Tonks, 1983), but it indicates that variation for grain yield exists

which is largely independent of the effects of phenology.

There is less localization of the groups for the joint plots for the environment

components (Fig. 14.3) than for the attribute components (Fig. 14.2). For

Brookstead irrigated and Cecil Plains (Fig. 14.3a), the higher yielding lines tended

to be later flowering ones in Groups F and G and some individual lines from Group

D. They could be taking advantage of irrigation at these locations and the rainfall

which occurred at flowering at Cecil Plains. For Gatton (Fig. 14.3b), the low pre-

anthesis stress could have ensured that both early and later flowering lines had high

yield. For Brookstead dryland (Fig. 14.3c), the severe water stress could have

resulted in the high yield being generally associated with quicker flowering lines.

The possible exception to this would be Group G.

These results were consistent with the analyses of Cooper et al. (1994a) in that

there was general independence of yield and days to anthesis with only weak rela-

tionships. Looking at the distribution of the wheat lines on the joint plots provides a

much clearer interpretation than that obtained by examining correlations.

Discussion

Both the clustering and ordination procedures gave a sensible and useful summariza-

tion of the data from the trial on the 49 wheat lines subjected to water stress

environments. Considerably more detail and interpretation were available through

the complementary use of these techniques, especially in examining the relationships

and variation among and within clusters. This addresses the practical problem for

plant breeders that, although such clusters are easier to look at than many individual

lines, selection has to be made for individual lines. When selection has to be made

for multiple traits, tandem selection, independent culling levels or selection indices

are often used. Where independent culling levels are attempted, it is extremely diffi-

cult to assess jointly information on multiple attributes integrated across

environments. Similarly, it is hard to visualize what is happening with selection

indices. Joint plots provide a powerful graphic to assist in this process. Altematively,

they could be used to study the patterns once selections have been made.

As argued by Basford et al. (1991), the major advantage of these methods is

that they allow the data set to be treated in the form of a three-mode three-way

array. An overall picture of response is obtained by studying the groups from a
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clustering procedure in which the important GxE interactions present in such trials

have been incorporated directly into the underlying models. Similarly, the repre-

sentation of the wheat Unes in a reduced space allows a quicker appreciation of the

major differences inherent in the data. In addition, the ordination technique does

allow more detailed int'ormation and possible structure in the environments and

attributes to be extracted. For the example considered here, an enhanced interpreta-

tion of the influence of flowering time on yield was obtained over that obtained by

Cooper et al. (I994b).

These techniques provide complementary information which can be readily

displayed in common figures. They can be interpreted with relatively limited train-

ing and effectively improve and refïne the information obtained by plant breeders

from their trials. Hence they are very useful techniques which could be frequently

employed in the statistical analysis of such three-mode three-way data.
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