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Abstract. In this paper, we investigate how to modify the Naive Bayes
classifier in order to perform classification that is restricted to be inde-
pendent with respect to a given sensitive attribute. Such independency
restrictions occur naturally when the decision process leading to the la-
bels in the data-set was biased; e.g., due to gender or racial discrimina-
tion. This setting is motivated by many cases in which there exists laws
that disallow a decision that is partly based on discrimination. Naive
application of machine learning techniques would result in huge fines for
companies. We present three approaches for making the naive Bayes clas-
sifier discrimination-free: i) modifying the probability of the decision be-
ing positive, ii) training one model for every sensitive attribute value and
balancing them, and iii) adding a latent variable in the Bayesian model
that represents the unbiased label and optimizing the model parameters
for likelihood using expectation maximization. We present experiments
for the three approaches on both artificial and real-life data.

1 Introduction

The topic of Discrimination-Aware data mining was first introduced in [6, 1],
and is motivated by the observation that often training data contains unwanted
dependencies between the attributes. Given a labeled dataset and a sensitive
attribute; e.g., ethnicity, the goal of our research is to learn a classifier for pre-
dicting the class label that does not discriminate w.r.t. the sensitive attribute.
E.g., for every ethnic group, the probability of being in the positive class should
roughly be the same. We call such constraints independency constraints. The
paper will be about different techniques of learning and adapting Bayesian clas-
sifiers to make them discrimination-aware.

Throughout the paper we will assume that a labeled dataset D is given, with
a binary class attribute C which takes values {−,+} and one binary sensitive
attribute S which takes values {S−, S+} that has an unwanted correlation with
the class attribute. The goal now is to learn a classifier on this data that optimizes
predictive accuracy and is subject to the condition that its predictions are non-
discriminatory. Discrimination in this paper is measured by the discrimination
score, which is defined as the difference P (C = + | S+)−P (C = + | S−). We will
concentrate on Naive Bayes classifiers. We assume that the sensitive attribute is
available for training as well as for prediction.



Contributions. Our contributions in the paper are as follows:

– The Discrimination-aware classification problem is illustrated and motivated.
We show that simply removing the sensitive attribute from the training
dataset does not solve the problem, due to the so-called red-lining effect.

– We propose three approaches to tackle the problem of discrimination-aware
classification with Naive Bayesian classifiers:
• in a post-processing phase we modify the probability of the decision

being positive by changing the probabilities in the model.
• we train one model for every sensitive attribute value and balance them,

and
• we add a latent variable in the Bayesian model that represents an un-

biased, discrimination-free label and optimize the model parameters for
likelihood using expectation maximization.

– We present and discuss experiments for the three approaches on both artifi-
cial and real-life data.

The organization of the paper is as follows: in Section 2 we motivate the
discrimination-aware classification problem with two examples and illustrate the
red-lining effect on the census-income dataset. In Section 3 the three Bayesian
approaches are introduced and in Section 4 the expectation maximization tech-
nique for the method involving the latent variable is detailed. Section 5 presents
the results of the experimental evaluation and Section 6 concludes the paper.

2 Motivation and Problem Illustration

Motivation We motivate the discrimination-aware classification problem setting
with an example of a bank wanting to partially automate their loan issuing sys-
tem. Consider, e.g., a bank that wants to use historical information on personal
loans to learn models for predicting for new loan applicants the probability that
they will default their loan. It could very well be that this data shows that mem-
bers of certain ethnic groups are more likely to default their loan. Nevertheless,
from an ethical and legal point of view it is unacceptable to use the ethnicity of
a person to deny the loan to him or her, as this would constitute an infringement
of the discrimination laws. In such cases, the ethnicity of a person is likely to be
an information carrier rather than a distinguishing factor; people from a certain
ethnic group are more likely to default their loan because, e.g., the average level
of education in this group is lower. In such a situation it is in general perfectly
acceptable to use level of education for selecting loan candidates, even though
this would lead to favoring one ethnic group over another. The bank could legally
decide to split up the group of loan applicants according to their education level,
and learn more fine-grained models for each of these groups separately. A prereq-
uisite for this grouping or stratification approach is of course that the attribute
education level is present in the dataset.

The overall effect of stratification will be that one ethnic group may be
favored over another. Nevertheless, in each of the groups separately, the model



should give equal probability to both classes. Still, in different strata, there may
still be a strong dependency between ethnicity and loan defaulting. Many of these
reasons may not be present in the dataset and latent to the decision maker. For
example, it could be that the age distribution is different for the ethnic groups
(e.g., one group has much more very young people), but the age of the loan
applicants is not present in the dataset. As such, even though our problem
setting does not apply to the general setting, it does apply to the modelling
problems for the different strata separately. A straightforward approach to avoid
that the classifier’s prediction will be based on the sensitive attribute would
be to remove that attribute from the training dataset. This approach, as we
will show in the next section, however, does not work. The reason for that is
that there may be other attributes that are highly correlated with the sensitive
attribute. In such a situation the classifier will use these correlated attributes to
indirectly discriminate. We call this the red-lining effect. In the banking example,
e.g., postal code may be highly correlated with ethnicity. Removing ethnicity
would not solve much, as postal code is an excellent predictor for this attribute.
Obviously, one could decide to also remove the highly correlated attributes from
the dataset as well. Although this would resolve the discrimination problem, in
this process much useful information will get lost. E.g., when giving a loan for
renovating a house it may be quite important to know if the house is located
in the city center or in one of the suburbs. Postal code can hence, at the same
time, reveal racial information and give useful, non-discriminatory information
on loan defaulting.

The main motivation for starting out this research topic stems from a recently
started collaboration with WODC; a Dutch study center associated with the de-
partment of Justice. The goal of this agency is providing data and modelling
demographic and crime data to support policy making. Their interest emerges
from the possibility of correlations between ethnicity and criminality that can
only be partially explained by other attributes due to data incompleteness (e.g.,
latent factors). Learning models and classifiers on such data could lead to dis-
criminatory recommendations to the decision makers. Removing the ethnicity
attributes would not solve the problem due to the red-lining effect, but rather
aggravate it, as the discrimination still would be present, only it would be bet-
ter hidden. In such situations our discrimination-aware data mining paradigm
clearly applies; even though racial discrimination would improve accuracy of our
classifier, it is completely unacceptable in this context.

Illustration. In order to illustrate the difficulties of the problem of discrimination-
free classification, we give some examples from the census income data-set1.
From this data set we try to learn a Naive Bayesian classifier that can be used
to decide whether a new individual should get be classified as having a high or a
low income. Historically, this decision has been biased towards the male sex, as
can be seen in the following contingency table (containing co-occurrence counts):

1 http://archive.ics.uci.edu/ml/datasets/Census+Income



male female
high income 3256 590
low income 7604 4831

This table shows the number of male and female individuals in the high and
low income class. About 30% of all male individuals and only about 11% percent
of all female individuals have a high income. In total about 24% of all individuals
are classified with a high income. If one learns a Naive Bayes classifier from this
data, this difference in income will be learned as a rule, resulting in even more
distinction between the male and female individuals:

male female
high income 4559 422
low income 6301 4999

Learning this classifier results in about 42% of all males having a high income,
and only 8% of all females. This is of course highly undesirable, and can even lead
to big fines for banks if they were to implement a decision system (for instance
for assigning loans) based on such a classifier.

The problem we are trying to solve is how to obtain a good classifier that
makes no distinction between males and females (or any other sensitive at-
tribute). A simple solution that comes to mind is to leave out the sex attribute
from the training data. In such a setting, the classifier will not be able to infer
this distinction as a rule. Unfortunately, this is false:

male female
high income 4134 567
low income 6726 4854

Even with the sex attribute left out of the data, the male individuals are still
clearly favored by the naive Bayes classifier (38% against 10%). Moreover, they
are still more favored than in the training data itself! The reason for this is the
so-called red-lining effect: the classifier uses features that correlate with the sex
attribute in order to learn similar rules. In other words, it will discriminate indi-
rectly. The main goal of this paper is to not only remove direct discrimination,
but to remove this red-lining effect as well.

Measuring Discrimination Unfortunately, it is still unclear how to perform a
good test for discrimination. A simple solution is to take the discrimination
scores, which we define as the difference between the probability of a male and a
female of being in the high-income class. For example, for the data and the two
classifiers above the scores would be:

1. Data. 0.30− 0.11 = 0.19
2. Naive Bayes. 0.42− 0.08 = 0.34
3. Naive Bayes without sensitive attribute. 0.38− 0.10 = 0.28



In an ideal world, this value would be 0.0. However, we do not live in an ideal
world. It is a good and difficult question whether a discrimination value of 0.0
is desirable. It may very well be the case that the attributes that are indicative
of whether a person should get a loan correlate with the sex of that person, for
instance that person’s salary. Without any additional knowledge, it is impossible
to distinguish between this correlation and the red-lining effect. That is why we
test for discrimination by checking whether this value equals 0.0. A nice feature
of this measure is that it also tells us the severity of the discrimination. For
instance, a discrimination value of 0.05 can be acceptable in many domains due
to the beforementioned reason.

3 Three Naive Bayes Approaches

We investigate three approaches for removing discrimination from a naive Bayes
classifier. The most straightforward method for doing so is to modify the prob-
ability distribution P (S|C) of the sensitive attribute values S given the class
values C. Simply keep adding probability to the discriminated sensitive values
S− given the positive class C+, and removing probability from the favored sen-
sitive values S+ given the positive class.

