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Abstract 

The Dynamic Time Warping (DTW) distance measure is a 
technique that has long been known in speech recognition 
community.  It allows a non-linear mapping of one signal to 
another by minimizing the distance between the two.  A 
decade ago, DTW was introduced into Data Mining 
community as a utility for various tasks for time series 
problems including classification, clustering, and anomaly 
detection. The technique has flourished, particularly in the 
last three years, and has been applied to a variety of 
problems in various disciplines. 

In spite of DTW’s great success, there are still several 
persistent “myths” about it. These myths have caused 
confusion and led to much wasted research effort. In this 
work, we will dispel these myths with the most 
comprehensive set of time series experiments ever 
conducted.   
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1 Introduction 
In recent years, classification, clustering, and indexing of 
time series data have become a topic of great interest within 
the database/data mining community.  The Euclidean 
distance metric has been widely used [9], in spite of its 
known weakness of sensitivity to distortion in time axis [6]. 
A decade ago, the Dynamic Time Warping (DTW) distance 
measure was introduced to the data mining community as a 
solution to this particular weakness of Euclidean distance 
metric [2].  This method’s flexibility allows two time series 
that are similar but locally out of phase to align in a non-
linear manner.  In spite of its O(n2) time complexity, DTW 
is the best solution known for  time series problems in a 
variety of domains, including bioinformatics [1], medicine 
[4], engineering, entertainment [22], etc. 

The steady flow of research papers on data mining with 
DTW became a torrent after it was shown that a simple 
lower bound allowed DTW to be indexed with no false 
dismissals [6]. The lower bound requires that the two 
sequences being compared are of the same length, and that 

the amount of warping is constrained. This work allowed 
practical applications of DTW, including real-time query-
by-humming systems [22], indexing of historical 
handwriting archives [17], and indexing of motion capture 
data [5]. 

In spite of the great success of DTW in a variety of 
domains, there still are several persistent myths about it. 
These myths have caused great confusion in the literature, 
and led to the publication of papers that solve apparent 
problems that do not actually exist. The three major myths 
are: 

Myth 1: The ability of DTW to handle sequences of 
different lengths is a great advantage, and therefore the 
simple lower bound that requires different-length sequences 
to be reinterpolated to equal length is of limited utility 
[10][19][21]. In fact, as we will show, there is no evidence 
in the literature to suggest this, and extensive empirical 
evidence presented here suggests that comparing sequences 
of different lengths and reinterpolating them to equal length 
produce no statistically significant difference in accuracy or 
precision/recall. 

Myth 2: Constraining the warping paths is a necessary evil 
that we inherited from the speech processing community to 
make DTW tractable, and that we should find ways to 
speed up DTW with no (or larger) constraints[19].  In fact, 
the opposite is true. As we will show, the 10% constraint 
on warping inherited blindly from the speech processing 
community is actually too large for real world data mining. 

Myth 3: There is a need (and room) for improvements in 
the speed of DTW for data mining applications. In fact, as 
we will show here, if we use a simple lower bounding 
technique, DTW is essentially O(n) for data mining 
applications. At least for CPU time, we are almost certainly 
at the asymptotic limit for speeding up DTW. 

In this paper, we dispel these DTW myths above by 
empirically demonstrate our findings with a comprehensive 
set of experiments. This work is part of an effort to redress 
these mistakes. In terms of number of objective datasets 
and size of datasets, our experiments are orders of 
magnitude greater than anything else in the literature. In 



particular, our experiments required more than 8 billion 
DTW comparisons.  

The rest of the paper is organized as follows. The next 
three sections consider each of the three myths above with 
a comprehensive set of experiments, testing on a wide 
range of both real and synthetic datasets. Section 5 gives 
conclusions and directions for future work.  Due to space 
limitations, we decided to omit the datasets details and 
background/review of DTW (which can be found in [16]). 
However, their full details and actual datasets have been 
publicly available for free download at [8].  

2 Does Comparing Sequences of Different 
Lengths Help or Hurt?  

Many recent papers suggest that the ability of classic DTW 
to deal directly with sequences of different length is a great 
advantage; some paper titles even contain the phrase “…of 
different lengths” [3][13] showing their great concerns in 
solving this issue. These claims are surprising in that they 
are not supported by any empirical results in the papers in 
question. Furthermore, an extensive literature search 
through more than 500 papers dating back to the 1960’s 
failed to produce any theoretical or empirical results to 
suggest that simply making the sequences to be of the same 
length has any detrimental effect. 