Modifying naive Bayes Unfortunately, this simple scheme has the unwanted
side-effect of either always increasing or always decreasing the number of positive
labels assigned by the classifier, depending on whether favored sensitive values
occur less frequently or more frequently in the data-set. In many applications,
keeping this number close to the number or positive labels in the data-set is
highly favorable. For instance, in the setting of banks assigning loans to individ-
uals, the bank does not suddenly want to assign less or more loans. We therefore
change the naive Bayes model slightly by changing P (S|C) into P (C|S) (see
the first graph in Figure 1). The joint probability distribution over the class C,
sensitive S, and all other A1 . . . An attributes then becomes

P (C, S,A1, . . . , An) = P (S)P (C|S)P (A1|C) . . . P (An|C)

instead of

P (C, S,A1, . . . , An) = P (C)P (S|C)P (A1|C) . . . P (An|C)

We then modify P (C|S) until there is no more discrimination in the labels
assigned using the new model. We make these modifications in such a way that
the number of assigned positive labels does not deviate much from the number
of positive labels in the data-set. The exact method in which we perform this
change is shown in Algorithm 1.

Algorithm 1 removes discrimination from a naive Bayes classifier, but it does
not actively try to avoid the red-lining effect. Although the resulting decision
is discrimination-free, the decision is not necessarily independent from the cor-
related attributes As. Our second approach is to avoid this dependence by re-
moving the correlation between S and As from the data-set used to train the



Algorithm 1 Modifying naive Bayes

Require: a probabilistic classifier M that uses the distribution P (C|S) and a data-set
D

Ensure: M is modified such that it is (almost) non-discriminating, and the number
of positive labels assigned by M to items from D is (almost) equal to the number of
positive items in D

Calculate the discrimination disc in the labels assigned by M to D
while disc > 0.0 do

numpos is the number of positive labels assigned by M to D
if numpos < the number of positive labels in D then

N(C+, S−) = N(C+, S−) + 0.01×N(C−, S+)
N(C−, S−) = N(C+, S−)− 0.01×N(C−, S+)

else
N(C−, S+) = N(C−, S+) + 0.01×N(C+, S−)
N(C+, S+) = N(C−, S+)− 0.01×N(C+, S−)

end if
Update M using the modified occurrence counts N for C and S
Calculate disc

end while

naive Bayes classifier. This can for instance be achieved by removing As from the
data-set altogether; the resulting classifier will be independent without modifi-
cation. The price to pay, however, is a big loss in accuracy due to the reduction
in number of attributes.

Two naive Bayes models A more sophisticated method is to not remove the
attributes As, but to remove the fact that they can be used to decide S. An easy
way to achieve this is to split the data-set into two separate sets: one for S+, and
one for S−. The model M+ is learned using only the tuples from the data-set that
have a favored sensitive value S+. The model M− uses only those that have a
discriminated sensitive value S−. The overall classifier chooses either M+ or M−
depending on the value of S and uses that model’s classification. Thus, in our
banking example, we would learn two different models: one for males, and one
for females. Such an approach is intuitively appealing since sex discrimination
occurs when males and females are treated differently.

Overall, since M+ and M− share the same naive Bayes structure, this ap-
proach can be modeled by connecting S to all other attributes in this structure,
see the second graph in Figure 1. Since all the probability distributions in the
naive Bayes structure depend on the value of S, this is equal to two different
naive Bayes models. In this overall model, we remove discrimination by modify-
ing the probability P (C|S) using the same method as before (Algorithm 1).

A latent variable model Our third and most complicated approach tries to
model the discrimination process in order to discover the actual class labels
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Fig. 1. Graphical models of the three naive Bayes approaches for discrimination-free
classification.

that the data-set should have contained if it would be discrimination-free. Since
they are not observed, these actual class labels are modeled using a latent (or
hidden) variable L. How to include this latent variable in a naive Bayes like
model depends crucially on our knowledge of this variable. Regarding this, we
assume the following:

1. L is independent from S, i.e., the actual labels are discrimination-free;
2. C is determined by discriminating the L labels using S uniformly at random.

These are two strong assumption of the actual ways in which discrimination
occurs that simplify the way in which we deal with discrimination. The first
assumption allows us to focus only on the overall discrimination, i.e., the dif-
ference between P (C+|S+) and P (C+|S−). Any other form of discrimination,
such as discrimination dependent on an attribute A is neglected. Thus, in the
resulting model P (C+|S+, A) can be very different from P (C+|S−, A). In such a
case, we still call the model discrimination-free. The second assumption speaks
for itself. Every tuple has an equal chance of being discriminated, again inde-
pendent of attributes A1, . . . , An, and thus also independent of the probability
of being assigned a positive label P (L+|A1, . . . , An).

These two assumptions might not correspond to how discrimination is being
applied in practice, but because they result in a simple model, they do allow us
to study the problem of discrimination-free classification in detail. The resulting
model is the third graph in Figure 1. In this model, we again remove the fact
that an attribute A can be used to decide S by splitting P (A|C) into P (A|C, S+)
and P (A|C, S−) during classification. We now show how to find the values of
the latent variable in this model, and then we discuss some results we obtained
with all three approaches.

4 Finding the Latent Values

The first two models described in the previous section can be trivially estimated
from a data-set. Discrimination can then be removed from the models by apply-



ing Algorithm 1. Estimating the third model from a data-set is more difficult. In
order to do so, we need to find good values to assign to the latent attribute in
every tuple from the data-set. Essentially, this is a problem finding two groups
(or clusters) of tuples: the ones that should have gotten a positive label L+, and
those that should have gotten a negative label L−. We now describe the stan-
dard approach of expectation maximization that we use in order to find these
two clusters.

4.1 Expectation Maximization

The most common method used to find the values of a latent attribute is the
expectation maximization (EM) algorithm. Given a model M with a latent at-
tribute L, the goal of this algorithm is to set the parameters of M such that they
maximize the likelihood of the data-set D. Unfortunately, since L is unobserved,
the parameters involving L can be set in many different ways. Searching all of
these settings is a hopeless task. Instead, expectation maximization iteratively
optimizes these settings given D (the M-step), then calculates the expected val-
ues of the L attribute given those settings (the E-step), and incorporates these
into D. This is a greedy procedure that converges to a local optimum of the like-
lihood function. Typically, random restarts are applied (randomizing the initial
values of L in D) in order to find better optima.

4.2 Using Prior Knowledge

For the problem of finding the actual discrimination-free class labels L+ and
L− we can do a lot better than simply running EM and hoping that the found
solution corresponds to discrimination-free labels. For starters, it makes no sense
to modify the labels of tuples with favored sensitive values S+ and negative class
labels C−. The same holds for tuples with discriminated sensitive values S− and
positive class labels C+. Modifying these can only result in more discrimination,
so we fix the latent values of these tuples to be identical to the class labels in
the data-set. We remove these values from the E-step of the EM algorithm.

Another improvement over blindly applying EM is to incorporate prior knowl-
edge of the distribution of C given L and S, i.e., P (C|L, S). In fact, since the
ultimate goal is to achieve zero discrimination, we can pre-compute this entire
distribution. We show how to do this using an example.

Example 1. Suppose we have a data-set consisting of 100 tuples, distributed
according to the following occurrence counts:

S+ S−
C+ 40 20
C− 10 30

Clearly, there is some discrimination: the ratio of tuples with S+ that have a
positive class label C+ ( 4

5 ) is a much bigger than the ratio of tuples with S− that
have the positive class ( 2

5 ). Initially, we set the distribution over L labels to be
equivalent to the distribution over C labels, keeping the discrimination intact:



S+ S−

L+ L−
C+ 40 0
C− 0 10

L+ L−
C+ 20 0
C− 0 30

Next, we rectify this situation by subtracting n occurrence counts from L+

with S+, and adding these n counts to L− with S+. We also subtract n counts
from L− with S−, and add these to L+ with S−. Since we want to number of
tuples with actual positive labels L+ to be equal to the number of tuples with
positive labels in the data S+, there is a unique and easy to compute setting
to n that achieves zero discrimination. In this case, it is 10, the resulting in the
following distribution:

S+ S−

L+ L−
C+ 30 10
C− 0 10

L+ L−
C+ 20 0
C− 10 20

We use these counts to pre-compute the probability table P (C|L, S) in the latent
variable model.

5 Experiments

In order to test the three naive Bayes approaches for discrimination-free clas-
sification, we performed tests on both artificial and real-world data. Here we
make use of our model for discrimination (the third model from Figure 1) to
generate the artificial data-sets. A big advantage of this artificial data is that
we can also generate the actual class labels that should have been assigned to
the tuples when there is no discrimination. These labels are used to test the
accuracy of the classifiers. In the real-world data, we do not have this luxury of
a discrimination-free test-set. Therefore we can only test the accuracy on real-
world data using (the sometimes incorrect) discriminated class labels. Clearly,
this is an inferior method to measure classifier performance. On the other hand,
a problem of using our discrimination model is that it is based on assumptions
that might not always hold in practice.

5.1 Tests on Artificial Data

We first generate data using our latent variable model M , and then test our
three approaches on this data. We first describe how we performed this data
generation, afterwards we discuss the results.

Generating Data We require a random initialization of the parameters of M .
However, this initialization should not be completely random; it is unlikely that
the joint distribution of an attribute A and the latent class L is completely
different for tuples with S = 1 than for those with S = 0. For example, suppose
that we initialize the probability distribution P (A|L, S) in this way:



P (A = 1|L, S) L S
0.8 0 0
0.4 0 1
0.1 1 0
0.6 1 1

This would imply that for S = 0, A = 1 is a strong indication for L = 0,
whereas for S = 1, all of a sudden this relation turns around. Not only such a
switch is unnatural, it would make our artificial problem trivial. Therefore the
probabilities are drawn in such a way that the joint distribution of A and L for
S = 0 is roughly (not completely of course) the same as for S = 1. Similarly
for L = 0 and L = 1 not too large differences in probability are allowed as this
would make getting a high accuracy too easy.

Finally, the conditional distribution of C w.r.t. L and S is fixed as follows:

P (C = 1|L, S) L S
0.1 0 0
0.2 0 1
0.8 1 0
0.9 1 1

Hence, a subject with L = 0 has a small chance of getting class label C = 1 in
the dataset anyway. This chance is slightly higher for subjects with S = 1. On
the other hand, a subject with latent true class L = 1 has a ver high chance of
getting class label C = 1. This chance is higher for subjects with S = 1. These
two inequalities together cause the discrimination in the dataset.

Even with these constraints, the problem of discrimination-free classification
can become very easy simply because the probability of attribute A can be very
high for tuples with a positive actual class label L+, and very low for those with
a negative actual class label L−. If this occurs for multiple attributes, then these
attributes effectively divide the feature-space into two very clear clusters, which
are easy to find. We want to bound this effect. This is done by constraining the
allowed difference. If two probabilities (drawn uniformly at random) do not meet
this constraint, we simply draw them again. In addition, we bound the differences
between the probabilities of an attribute A with a favored or discriminated
sensitive value S+ or S− in the same way.

Given a random but constrained model M , we use it to generate data. We
generate two separate sets: the first containing tuples with the discriminated
class label C, the second containing tuples with the actual class label L. We
learn a model from the first set, and test it using the second set. The sets each
contain 10.000 tuples, 20 boolean attributes in addition to C, S, and L, and they
are constrained using maximal differences of 0.2, 0.4, and 0.8. For every combina-
tion of these differences, we generate 5 different models, resulting in 5 different
pairs of sets. On these sets, we test our three approaches for discrimination-
free classification. We test the expectation maximization method both with and
without using prior information.



instance  NBdisc  NBacc  NBpDdisc  NBpSacc  EMdisc  EMacc  EMpriordisc  EMprioracc 

sets/gen-num_attributes=20-prob_diff=0.2:0.2-data_size=10000-nr=1.arff  0.00973413486631 0.72 0.0140287073171 0.7298 0.0423610283532 0.7306 0.0467849732288 0.7318

sets/gen-num_attributes=20-prob_diff=0.2:0.2-data_size=10000-nr=2.arff  -0.0207881873537 0.7511 -0.00720038332924 0.7631 -0.0510678454598 0.7632 -0.0418786156867 0.7626

sets/gen-num_attributes=20-prob_diff=0.2:0.2-data_size=10000-nr=3.arff  0.0174350684066 0.7413 0.0232557581379 0.7494 0.0291004085679 0.7506 0.0388456127381 0.7505

sets/gen-num_attributes=20-prob_diff=0.2:0.2-data_size=10000-nr=4.arff  -0.0255845460454 0.7189 -0.0203325528972 0.7255 -0.0284127085146 0.7255 -0.0220038816332 0.7251

sets/gen-num_attributes=20-prob_diff=0.2:0.2-data_size=10000-nr=5.arff  -0.0207097528735 0.7421 -0.0210803442403 0.7543 -0.0177818250537 0.7555 -0.0124126506067 0.7556

sets/gen-num_attributes=20-prob_diff=0.2:0.4-data_size=10000-nr=1.arff  0.00150111127043 0.868 0.00222062046786 0.8762 -0.0478473616289 0.8764 -0.0208849707075 0.8787

sets/gen-num_attributes=20-prob_diff=0.2:0.4-data_size=10000-nr=2.arff  0.00909887385585 0.9079 0.00484946574269 0.9108 -0.0346268455622 0.9123 -0.016399615019 0.9116

sets/gen-num_attributes=20-prob_diff=0.2:0.4-data_size=10000-nr=3.arff  0.0191762850902 0.8412 0.0167692441174 0.8494 -0.0249885606152 0.8494 0.000425054298827 0.8517

sets/gen-num_attributes=20-prob_diff=0.2:0.4-data_size=10000-nr=4.arff  0.0163958324099 0.8865 0.00982746627567 0.8952 -0.0179070486782 0.8969 0.00509347410282 0.899

sets/gen-num_attributes=20-prob_diff=0.2:0.4-data_size=10000-nr=5.arff  -0.00621516893069 0.8807 0.00813728051304 0.885 -0.0444313827935 0.8813 -0.024539256664 0.8827

sets/gen-num_attributes=20-prob_diff=0.2:0.8-data_size=10000-nr=1.arff  -0.0107199086596 0.9506 1.86E-05 0.952 -0.0411481556159 0.9533 -0.0318379346519 0.9532

sets/gen-num_attributes=20-prob_diff=0.2:0.8-data_size=10000-nr=2.arff  -0.0177390298978 0.9868 -0.0145346683693 0.9874 -0.031373766604 0.9858 -0.0297766259051 0.9858

sets/gen-num_attributes=20-prob_diff=0.2:0.8-data_size=10000-nr=3.arff  -0.0122800282309 0.99 -0.0128749122285 0.9897 -0.0193911141668 0.989 -0.0191928195009 0.9891

sets/gen-num_attributes=20-prob_diff=0.2:0.8-data_size=10000-nr=4.arff  -0.0148131407162 0.9181 -0.0208153533719 0.9213 -0.0450169150356 0.9207 -0.0314887280047 0.9221

sets/gen-num_attributes=20-prob_diff=0.2:0.8-data_size=10000-nr=5.arff  -0.0165273117246 0.9785 -0.0163299103902 0.9796 -0.0215278655284 0.9796 -0.0175299185022 0.9806

sets/gen-num_attributes=20-prob_diff=0.4:0.2-data_size=10000-nr=1.arff  -0.00258848859845 0.7334 -0.0120305554145 0.7567 -0.00917132081365 0.7563 0.00623211853266 0.7568

sets/gen-num_attributes=20-prob_diff=0.4:0.2-data_size=10000-nr=2.arff  -0.00722449040327 0.7181 -0.0202146691091 0.7222 -0.0450247848357 0.7222 -0.0374122938737 0.7234

sets/gen-num_attributes=20-prob_diff=0.4:0.2-data_size=10000-nr=3.arff  -0.00379968015199 0.711 -0.0108014004321 0.7169 -0.0296062011842 0.7193 -0.0244064409763 0.7187

sets/gen-num_attributes=20-prob_diff=0.4:0.2-data_size=10000-nr=4.arff  0.000632241498641 0.7324 -0.0110154752674 0.7374 -0.0191420759839 0.7382 -0.0132829151825 0.7371

sets/gen-num_attributes=20-prob_diff=0.4:0.2-data_size=10000-nr=5.arff  0.00156389236785 0.6801 -0.00832710480615 0.71 0.091505825053 0.7142 0.0933955850023 0.7136

sets/gen-num_attributes=20-prob_diff=0.4:0.4-data_size=10000-nr=1.arff  0.0246873623846 0.8344 0.0151092397115 0.8426 -0.00773576368876 0.8445 0.00806181058791 0.845

sets/gen-num_attributes=20-prob_diff=0.4:0.4-data_size=10000-nr=2.arff  0.011378371534 0.873 0.00880214175276 0.8761 -0.0241785195037 0.8762 -0.00697152059078 0.8774

sets/gen-num_attributes=20-prob_diff=0.4:0.4-data_size=10000-nr=3.arff  -0.004260536461 0.8553 0.00106777434854 0.8711 -0.0219549399385 0.8694 -0.00754990710979 0.8702

sets/gen-num_attributes=20-prob_diff=0.4:0.4-data_size=10000-nr=4.arff  0.0120356730106 0.8544 0.00505929794801 0.8731 -0.0393486017889 0.8717 -0.0191702111353 0.872

sets/gen-num_attributes=20-prob_diff=0.4:0.4-data_size=10000-nr=5.arff  0.0198866672597 0.8643 0.0155361862063 0.8731 -0.00985402404693 0.873 0.0139431385252 0.8744

sets/gen-num_attributes=20-prob_diff=0.4:0.8-data_size=10000-nr=1.arff  -0.00078124153123 0.9658 1.60E-05 0.9676 -0.0255740101251 0.9664 -0.0229748450307 0.9671

sets/gen-num_attributes=20-prob_diff=0.4:0.8-data_size=10000-nr=2.arff  -0.0192489226579 0.9662 -0.0168405120869 0.9672 -0.0457985648827 0.9644 -0.037789571627 0.965

sets/gen-num_attributes=20-prob_diff=0.4:0.8-data_size=10000-nr=3.arff  -0.0119351110638 0.9623 -0.00994563254745 0.9649 -0.035940855815 0.9621 -0.0309469191324 0.9626

sets/gen-num_attributes=20-prob_diff=0.4:0.8-data_size=10000-nr=4.arff  0.0308857644721 0.9847 0.0370079939776 0.9857 0.00852848846737 0.985 0.0103547871687 0.9857

sets/gen-num_attributes=20-prob_diff=0.4:0.8-data_size=10000-nr=5.arff  0.00840963363853 0.9593 0.00379641518566 0.9618 -0.0116000464002 0.9601 -0.0059968239873 0.9607

sets/gen-num_attributes=20-prob_diff=0.8:0.2-data_size=10000-nr=1.arff  -0.00056301007785 0.6917 0.0159015939043 0.7147 0.0430312219335 0.7136 0.0503508330565 0.7141