To test our claimed hypothesis that there is no significant 
difference in accuracies between using variable-length time 
series and equal-length time series in DTW calculation, we 
carry out an experiment as follows. 

For all variable-length time series datasets (Face, Leaf, 
Trace, and Wordspotting – See [8] for dataset details), we 
compute 1-nearest-neightbor classification accuracies 
(leaving-one-out) using DTW for all warping window sizes 
(1% to 100%) in two different ways:- (1) The 4S way; we 
simply reinterpolated the sequences to have the same 
length, and (2) By comparing the sequences directly using 
their original lengths. 

To give the benefit of the doubt to different-length case, for 
each individual warping window size, we do all four 
possible normalizations above, and the best performing of 
the four options is recorded as the accuracy for the 
variable-length DTW calculation.   

For completeness, we test over every possible warping 
constraint size. Note that we start the warping window size 
of 1% instead of 0% since 0% size is Euclidean distance 
metric, which is undefined when the time series are not of 
the same length.  Also, when measuring the DTW distance 
between two time series of different lengths, the percentage 
of warping window applied is based on the length of the 
longer time series to ensure that we allow adequate amount 
of warping for each pair and deliver a fair comparison. 

The variable-length datasets are then linearly reinterpolated 
to have the same length of the longest time series within 
each dataset.  Then, we simply compute the classification 
accuracies using DTW for all warping window sizes (1% to 
100%) for each dataset.  The results are shown in Figure 1. 

 

Figure 1.  A comparison of the classification accuracies 
between variable-length (dotted lines) and the (reinterpolated) 
equal-length datasets (solid lines) for each warping window 
size (1-100%). The two options produce such similar results 
that in many places the lines overlap. 

Note that the experiments do strongly suggest that changing 
the amount of warping allowed does affect the accuracy (an 
issue that will be discussed in depth in the next section), but 
over the entire range on possible warping widths, the two 
approaches are nearly indistinguishable. Furthermore, a 
two-tailed test using a significance level of 0.05 between 
each variable-length and equal-length pair indicates that 
there is no statistically significant difference between the 
accuracy of the two sets of experiments.  An even more 
telling result is the following.  In spite of extensive 
experience with DTW and an extensive effort, we were 
unable to create an artificial problem where reinterpolating 
made a significant difference in accuracy.  To further 
reinforce our claim, we also reinterpolate the datasets to 
have the equal length of the shortest and averaged length of 
all time series within the dataset.  We still achieve similar 
findings.  

These results strongly suggest that work allowing DTW to 
support similarity search that does require reinterpolation, 
is simply solving a problem that does not exist.  The often-
quoted utility of DTW, such as “(DTW is useful) to 
measure similarity between sequences of different lengths” 
[21], for being able to support the comparison of sequences 
of different lengths is simply a myth.  

3 Are Narrow Constraints Bad? 
Apart from (slightly) speeding up the computation, warping 
window constraints were originally applied mainly to 
prevent pathological warping (where a relatively small 
section of one sequence maps to a much larger section of 
another).  The vast majority of the data mining researchers 
have used a Sakoe-Chiba Band with a 10% width for the 
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global constraint [1][14][18].  This setting seems to be the 
result of historical inertia, inherited from the speech 
processing community, rather than some remarkable 
property of this particular constraint. 
Some researchers believe that having wider warping window 
contributes to improvement in accuracy [22]. Or without 
realizing the great effect of the warping window size on 
accuracies, some applied DTW with no warping window 
constraints [12], or did not report the window size used in 
the experiments [11] (the latter case makes it particularly 
difficult for others to reproduce the experiment results). In 
[19], the authors bemoan the fact that “(4S) cannot be 
applied when the warping path is not constrained” and use 
this fact to justify introducing an alterative approach that 
works for the unconstrained case.  

To test the effect of the warping window size to the 
classification accuracies, we performed an empirical 
experiment on all seven classification datasets.  We vary 
the warping window size from 0% (Euclidean) to 100% (no 
constraint/full calculation) and record the accuracies. 

Since we have shown in Section 2 that reinterpolation of 
time series into the same length is at least as good as (or 
better than) using the original variable-length time series, 
we linearly interpolate all variable-length datasets to have 
the same length of the longest time series within the dataset 
and measure the accuracy using the 1-nearest-neighbor 
with leaving-one-out classification method. The results are 
shown in Figure 2. As we hypothesized, wider warping 
constraints do not always improve the accuracy, as 
commonly believed [22].  More often, the accuracy peaks 
very early at much smaller window size (average = 4%). 
We also did an additional experiment, where half of the 
objects in the databases were randomly removed from the 
database iteratively.  We measure the classification 
accuracies for each database size; as the database size 
decreases, the classification accuracy also declines and the 
peak appears at larger warping window size.  