sets/gen-num_attributes=20-prob_diff=0.8:0.2-data_size=10000-nr=2.arff  0.0146170271052 0.689 0.0341359459688 0.7229 0.0323914651974 0.7222 0.0357936987473 0.7223

sets/gen-num_attributes=20-prob_diff=0.8:0.2-data_size=10000-nr=3.arff  0.000666683309745 0.7367 -0.0002763711176 0.766 -0.0222884424703 0.7688 -0.00958545292537 0.7685

sets/gen-num_attributes=20-prob_diff=0.8:0.2-data_size=10000-nr=4.arff  0.0101961599379 0.6921 -0.00034960274089 0.7352 0.00235185843857 0.735 0.0105457626788 0.7345

sets/gen-num_attributes=20-prob_diff=0.8:0.2-data_size=10000-nr=5.arff  0.00468910693743 0.7061 0.00486448739381 0.7361 -0.00166067370098 0.7364 0.0105636321421 0.7358

sets/gen-num_attributes=20-prob_diff=0.8:0.4-data_size=10000-nr=1.arff  -0.00764876487649 0.8554 -0.013197319732 0.8724 -0.034899489949 0.8734 -0.0159315931593 0.8743

sets/gen-num_attributes=20-prob_diff=0.8:0.4-data_size=10000-nr=2.arff  -0.00470646099573 0.8157 0.00462957999936 0.848 -0.0384436982303 0.8479 -0.0082742672345 0.8478

sets/gen-num_attributes=20-prob_diff=0.8:0.4-data_size=10000-nr=3.arff  0.0154427536194 0.814 0.00193895453341 0.8382 -0.011902497532 0.8397 0.0085379681995 0.8381

sets/gen-num_attributes=20-prob_diff=0.8:0.4-data_size=10000-nr=4.arff  0.0100740906668 0.8224 0.0277618498566 0.854 -0.0439395954564 0.851 -0.0201291811626 0.8519

sets/gen-num_attributes=20-prob_diff=0.8:0.4-data_size=10000-nr=5.arff  -0.0155166568492 0.7555 -0.0204322550127 0.7851 0.00152652364842 0.7892 0.0157222735042 0.7885

sets/gen-num_attributes=20-prob_diff=0.8:0.8-data_size=10000-nr=1.arff  0.00969522215881 0.9543 0.0122942524366 0.9628 -0.00332280984878 0.9632 0.00525558211094 0.9645

sets/gen-num_attributes=20-prob_diff=0.8:0.8-data_size=10000-nr=2.arff  -0.00253580530449 0.9721 0.00101791424264 0.9749 -0.010269945481 0.977 -0.00688259153038 0.9771

sets/gen-num_attributes=20-prob_diff=0.8:0.8-data_size=10000-nr=3.arff  -0.0125673801226 0.9072 -0.0195462971721 0.9223 -0.0378922715053 0.9212 -0.0263482066137 0.922

sets/gen-num_attributes=20-prob_diff=0.8:0.8-data_size=10000-nr=4.arff  0.00197104927623 0.9851 0.000570014250356 0.9892 -0.0174124353109 0.9902 -0.0166124153104 0.9904

sets/gen-num_attributes=20-prob_diff=0.8:0.8-data_size=10000-nr=5.arff  -0.022756445083 0.9283 -0.0219140583055 0.9377 -0.0515509022292 0.9357 -0.041330641451 0.937
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Artificial Data

Naive Bayes

2 NB Models

EM

EM with prior

 NBacc  NBpSacc  EMacc  EMprioracc 

0.72 0.7298 0.7306 0.7318 0.73468 0.74442 0.74508 0.74512

0.7511 0.7631 0.7632 0.7626 0.87686 0.88332 0.88326 0.88474

0.7413 0.7494 0.7506 0.7505 0.9648 0.966 0.96568 0.96616

0.7189 0.7255 0.7255 0.7251 0.715 0.72864 0.73004 0.72992

0.7421 0.7543 0.7555 0.7556 0.85628 0.8672 0.86696 0.8678

0.868 0.8762 0.8764 0.8787 0.96766 0.96944 0.9676 0.96822

0.9079 0.9108 0.9123 0.9116 0.70312 0.73498 0.7352 0.73504

0.8412 0.8494 0.8494 0.8517 0.8126 0.83954 0.84024 0.84012

0.8865 0.8952 0.8969 0.899 0.9494 0.95738 0.95746 0.9582

0.8807 0.885 0.8813 0.8827

0.9506 0.952 0.9533 0.9532

0.9868 0.9874 0.9858 0.9858

0.99 0.9897 0.989 0.9891

0.9181 0.9213 0.9207 0.9221

0.9785 0.9796 0.9796 0.9806

0.7334 0.7567 0.7563 0.7568

0.7181 0.7222 0.7222 0.7234

0.711 0.7169 0.7193 0.7187

0.7324 0.7374 0.7382 0.7371

0.6801 0.71 0.7142 0.7136

0.8344 0.8426 0.8445 0.845

0.873 0.8761 0.8762 0.8774

0.8553 0.8711 0.8694 0.8702

0.8544 0.8731 0.8717 0.872

0.8643 0.8731 0.873 0.8744

0.9658 0.9676 0.9664 0.9671

0.9662 0.9672 0.9644 0.965

0.9623 0.9649 0.9621 0.9626

0.9847 0.9857 0.985 0.9857

0.9593 0.9618 0.9601 0.9607

0.6917 0.7147 0.7136 0.7141

0.689 0.7229 0.7222 0.7223

0.7367 0.766 0.7688 0.7685

0.6921 0.7352 0.735 0.7345

0.7061 0.7361 0.7364 0.7358

0.8554 0.8724 0.8734 0.8743

0.8157 0.848 0.8479 0.8478

0.814 0.8382 0.8397 0.8381

0.8224 0.854 0.851 0.8519

0.7555 0.7851 0.7892 0.7885

0.9543 0.9628 0.9632 0.9645

0.9721 0.9749 0.977 0.9771

0.9072 0.9223 0.9212 0.922

0.9851 0.9892 0.9902 0.9904

0.9283 0.9377 0.9357 0.937
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Accuracy

 NBdisc  NBpDdisc  EMdisc  EMpriordisc

0.0097341349 0.0140287073 0.0423610284 0.0467849732288 -0.0079826566 -0.002265763002 -0.005160188421 0.0018670876081

-0.020788187 -0.007200383 -0.051067845 -0.041878615687 0.0079913867391 0.0083608154233 -0.033960239856 -0.011261062798

0.0174350684 0.0232557581 0.0291004086 0.0388456127381 -0.014415883846 -0.012907247585 -0.03169156339 -0.025965205313

-0.025584546 -0.020332553 -0.028412709 -0.022003881633 -0.002283305057 -0.012477841006 -0.002287711553 0.0049052107005

-0.020709753 -0.021080344 -0.017781825 -0.012412650607 0.0127455075456 0.0091149279934 -0.020614369793 -0.002337337945

0.0015011113 0.0022206205 -0.047847362 -0.020884970708 0.0014660245715 0.002806844912 -0.022076997751 -0.017470674522

0.0090988739 0.0048494657 -0.034626846 -0.016399615019 0.0059211934425 0.0108552106817 0.0107650858796 0.0195336947399

0.0191762851 0.0167692441 -0.024988561 0.0004250542988 -0.000471007687 0.0001401619289 -0.025531751504 -0.004014959971

0.0163958324 0.0098274663 -0.017907049 0.0050934741028 -0.005238671815 -0.00551563491 -0.024089672875 -0.017183654559

-0.006215169 0.0081372805 -0.044431383 -0.024539256664

-0.010719909 1.86E-05 -0.041148156 -0.031837934652

-0.01773903 -0.014534668 -0.031373767 -0.029776625905

-0.012280028 -0.012874912 -0.019391114 -0.019192819501

-0.014813141 -0.020815353 -0.045016915 -0.031488728005

-0.016527312 -0.01632991 -0.021527866 -0.017529918502

-0.002588489 -0.012030555 -0.009171321 0.0062321185327

-0.00722449 -0.020214669 -0.045024785 -0.037412293874

-0.00379968 -0.0108014 -0.029606201 -0.024406440976

0.0006322415 -0.011015475 -0.019142076 -0.013282915183

0.0015638924 -0.008327105 0.0915058251 0.0933955850023

0.0246873624 0.0151092397 -0.007735764 0.0080618105879

0.0113783715 0.0088021418 -0.02417852 -0.006971520591

-0.004260536 0.0010677743 -0.02195494 -0.00754990711

0.012035673 0.0050592979 -0.039348602 -0.019170211135

0.0198866673 0.0155361862 -0.009854024 0.0139431385252

-0.000781242 1.60E-05 -0.02557401 -0.022974845031

-0.019248923 -0.016840512 -0.045798565 -0.037789571627

-0.011935111 -0.009945633 -0.035940856 -0.030946919132

0.0308857645 0.037007994 0.0085284885 0.0103547871687

0.0084096336 0.0037964152 -0.011600046 -0.005996823987

-0.00056301 0.0159015939 0.0430312219 0.0503508330565

0.0146170271 0.034135946 0.0323914652 0.0357936987473

0.0006666833 -0.000276371 -0.022288442 -0.009585452925

0.0101961599 -0.000349603 0.0023518584 0.0105457626788

0.0046891069 0.0048644874 -0.001660674 0.0105636321421

-0.007648765 -0.01319732 -0.03489949 -0.015931593159

-0.004706461 0.00462958 -0.038443698 -0.008274267235

0.0154427536 0.0019389545 -0.011902498 0.0085379681995

0.0100740907 0.0277618499 -0.043939595 -0.020129181163

-0.015516657 -0.020432255 0.0015265236 0.0157222735042

0.0096952222 0.0122942524 -0.00332281 0.0052555821109

-0.002535805 0.0010179142 -0.010269945 -0.00688259153

-0.01256738 -0.019546297 -0.037892272 -0.026348206614

0.0019710493 0.0005700143 -0.017412435 -0.01661241531

-0.022756445 -0.021914058 -0.051550902 -0.041330641451
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Discrimination