This finding suggests that warping window size adjustment 
does affect accuracy, and that the effect also depends on the 
database size. This in turn suggests that we should find the 
best warping window size on realistic (for the task at hand) 
database sizes, and not try to generalize from toy problems. 

To summarize, there is no evidence to support the idea that 
we need to be able to support wider constraints. While it is 
possible that there exist some datasets somewhere that 
could benefit from wider constraints, we found no evidence 
for this in a survey of more than 500 papers on the topic. 
More tellingly, in spite of extensive efforts, we could not 
even create a large synthetic dataset for classification that 
needs more than 10% warping.  

In fairness, we should note that it is only in the 
database/data mining community that this misconception 
exists. Researchers that work on real problems have long 
ago noted that constraining the warping helps.  For 
example, Tomasi et al. who work with chromatographic 
data noted “Unconstrained dynamic time warping was 
found to be too flexible for this chromatographic data set, 
resulting in a overcompensation of the observed shifts” 
[20], or Rath & Manmatha have carefully optimized the 
constraints for the task of indexing historical archives [17].  

 

Figure 2.  The classification accuracies for all warping window 
sizes (0% to 100%).  All accuracies peak at very small window 
sizes. 

All the evidence suggests that narrow constraints are 
necessary for accurate DTW, and the “need” to support 
wide (or no) constraints is just a myth. 

4 Can DTW be further Speeded up? 
Smaller warping windows speed up the DTW calculations 
simply because there is less area of the warping matrix to 
be searched. Prior to the introduction of lower bounding, 
the amount of speedup was directly proportional to the 
width of the warping window. For example, a nearest 
neighbor search with a 10% warping constraint was almost 
exactly twice as fast as a search done with a 20% window. 
However, it is important to note that with the introduction 
of lower bounding based on warping constraints (i.e. 4S), 
the speedup is now highly nonlinear in the size of the 
warping window. For example, a nearest neighbor search 
with a 10% warping constraint may be many times faster 
than twice a search done with a 20% window. 
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In spite of this, many recent papers still claim that there is a 
need and room for further improvement in speeding up 
DTW.  Surprisingly, as we will show, the amortized CPU 
cost of DTW is essentially O(n), using trivial 4S technique.  

To really understand what is going on, we will avoid 
measuring the efficiency of DTW when using index 
structures. The use of such index structures opens the 
possibility of implementation bias [9]; it is simply difficult 
to know if the claimed speedup truly reflects a clever 
algorithm, or simply care in choice of buffer size, caching 
policy, etc.    

Instead, we measure the computation time of DTW for each 
pair of time series in terms of the amortized percentage of 
the warping matrix that needs to be visited for each pair of 
sequences in our database. This number depends only on 
the data itself and the usefulness of the lower bound. As a 
concrete example, if we are doing a one nearest neighbor 
search on 120 objects with a 10% warping window size, 
and the 4S algorithm only needs to examine 14 sequences 
(pruning the rest), then the amortized cost for this 
calculation would be (w * 14) / 120 = 0.12*w, where w is 
the area (in percentage) inside the warping window 
constraint along the diagonal (Sakoe-Chiba band).  Note 
that 10% warping window size does not always occupy 
10% of the warping matrix; it mainly depends on the length 
of the sequence as well (longer sequences give smaller w).  
In contrast, if 4S was able to prune all but 3 objects, the 
amortized cost would be (w * 3) / 120 = 0.03*w. 

The amount of pruning we should actually expect depends 
on the lower bounds. For example, if we used a trivial 
lower bound hard-coded to zero (pointless, but perfectly 
legal), then line 4 of Table 1 would always be true, and we 
would have to do DTW for every pair of sequences in our 
dataset. In this case, amortized percentage of the warping 
matrix that needs to be accessed for each sequence in our 
database would exactly be the area inside the warping 
window. If, on the other hand, we had a “magic” lower 
bound that returned the true DTW distance minus some 
tiny epsilon, then line 4 of the Table 1 would rarely be true, 
and we would have to do the full DTW calculation only 
rarely. In this case, the amortized percentage of the warping 
matrix that needs to be accessed would be very close to 
zero. We measured the amortized cost for all our datasets, 
and for every possible warping window size. The results 
(and its 0-10% warping zoom-in) are shown in Figure 3. 
The results are surprising. For reasonably large datasets, 
simply using a good lower bound insures that we rarely 
have to use the full DTW calculation. In essence, we can 
say that DTW is effectively O(n), and not O(n2), when 
searching large datasets.  