Naive Bayes 2 NB Models Expectation Maximization EM with prior

 NBdisc  NBpDdisc  EMdisc  EMpriordisc

0.0131364216 -0.008059814 0.0423610284 0.0467849732288 0.0004213905577 0.0003813492412 0.0015598882316 0.0015181121055

-0.021813751 -0.01855614 -0.051067845 -0.041878615687 0.0001421851938 0.0000219841813 0.000160284331 0.0001748427412

-0.002288627 0.0249076463 0.0291004086 0.0388456127381 0.000003080892 0.0000783750026 0.0001304237333 0.0000491361132

-0.022788785 -0.008403485 -0.028412709 -0.022003881633 0.0002408784938 0.0001065511376 0.0029253596236 0.0027032647673

-0.040010747 -0.026262383 -0.017781825 -0.012412650607 0.0000665753009 0.0000201394834 0.0001617788189 0.0001762970876

-0.000185638 0.013097756 -0.047847362 -0.020884970708 0.000292692056 0.0003814460071 0.0004534026749 0.0003826670514

0.016327008 0.0123540665 -0.034626846 -0.016399615019 0.0002399857239 0.0001245621792 0.0007066303629 0.0005558133627

0.0181078091 0.0218673356 -0.024988561 0.0004250542988 0.0001661143015 0.0004651746375 0.0003778071072 0.0002417375901

0.021622362 0.0112764353 -0.017907049 0.0050934741028 0.0002539109492 0.0002453980078 0.0004028659533 0.0003192558866

-0.004976873 0.0192294394 -0.044431383 -0.024539256664

-0.01112749 0.0075765812 -0.041148156 -0.031837934652

-0.008349708 -0.00774322 -0.031373767 -0.029776625905

-0.00689511 -0.006300226 -0.019391114 -0.019192819501

-0.010584702 -0.017175612 -0.045016915 -0.031488728005

-0.008329856 -0.007127768 -0.021527866 -0.017529918502

-0.012971926 -0.001011857 -0.009171321 0.0062321185327

-0.046571987 -0.023414194 -0.045024785 -0.037412293874

-0.018405001 -0.022806041 -0.029606201 -0.024406440976

-0.017675385 -0.007264853 -0.019142076 -0.013282915183

-0.005839134 -0.005996828 0.0915058251 0.0933955850023

0.0250892109 0.0183258678 -0.007735764 0.0080618105879

0.0161417066 0.0143818063 -0.02417852 -0.006971520591

0.0028021276 0.0068024811 -0.02195494 -0.00754990711

0.0146542037 0.0092637793 -0.039348602 -0.019170211135

0.0189626012 0.0113896127 -0.009854024 0.0139431385252

0.0118117832 0.0062196122 -0.02557401 -0.022974845031

-0.012237993 -0.010245946 -0.045798565 -0.037789571627

-0.005735871 -0.000741934 -0.035940856 -0.030946919132

0.0306828424 0.0411483725 0.0085284885 0.0103547871687

0.0146052584 0.014001656 -0.011600046 -0.005996823987

-0.014766932 -0.002068478 0.0430312219 0.0503508330565

0.0197138168 0.0230155611 0.0323914652 0.0357936987473

0.0021349549 -0.005130229 -0.022288442 -0.009585452925

-0.001374811 0.0002408819 0.0023518584 0.0105457626788

-0.01963685 0.0023043488 -0.001660674 0.0105636321421

-0.004494449 -0.014119412 -0.03489949 -0.015931593159

0.0106138176 0.0181735955 -0.038443698 -0.008274267235

0.0235249043 0.0044456909 -0.011902498 0.0085379681995

0.0006938062 0.0351397163 -0.043939595 -0.020129181163

-0.008532291 -0.015372245 0.0015265236 0.0157222735042

0.0202861485 0.0213100962 -0.00332281 0.0052555821109

0.0100680987 0.0132496457 -0.010269945 -0.00688259153

-0.007772651 -0.013203551 -0.037892272 -0.026348206614

0.0121803045 0.0087752194 -0.017412435 -0.01661241531

-0.018605882 -0.012701893 -0.051550902 -0.041330641451
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Discrimination Variances

instance  NBacc  NBdisc  NBpSacc  NBpDdisc  EMacc  EMdisc  EMprioracc  EMpriordisc

sets/gen-num_attributes=20-prob_diff=0.2:0.2-data_size=10000-nr=1.arff 0.72 0.0097341349 0.7298 0.0140287073 0.0 0.0 0.0 0.0

sets/gen-num_attributes=20-prob_diff=0.2:0.2-data_size=10000-nr=2.arff 0.7511 -0.020788187 0.7631 -0.007200383 0.0 0.0 0.0 0.0

sets/gen-num_attributes=20-prob_diff=0.2:0.2-data_size=10000-nr=3.arff 0.7413 0.0174350684 0.7494 0.0232557581 0.0 0.0 0.0 0.0

sets/gen-num_attributes=20-prob_diff=0.2:0.2-data_size=10000-nr=4.arff 0.7189 -0.025584546 0.7255 -0.020332553 0.0 0.0 0.0 0.0

sets/gen-num_attributes=20-prob_diff=0.2:0.2-data_size=10000-nr=5.arff 0.7421 -0.020709753 0.7543 -0.021080344 0.0 0.0 0.0 0.0

sets/gen-num_attributes=20-prob_diff=0.2:0.4-data_size=10000-nr=1.arff 0.868 0.0015011113 0.8762 0.0022206205 0.0 0.0 0.0 0.0

sets/gen-num_attributes=20-prob_diff=0.2:0.4-data_size=10000-nr=2.arff 0.9079 0.0090988739 0.9108 0.0048494657 0.0 0.0 0.0 0.0

sets/gen-num_attributes=20-prob_diff=0.2:0.4-data_size=10000-nr=3.arff 0.8412 0.0191762851 0.8494 0.0167692441 0.0 0.0 0.0 0.0

sets/gen-num_attributes=20-prob_diff=0.2:0.4-data_size=10000-nr=4.arff 0.8865 0.0163958324 0.8952 0.0098274663 0.0 0.0 0.0 0.0

sets/gen-num_attributes=20-prob_diff=0.2:0.4-data_size=10000-nr=5.arff 0.8807 -0.006215169 0.885 0.0081372805 0.0 0.0 0.0 0.0

sets/gen-num_attributes=20-prob_diff=0.2:0.8-data_size=10000-nr=1.arff 0.9506 -0.010719909 0.952 1.86E-05 0.0 0.0 0.0 0.0

sets/gen-num_attributes=20-prob_diff=0.2:0.8-data_size=10000-nr=2.arff 0.9868 -0.01773903 0.9874 -0.014534668 0.0 0.0 0.0 0.0

sets/gen-num_attributes=20-prob_diff=0.2:0.8-data_size=10000-nr=3.arff 0.99 -0.012280028 0.9897 -0.012874912 0.0 0.0 0.0 0.0

sets/gen-num_attributes=20-prob_diff=0.2:0.8-data_size=10000-nr=4.arff 0.9181 -0.014813141 0.9213 -0.020815353 0.0 0.0 0.0 0.0

sets/gen-num_attributes=20-prob_diff=0.2:0.8-data_size=10000-nr=5.arff 0.9785 -0.016527312 0.9796 -0.01632991 0.0 0.0 0.0 0.0

sets/gen-num_attributes=20-prob_diff=0.4:0.2-data_size=10000-nr=1.arff 0.7334 -0.002588489 0.7567 -0.012030555 0.0 0.0 0.0 0.0

sets/gen-num_attributes=20-prob_diff=0.4:0.2-data_size=10000-nr=2.arff 0.7181 -0.00722449 0.7222 -0.020214669 0.0 0.0 0.0 0.0

sets/gen-num_attributes=20-prob_diff=0.4:0.2-data_size=10000-nr=3.arff 0.711 -0.00379968 0.7169 -0.0108014 0.0 0.0 0.0 0.0

sets/gen-num_attributes=20-prob_diff=0.4:0.2-data_size=10000-nr=4.arff 0.7324 0.0006322415 0.7374 -0.011015475 0.0 0.0 0.0 0.0

sets/gen-num_attributes=20-prob_diff=0.4:0.2-data_size=10000-nr=5.arff 0.6801 0.0015638924 0.71 -0.008327105 0.0 0.0 0.0 0.0

sets/gen-num_attributes=20-prob_diff=0.4:0.4-data_size=10000-nr=1.arff 0.8344 0.0246873624 0.8426 0.0151092397 0.0 0.0 0.0 0.0

sets/gen-num_attributes=20-prob_diff=0.4:0.4-data_size=10000-nr=2.arff 0.873 0.0113783715 0.8761 0.0088021418 0.0 0.0 0.0 0.0

sets/gen-num_attributes=20-prob_diff=0.4:0.4-data_size=10000-nr=3.arff 0.8553 -0.004260536 0.8711 0.0010677743 0.0 0.0 0.0 0.0

sets/gen-num_attributes=20-prob_diff=0.4:0.4-data_size=10000-nr=4.arff 0.8544 0.012035673 0.8731 0.0050592979 0.0 0.0 0.0 0.0