For example, in the Gun, Trace, and 2-Pattern problems (all 
maximum accuracy at 3% warping), we only need to do 

much less than half a percent of the O(n2) work that we 
would have been forced to do without lower bounding. For 
some of the other datasets, it may appear that we need to do 
a significant percentage of the CPU work. However, as we 
will see below, these results are pessimistic in that they 
reflect the small size of these datasets. 
 

Figure 3.  (left)The amortized percentage of warping matrix 
that needs to be accessed during the DTW calculation for each 
warping window size.  The use of a lower bound helps prune 
off numerous unnecessary calculations. (right) Zoom-in of the 
warping range 0-10% 

If the amortized cost of DTW is linear, where does the 
claimed improvement from recent papers come from? It is 
true that these approaches typically use indices, rather than 
sequential search, but an index must do costly random 
access rather than the optimized linear scans of sequential 
search. In order to break even in terms of disk access time, 
they must avoid looking at more than 10% of the data [7], 
but for time series where even the reduced dimensionality 
(i.e. the Fourier or wavelet coefficients) is usually greater 
than 20 [9], it is not obvious that this is possible.  

Some recent papers that claim speedups credit the 
improved lower bounds, for example “…we present 
progressively tighter lower bounds… that allow our method 
to outperform (4S) ” [19]. Indeed, it might be imagined that 
speedup could be obtained by having tighter lower bounds. 
Surprisingly, this is not true! We can see this with our 
simple experiment. Let us imagine that we have a 
wonderful lower bound, which always returns a value that 
is within 1% of the correct value (more concretely, a value 
uniformly distributed between 99% and 100% of the true 
DTW value). We will call this idealized lower bound 
LB_Magic. In contrast, the current best-known lower 
bounds typically return a value between 40% and 60% of 
the true value [6]. 

We can compare the speedup obtained by LB_Magic with 
the current best lower bound, LB_Keogh [6], on 1-nearest 
neighbor search. Note that we have to cheat for LB_Magic 
by doing the full DTW calculation then assigning it a value 
up to 1% smaller.  We will use a warping constraint of 5%, 
which is about the mean value for the best accuracy (cf. 
Sect. 3). As before, we measured the amortized percentage 
of the warping matrix that needs to be accessed for each 
sequence in our database. Here, we use a randomwalk data 
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of length 128 data points, and vary the database size from 
10 objects to 40,960 objects. Figure 4 shows the results.  

Once again, the results are very surprising. The idealized 
LB_Magic allows a very impressive speedup; for the 
largest size database, it eliminates 99.997% of the CPU 
effort. However, the very simple lower bounding technique 
that has been in the literature for several years is able to 
eliminate 99.369% of the CPU effort! The difference is not 
quite so dramatic for very small datasets, say less than 160 
objects. But here we can do unoptimized search in much 
less than a hundredth of a second. Note that we obtain 
similar results for other datasets. 

 

Figure 4. Amortized percentage of the warping matrix that 
needs to be accessed.  As the size of the database increases, the 
amortized percentage of the warping matrix accessed becomes 
closer to zero. 

To summarize, for problems involving a few thousand 
sequences or more, each with a few hundred data points, 
the “significant CPU cost of DTW” is simply non-issue (as 
for problems involving less than a few thousand sequences, 
we can do them in less than a second anyway).  

The lesson for the data mining community from this 
experiment is the following; it is almost certainly pointless 
to attempt to speed up the CPU time for DTW by 
producing tighter lower bounds. Even if you could produce 
a magical lower bound, the difference it would make would 
be tiny, and completely dwarfed by minor implementation 
choices.  

5 Conclusions and Future Work 
In this work, we have pointed out and investigated some of 
the myths in Dynamic Time Warping measure.   We 
empirically validated our three claims. We hope that our 
results will help researchers focus on more useful 
problems. For example, while there have been dozens of 
papers on speeding up DTW in the last decade, there has 
only been one on making it more accurate [15]. Likewise, 
we feel that the speed and accuracy of DTW that we have 
demonstrated in this work may encourage researchers to 
apply DTW to a wealth of new problems/domains.   

6 References 
[1] Aach, J. & Church, G. (2001). Aligning gene expression time 

series with time warping algs. Bioinformatics(17), 495-508. 
[2] Berndt, D. & Clifford, J. (1994). Using dynamic time warping to 

find patterns in time series. AAAI Workshop on Knowledge 
Discovery in Databases, pp. 229-248. 