sets/gen-num_attributes=20-prob_diff=0.4:0.4-data_size=10000-nr=5.arff 0.8643 0.0198866673 0.8731 0.0155361862 0.0 0.0 0.0 0.0

sets/gen-num_attributes=20-prob_diff=0.4:0.8-data_size=10000-nr=1.arff 0.9658 -0.000781242 0.9676 1.60E-05 0.0 0.0 0.0 0.0

sets/gen-num_attributes=20-prob_diff=0.4:0.8-data_size=10000-nr=2.arff 0.9662 -0.019248923 0.9672 -0.016840512 0.0 0.0 0.0 0.0

sets/gen-num_attributes=20-prob_diff=0.4:0.8-data_size=10000-nr=3.arff 0.9623 -0.011935111 0.9649 -0.009945633 0.0 0.0 0.0 0.0

sets/gen-num_attributes=20-prob_diff=0.4:0.8-data_size=10000-nr=4.arff 0.9847 0.0308857645 0.9857 0.037007994 0.0 0.0 0.0 0.0

sets/gen-num_attributes=20-prob_diff=0.4:0.8-data_size=10000-nr=5.arff 0.9593 0.0084096336 0.9618 0.0037964152 0.0 0.0 0.0 0.0

sets/gen-num_attributes=20-prob_diff=0.8:0.2-data_size=10000-nr=1.arff 0.6917 -0.00056301 0.7147 0.0159015939 0.0 0.0 0.0 0.0

sets/gen-num_attributes=20-prob_diff=0.8:0.2-data_size=10000-nr=2.arff 0.689 0.0146170271 0.7229 0.034135946 0.0 0.0 0.0 0.0

sets/gen-num_attributes=20-prob_diff=0.8:0.2-data_size=10000-nr=3.arff 0.7367 0.0006666833 0.766 -0.000276371 0.0 0.0 0.0 0.0

sets/gen-num_attributes=20-prob_diff=0.8:0.2-data_size=10000-nr=4.arff 0.6921 0.0101961599 0.7352 -0.000349603 0.0 0.0 0.0 0.0

sets/gen-num_attributes=20-prob_diff=0.8:0.2-data_size=10000-nr=5.arff 0.7061 0.0046891069 0.7361 0.0048644874 0.0 0.0 0.0 0.0

sets/gen-num_attributes=20-prob_diff=0.8:0.4-data_size=10000-nr=1.arff 0.8554 -0.007648765 0.8724 -0.01319732 0.0 0.0 0.0 0.0

sets/gen-num_attributes=20-prob_diff=0.8:0.4-data_size=10000-nr=2.arff 0.8157 -0.004706461 0.848 0.00462958 0.0 0.0 0.0 0.0

sets/gen-num_attributes=20-prob_diff=0.8:0.4-data_size=10000-nr=3.arff 0.814 0.0154427536 0.8382 0.0019389545 0.0 0.0 0.0 0.0

sets/gen-num_attributes=20-prob_diff=0.8:0.4-data_size=10000-nr=4.arff 0.8224 0.0100740907 0.854 0.0277618499 0.0 0.0 0.0 0.0

sets/gen-num_attributes=20-prob_diff=0.8:0.4-data_size=10000-nr=5.arff 0.7555 -0.015516657 0.7851 -0.020432255 0.0 0.0 0.0 0.0

sets/gen-num_attributes=20-prob_diff=0.8:0.8-data_size=10000-nr=1.arff 0.9543 0.0096952222 0.9628 0.0122942524 0.0 0.0 0.0 0.0

sets/gen-num_attributes=20-prob_diff=0.8:0.8-data_size=10000-nr=2.arff 0.9721 -0.002535805 0.9749 0.0010179142 0.0 0.0 0.0 0.0

sets/gen-num_attributes=20-prob_diff=0.8:0.8-data_size=10000-nr=3.arff 0.9072 -0.01256738 0.9223 -0.019546297 0.0 0.0 0.0 0.0

sets/gen-num_attributes=20-prob_diff=0.8:0.8-data_size=10000-nr=4.arff 0.9851 0.0019710493 0.9892 0.0005700143 0.0 0.0 0.0 0.0

sets/gen-num_attributes=20-prob_diff=0.8:0.8-data_size=10000-nr=5.arff 0.9283 -0.022756445 0.9377 -0.021914058 0.0 0.0 0.0 0.0
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Fig. 2. The resulting discrimination and accuracy values of the trained classifiers on
the discrimination-free test-set.

Results The results of these tests are shown in Figures 2 and 3. These plots show
some interesting behavior, especially of the expectation maximization method.
Initially, we would have expected this method to work best. However, it ties
with the 2 naive Bayes models approach in terms of accuracy on the non-
discriminating test-set. In terms of discrimination it is even outperformed by
both the simple modified naive Bayes model and the 2 NB model approaches.
In terms of accuracy, the naive Bayes model scores clearly less than the 2 NB
model. The difference between these two methods increases when we increase
the constraint on the maximum of the difference |P (A|S+) − P (A|S−)|. This
makes sense since the naive Bayes model does not model the dependence of A
on S, while the 2 NB model does.

Of all results, the results of the expectation maximization methods are the
most surprising. We expected that since we model the latent variable L in such a
way that there is no dependence between L and S, that the maximum likelihood
assignment (or expectations) of L would also be without such dependence. Espe-
cially since we generate data from the exact same model, i.e., one where there in
fact is no such dependence. Unfortunately, this turned out to be false. Expecta-
tion maximization on average converges to approx. -0.025 discrimination, which
gives the discriminated class 2.5% more chance to be assigned a positive latent
label L. In addition, the exact discrimination value that EM converges to varies
a lot, in one case it even reaches 0.09. This high variance seems not to depend
on EM being a greedy algorithm that can converge to a local optimum: running
it multiple times yields the same results. It is also not caused by the fact that we
fix some of the latent values. We believe it might be the case that the maximum
likelihood assignment does not correspond to a zero discrimination assignment.
Investigating this behavior is left as future work.



instance  NBdisc  NBacc  NBpDdisc  NBpSacc  EMdisc  EMacc  EMpriordisc  EMprioracc 

sets/gen-num_attributes=20-prob_diff=0.2:0.2-data_size=10000-nr=1.arff  0.00973413486631 0.72 0.0140287073171 0.7298 0.0423610283532 0.7306 0.0467849732288 0.7318

sets/gen-num_attributes=20-prob_diff=0.2:0.2-data_size=10000-nr=2.arff  -0.0207881873537 0.7511 -0.00720038332924 0.7631 -0.0510678454598 0.7632 -0.0418786156867 0.7626

sets/gen-num_attributes=20-prob_diff=0.2:0.2-data_size=10000-nr=3.arff  0.0174350684066 0.7413 0.0232557581379 0.7494 0.0291004085679 0.7506 0.0388456127381 0.7505

sets/gen-num_attributes=20-prob_diff=0.2:0.2-data_size=10000-nr=4.arff  -0.0255845460454 0.7189 -0.0203325528972 0.7255 -0.0284127085146 0.7255 -0.0220038816332 0.7251

sets/gen-num_attributes=20-prob_diff=0.2:0.2-data_size=10000-nr=5.arff  -0.0207097528735 0.7421 -0.0210803442403 0.7543 -0.0177818250537 0.7555 -0.0124126506067 0.7556

sets/gen-num_attributes=20-prob_diff=0.2:0.4-data_size=10000-nr=1.arff  0.00150111127043 0.868 0.00222062046786 0.8762 -0.0478473616289 0.8764 -0.0208849707075 0.8787

sets/gen-num_attributes=20-prob_diff=0.2:0.4-data_size=10000-nr=2.arff  0.00909887385585 0.9079 0.00484946574269 0.9108 -0.0346268455622 0.9123 -0.016399615019 0.9116

sets/gen-num_attributes=20-prob_diff=0.2:0.4-data_size=10000-nr=3.arff  0.0191762850902 0.8412 0.0167692441174 0.8494 -0.0249885606152 0.8494 0.000425054298827 0.8517

sets/gen-num_attributes=20-prob_diff=0.2:0.4-data_size=10000-nr=4.arff  0.0163958324099 0.8865 0.00982746627567 0.8952 -0.0179070486782 0.8969 0.00509347410282 0.899

sets/gen-num_attributes=20-prob_diff=0.2:0.4-data_size=10000-nr=5.arff  -0.00621516893069 0.8807 0.00813728051304 0.885 -0.0444313827935 0.8813 -0.024539256664 0.8827

sets/gen-num_attributes=20-prob_diff=0.2:0.8-data_size=10000-nr=1.arff  -0.0107199086596 0.9506 1.86E-05 0.952 -0.0411481556159 0.9533 -0.0318379346519 0.9532

sets/gen-num_attributes=20-prob_diff=0.2:0.8-data_size=10000-nr=2.arff  -0.0177390298978 0.9868 -0.0145346683693 0.9874 -0.031373766604 0.9858 -0.0297766259051 0.9858

sets/gen-num_attributes=20-prob_diff=0.2:0.8-data_size=10000-nr=3.arff  -0.0122800282309 0.99 -0.0128749122285 0.9897 -0.0193911141668 0.989 -0.0191928195009 0.9891

sets/gen-num_attributes=20-prob_diff=0.2:0.8-data_size=10000-nr=4.arff  -0.0148131407162 0.9181 -0.0208153533719 0.9213 -0.0450169150356 0.9207 -0.0314887280047 0.9221

sets/gen-num_attributes=20-prob_diff=0.2:0.8-data_size=10000-nr=5.arff  -0.0165273117246 0.9785 -0.0163299103902 0.9796 -0.0215278655284 0.9796 -0.0175299185022 0.9806