[3] Bozkaya, T, Yazdatani, Z, & Ozsoyoglu, Z.M. (1997).  Mat-
ching and Indexing Sequences of Different Lengths.  CIKM 

[4] Caiani, E.G., Porta, A., Baselli, G., Turiel, M., Muzzupappa, S., 
Pieruzzi, F., Crema, C., Malliani, A., & Cerutti, S. (1998). 
Warped-average template technique to track on a cycle-by-cycle 
basis the cardiac filling phases on left ventricular volume. IEEE 
Computers in Cardiology, pp. 73-76. 

[5] Cardle, M. (2003). Music-Driven Animation. Ph.D. Thesis, 
Cambridge University. 

[6] Keogh, E. (2002).  Exact indexing of dynamic time warping.  In 
28th VLDB.  Hong Kong.  pp. 406-417. 

[7] Keogh, E., Chakrabarti, K., Pazzani, M., and Mehrotra, S. 
(2001). Locally adaptive dimensionality reduction for indexing 
large time series databases. SIGMOD, pp. 151-162. 

[8] Keogh, E. & Folias, T. (2002) The UCR Time Series Data 
Mining Archive. [http://www.cs.ucr.edu/ ~eamonn/TSDMA] 

[9] Keogh, E. & Kasetty, S. (2002).  On the Need for Time Seires 
Data Mining Benchmarks: A Survey and Empirical 
Demonstration. In the 8th ACM SIGKDD, pp. 102-111. 

[10] Kim, S.W., Park, S., & Chu, W.W. (2004). Efficient processing 
of similarity search under time warping in sequence databases: 
an index-based approach. Inf. Syst. 29(5): 405-420. 

[11] Kornfield, E.M, Manmatha, R., & Allan, J. (2004). Text Alig-
nment with Handwritten Documents. 1st Int’l workshop on 
Document Image Analysis for Libraris (DIAL), pp. 195-209. 

[12] Laaksonen, J., Hurri, J., and Oja, Erkki. (1998). Comparison of 
Adaptive Strategies for On-Line Character Recognition.  In 
proceedings of ICANN’98, pp. 245-250. 

[13] Park, S.,, Chu, W, Yoon, J., and Hsu, C (2000).  Efficient 
searchs for similar subsequences of different lengths in sequence 
databases.  In ICDE-00. 

[14] Rabiner, L., Rosenberg, A. & Levinson, S. (1978). 
Considerations in dynamic time warping algorithms for discrete 
word recognition.  IEEE Trans. Acoustics Speech, and Signal 
Proc., Vol. ASSP-26, pp. 575-582. 

[15] Ratanamahatana, C.A. & Keogh, E. (2004).  Making Time-series 
Classification More Accurate Using Learned Constraints.  SDM 
International conference, pp. 11-22. 

[16] Ratanamahatana, C.A. & Keogh, E. (2004).  Everything You 
Know about Dynamic Time Warping is Wrong. SIGKDD 
Workshop on Mining Temporal and Sequential Data. 

[17] Rath, T. & Manmatha, R. (2003). Word image matching using 
dynamic time warping. CVPR, Vol. II, pp. 521-527. 

[18] Sakoe, H. & Chiba, S. (1978). Dynamic programming algorithm 
optimization fro spoken word recognition.  IEEE Trans. 
Acoustics, Speech, & Signal Proc, ASSP-26, 43-49. 

[19] Shou, Y., Mamoulis, N., and Cheung, D.W. Efficient Warping of 
Segmented Time-series, HKU CSIS Tech rep, TR-2004-01 

[20] Tomasi, G., van den Berg, F., & Andersson, C. (2004). 
Correlation Optimized Warping and DTW as Preprocessing 
Methods for Chromatographic Data.  J. of Chemometrics.  

[21] Wong, T.S.F & Wong, M.H. (2003). Efficient Subsequence 
Matching for Sequences Databases under Time Warping. 
IDEAS. 

[22] Zhu, Y. & Shasha, D. (2003).  Warping Indexes with Enve-lope 
Transforms for Query by Humming.  SIGMOD, 181-192. 

 

10 20 40 80 160 320 640 1280 2560 5120 10240
20480

40960
10 20 40 80 160 320 640 1280 2560 5120 10240

20480
40960

0

1

2

3

4

5

6

7

8

9

10

Size of Database (Number of Objects)

A
m

or
tiz

ed
 p

er
ce

nt
ag

e 
of

 th
e 

O
(n

2 ) c
al

cu
la

tio
ns

 re
qu

ir
ed

LB_Keogh
LB_Magic

No Lower Bound