sets/gen-num_attributes=20-prob_diff=0.4:0.2-data_size=10000-nr=1.arff  -0.00258848859845 0.7334 -0.0120305554145 0.7567 -0.00917132081365 0.7563 0.00623211853266 0.7568

sets/gen-num_attributes=20-prob_diff=0.4:0.2-data_size=10000-nr=2.arff  -0.00722449040327 0.7181 -0.0202146691091 0.7222 -0.0450247848357 0.7222 -0.0374122938737 0.7234

sets/gen-num_attributes=20-prob_diff=0.4:0.2-data_size=10000-nr=3.arff  -0.00379968015199 0.711 -0.0108014004321 0.7169 -0.0296062011842 0.7193 -0.0244064409763 0.7187

sets/gen-num_attributes=20-prob_diff=0.4:0.2-data_size=10000-nr=4.arff  0.000632241498641 0.7324 -0.0110154752674 0.7374 -0.0191420759839 0.7382 -0.0132829151825 0.7371

sets/gen-num_attributes=20-prob_diff=0.4:0.2-data_size=10000-nr=5.arff  0.00156389236785 0.6801 -0.00832710480615 0.71 0.091505825053 0.7142 0.0933955850023 0.7136

sets/gen-num_attributes=20-prob_diff=0.4:0.4-data_size=10000-nr=1.arff  0.0246873623846 0.8344 0.0151092397115 0.8426 -0.00773576368876 0.8445 0.00806181058791 0.845

sets/gen-num_attributes=20-prob_diff=0.4:0.4-data_size=10000-nr=2.arff  0.011378371534 0.873 0.00880214175276 0.8761 -0.0241785195037 0.8762 -0.00697152059078 0.8774

sets/gen-num_attributes=20-prob_diff=0.4:0.4-data_size=10000-nr=3.arff  -0.004260536461 0.8553 0.00106777434854 0.8711 -0.0219549399385 0.8694 -0.00754990710979 0.8702

sets/gen-num_attributes=20-prob_diff=0.4:0.4-data_size=10000-nr=4.arff  0.0120356730106 0.8544 0.00505929794801 0.8731 -0.0393486017889 0.8717 -0.0191702111353 0.872

sets/gen-num_attributes=20-prob_diff=0.4:0.4-data_size=10000-nr=5.arff  0.0198866672597 0.8643 0.0155361862063 0.8731 -0.00985402404693 0.873 0.0139431385252 0.8744

sets/gen-num_attributes=20-prob_diff=0.4:0.8-data_size=10000-nr=1.arff  -0.00078124153123 0.9658 1.60E-05 0.9676 -0.0255740101251 0.9664 -0.0229748450307 0.9671

sets/gen-num_attributes=20-prob_diff=0.4:0.8-data_size=10000-nr=2.arff  -0.0192489226579 0.9662 -0.0168405120869 0.9672 -0.0457985648827 0.9644 -0.037789571627 0.965

sets/gen-num_attributes=20-prob_diff=0.4:0.8-data_size=10000-nr=3.arff  -0.0119351110638 0.9623 -0.00994563254745 0.9649 -0.035940855815 0.9621 -0.0309469191324 0.9626

sets/gen-num_attributes=20-prob_diff=0.4:0.8-data_size=10000-nr=4.arff  0.0308857644721 0.9847 0.0370079939776 0.9857 0.00852848846737 0.985 0.0103547871687 0.9857

sets/gen-num_attributes=20-prob_diff=0.4:0.8-data_size=10000-nr=5.arff  0.00840963363853 0.9593 0.00379641518566 0.9618 -0.0116000464002 0.9601 -0.0059968239873 0.9607

sets/gen-num_attributes=20-prob_diff=0.8:0.2-data_size=10000-nr=1.arff  -0.00056301007785 0.6917 0.0159015939043 0.7147 0.0430312219335 0.7136 0.0503508330565 0.7141

sets/gen-num_attributes=20-prob_diff=0.8:0.2-data_size=10000-nr=2.arff  0.0146170271052 0.689 0.0341359459688 0.7229 0.0323914651974 0.7222 0.0357936987473 0.7223

sets/gen-num_attributes=20-prob_diff=0.8:0.2-data_size=10000-nr=3.arff  0.000666683309745 0.7367 -0.0002763711176 0.766 -0.0222884424703 0.7688 -0.00958545292537 0.7685

sets/gen-num_attributes=20-prob_diff=0.8:0.2-data_size=10000-nr=4.arff  0.0101961599379 0.6921 -0.00034960274089 0.7352 0.00235185843857 0.735 0.0105457626788 0.7345

sets/gen-num_attributes=20-prob_diff=0.8:0.2-data_size=10000-nr=5.arff  0.00468910693743 0.7061 0.00486448739381 0.7361 -0.00166067370098 0.7364 0.0105636321421 0.7358

sets/gen-num_attributes=20-prob_diff=0.8:0.4-data_size=10000-nr=1.arff  -0.00764876487649 0.8554 -0.013197319732 0.8724 -0.034899489949 0.8734 -0.0159315931593 0.8743

sets/gen-num_attributes=20-prob_diff=0.8:0.4-data_size=10000-nr=2.arff  -0.00470646099573 0.8157 0.00462957999936 0.848 -0.0384436982303 0.8479 -0.0082742672345 0.8478

sets/gen-num_attributes=20-prob_diff=0.8:0.4-data_size=10000-nr=3.arff  0.0154427536194 0.814 0.00193895453341 0.8382 -0.011902497532 0.8397 0.0085379681995 0.8381

sets/gen-num_attributes=20-prob_diff=0.8:0.4-data_size=10000-nr=4.arff  0.0100740906668 0.8224 0.0277618498566 0.854 -0.0439395954564 0.851 -0.0201291811626 0.8519

sets/gen-num_attributes=20-prob_diff=0.8:0.4-data_size=10000-nr=5.arff  -0.0155166568492 0.7555 -0.0204322550127 0.7851 0.00152652364842 0.7892 0.0157222735042 0.7885

sets/gen-num_attributes=20-prob_diff=0.8:0.8-data_size=10000-nr=1.arff  0.00969522215881 0.9543 0.0122942524366 0.9628 -0.00332280984878 0.9632 0.00525558211094 0.9645

sets/gen-num_attributes=20-prob_diff=0.8:0.8-data_size=10000-nr=2.arff  -0.00253580530449 0.9721 0.00101791424264 0.9749 -0.010269945481 0.977 -0.00688259153038 0.9771

sets/gen-num_attributes=20-prob_diff=0.8:0.8-data_size=10000-nr=3.arff  -0.0125673801226 0.9072 -0.0195462971721 0.9223 -0.0378922715053 0.9212 -0.0263482066137 0.922

sets/gen-num_attributes=20-prob_diff=0.8:0.8-data_size=10000-nr=4.arff  0.00197104927623 0.9851 0.000570014250356 0.9892 -0.0174124353109 0.9902 -0.0166124153104 0.9904

sets/gen-num_attributes=20-prob_diff=0.8:0.8-data_size=10000-nr=5.arff  -0.022756445083 0.9283 -0.0219140583055 0.9377 -0.0515509022292 0.9357 -0.041330641451 0.937
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 NBacc  NBpSacc  EMacc  EMprioracc 

0.72 0.7298 0.7306 0.7318 0.73468 0.74442 0.74508 0.74512

0.7511 0.7631 0.7632 0.7626 0.87686 0.88332 0.88326 0.88474

0.7413 0.7494 0.7506 0.7505 0.9648 0.966 0.96568 0.96616

0.7189 0.7255 0.7255 0.7251 0.715 0.72864 0.73004 0.72992

0.7421 0.7543 0.7555 0.7556 0.85628 0.8672 0.86696 0.8678

0.868 0.8762 0.8764 0.8787 0.96766 0.96944 0.9676 0.96822

0.9079 0.9108 0.9123 0.9116 0.70312 0.73498 0.7352 0.73504

0.8412 0.8494 0.8494 0.8517 0.8126 0.83954 0.84024 0.84012

0.8865 0.8952 0.8969 0.899 0.9494 0.95738 0.95746 0.9582

0.8807 0.885 0.8813 0.8827

0.9506 0.952 0.9533 0.9532

0.9868 0.9874 0.9858 0.9858

0.99 0.9897 0.989 0.9891

0.9181 0.9213 0.9207 0.9221

0.9785 0.9796 0.9796 0.9806

0.7334 0.7567 0.7563 0.7568

0.7181 0.7222 0.7222 0.7234

0.711 0.7169 0.7193 0.7187

0.7324 0.7374 0.7382 0.7371

0.6801 0.71 0.7142 0.7136

0.8344 0.8426 0.8445 0.845

0.873 0.8761 0.8762 0.8774

0.8553 0.8711 0.8694 0.8702

0.8544 0.8731 0.8717 0.872

0.8643 0.8731 0.873 0.8744

0.9658 0.9676 0.9664 0.9671

0.9662 0.9672 0.9644 0.965

0.9623 0.9649 0.9621 0.9626

0.9847 0.9857 0.985 0.9857

0.9593 0.9618 0.9601 0.9607

0.6917 0.7147 0.7136 0.7141

0.689 0.7229 0.7222 0.7223

0.7367 0.766 0.7688 0.7685

0.6921 0.7352 0.735 0.7345

0.7061 0.7361 0.7364 0.7358

0.8554 0.8724 0.8734 0.8743

0.8157 0.848 0.8479 0.8478

0.814 0.8382 0.8397 0.8381

0.8224 0.854 0.851 0.8519

0.7555 0.7851 0.7892 0.7885

0.9543 0.9628 0.9632 0.9645

0.9721 0.9749 0.977 0.9771

0.9072 0.9223 0.9212 0.922

0.9851 0.9892 0.9902 0.9904

0.9283 0.9377 0.9357 0.937
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 NBdisc  NBpDdisc  EMdisc  EMpriordisc

0.0097341349 0.0140287073 0.0423610284 0.0467849732288 -0.0079826566 -0.002265763002 -0.005160188421 0.0018670876081

-0.020788187 -0.007200383 -0.051067845 -0.041878615687 0.0079913867391 0.0083608154233 -0.033960239856 -0.011261062798

0.0174350684 0.0232557581 0.0291004086 0.0388456127381 -0.014415883846 -0.012907247585 -0.03169156339 -0.025965205313

-0.025584546 -0.020332553 -0.028412709 -0.022003881633 -0.002283305057 -0.012477841006 -0.002287711553 0.0049052107005

-0.020709753 -0.021080344 -0.017781825 -0.012412650607 0.0127455075456 0.0091149279934 -0.020614369793 -0.002337337945

0.0015011113 0.0022206205 -0.047847362 -0.020884970708 0.0014660245715 0.002806844912 -0.022076997751 -0.017470674522

0.0090988739 0.0048494657 -0.034626846 -0.016399615019 0.0059211934425 0.0108552106817 0.0107650858796 0.0195336947399

0.0191762851 0.0167692441 -0.024988561 0.0004250542988 -0.000471007687 0.0001401619289 -0.025531751504 -0.004014959971

0.0163958324 0.0098274663 -0.017907049 0.0050934741028 -0.005238671815 -0.00551563491 -0.024089672875 -0.017183654559

-0.006215169 0.0081372805 -0.044431383 -0.024539256664

-0.010719909 1.86E-05 -0.041148156 -0.031837934652

-0.01773903 -0.014534668 -0.031373767 -0.029776625905
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-0.015516657 -0.020432255 0.0015265236 0.0157222735042

0.0096952222 0.0122942524 -0.00332281 0.0052555821109

-0.002535805 0.0010179142 -0.010269945 -0.00688259153

-0.01256738 -0.019546297 -0.037892272 -0.026348206614
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Naive Bayes 2 NB Models Expectation Maximization EM with prior

 NBdisc  NBpDdisc  EMdisc  EMpriordisc

0.0131364216 -0.008059814 0.0423610284 0.0467849732288 0.0004213905577 0.0003813492412 0.0015598882316 0.0015181121055

-0.021813751 -0.01855614 -0.051067845 -0.041878615687 0.0001421851938 0.0000219841813 0.000160284331 0.0001748427412

-0.002288627 0.0249076463 0.0291004086 0.0388456127381 0.000003080892 0.0000783750026 0.0001304237333 0.0000491361132

-0.022788785 -0.008403485 -0.028412709 -0.022003881633 0.0002408784938 0.0001065511376 0.0029253596236 0.0027032647673

-0.040010747 -0.026262383 -0.017781825 -0.012412650607 0.0000665753009 0.0000201394834 0.0001617788189 0.0001762970876

-0.000185638 0.013097756 -0.047847362 -0.020884970708 0.000292692056 0.0003814460071 0.0004534026749 0.0003826670514

0.016327008 0.0123540665 -0.034626846 -0.016399615019 0.0002399857239 0.0001245621792 0.0007066303629 0.0005558133627

0.0181078091 0.0218673356 -0.024988561 0.0004250542988 0.0001661143015 0.0004651746375 0.0003778071072 0.0002417375901

0.021622362 0.0112764353 -0.017907049 0.0050934741028 0.0002539109492 0.0002453980078 0.0004028659533 0.0003192558866

-0.004976873 0.0192294394 -0.044431383 -0.024539256664

-0.01112749 0.0075765812 -0.041148156 -0.031837934652

-0.008349708 -0.00774322 -0.031373767 -0.029776625905

-0.00689511 -0.006300226 -0.019391114 -0.019192819501

-0.010584702 -0.017175612 -0.045016915 -0.031488728005

-0.008329856 -0.007127768 -0.021527866 -0.017529918502

-0.012971926 -0.001011857 -0.009171321 0.0062321185327

-0.046571987 -0.023414194 -0.045024785 -0.037412293874

-0.018405001 -0.022806041 -0.029606201 -0.024406440976

-0.017675385 -0.007264853 -0.019142076 -0.013282915183

-0.005839134 -0.005996828 0.0915058251 0.0933955850023

0.0250892109 0.0183258678 -0.007735764 0.0080618105879

0.0161417066 0.0143818063 -0.02417852 -0.006971520591

0.0028021276 0.0068024811 -0.02195494 -0.00754990711

0.0146542037 0.0092637793 -0.039348602 -0.019170211135

0.0189626012 0.0113896127 -0.009854024 0.0139431385252

0.0118117832 0.0062196122 -0.02557401 -0.022974845031

-0.012237993 -0.010245946 -0.045798565 -0.037789571627

-0.005735871 -0.000741934 -0.035940856 -0.030946919132

0.0306828424 0.0411483725 0.0085284885 0.0103547871687

0.0146052584 0.014001656 -0.011600046 -0.005996823987

-0.014766932 -0.002068478 0.0430312219 0.0503508330565

0.0197138168 0.0230155611 0.0323914652 0.0357936987473

0.0021349549 -0.005130229 -0.022288442 -0.009585452925

-0.001374811 0.0002408819 0.0023518584 0.0105457626788

-0.01963685 0.0023043488 -0.001660674 0.0105636321421

-0.004494449 -0.014119412 -0.03489949 -0.015931593159

0.0106138176 0.0181735955 -0.038443698 -0.008274267235

0.0235249043 0.0044456909 -0.011902498 0.0085379681995

0.0006938062 0.0351397163 -0.043939595 -0.020129181163

-0.008532291 -0.015372245 0.0015265236 0.0157222735042

0.0202861485 0.0213100962 -0.00332281 0.0052555821109

0.0100680987 0.0132496457 -0.010269945 -0.00688259153

-0.007772651 -0.013203551 -0.037892272 -0.026348206614

0.0121803045 0.0087752194 -0.017412435 -0.01661241531

-0.018605882 -0.012701893 -0.051550902 -0.041330641451
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instance  NBacc  NBdisc  NBpSacc  NBpDdisc  EMacc  EMdisc  EMprioracc  EMpriordisc

sets/gen-num_attributes=20-prob_diff=0.2:0.2-data_size=10000-nr=1.arff 0.72 0.0097341349 0.7298 0.0140287073 0.0 0.0 0.0 0.0

sets/gen-num_attributes=20-prob_diff=0.2:0.2-data_size=10000-nr=2.arff 0.7511 -0.020788187 0.7631 -0.007200383 0.0 0.0 0.0 0.0

sets/gen-num_attributes=20-prob_diff=0.2:0.2-data_size=10000-nr=3.arff 0.7413 0.0174350684 0.7494 0.0232557581 0.0 0.0 0.0 0.0

sets/gen-num_attributes=20-prob_diff=0.2:0.2-data_size=10000-nr=4.arff 0.7189 -0.025584546 0.7255 -0.020332553 0.0 0.0 0.0 0.0

sets/gen-num_attributes=20-prob_diff=0.2:0.2-data_size=10000-nr=5.arff 0.7421 -0.020709753 0.7543 -0.021080344 0.0 0.0 0.0 0.0

sets/gen-num_attributes=20-prob_diff=0.2:0.4-data_size=10000-nr=1.arff 0.868 0.0015011113 0.8762 0.0022206205 0.0 0.0 0.0 0.0

sets/gen-num_attributes=20-prob_diff=0.2:0.4-data_size=10000-nr=2.arff 0.9079 0.0090988739 0.9108 0.0048494657 0.0 0.0 0.0 0.0

sets/gen-num_attributes=20-prob_diff=0.2:0.4-data_size=10000-nr=3.arff 0.8412 0.0191762851 0.8494 0.0167692441 0.0 0.0 0.0 0.0

sets/gen-num_attributes=20-prob_diff=0.2:0.4-data_size=10000-nr=4.arff 0.8865 0.0163958324 0.8952 0.0098274663 0.0 0.0 0.0 0.0

sets/gen-num_attributes=20-prob_diff=0.2:0.4-data_size=10000-nr=5.arff 0.8807 -0.006215169 0.885 0.0081372805 0.0 0.0 0.0 0.0

sets/gen-num_attributes=20-prob_diff=0.2:0.8-data_size=10000-nr=1.arff 0.9506 -0.010719909 0.952 1.86E-05 0.0 0.0 0.0 0.0

sets/gen-num_attributes=20-prob_diff=0.2:0.8-data_size=10000-nr=2.arff 0.9868 -0.01773903 0.9874 -0.014534668 0.0 0.0 0.0 0.0

sets/gen-num_attributes=20-prob_diff=0.2:0.8-data_size=10000-nr=3.arff 0.99 -0.012280028 0.9897 -0.012874912 0.0 0.0 0.0 0.0

sets/gen-num_attributes=20-prob_diff=0.2:0.8-data_size=10000-nr=4.arff 0.9181 -0.014813141 0.9213 -0.020815353 0.0 0.0 0.0 0.0

sets/gen-num_attributes=20-prob_diff=0.2:0.8-data_size=10000-nr=5.arff 0.9785 -0.016527312 0.9796 -0.01632991 0.0 0.0 0.0 0.0

sets/gen-num_attributes=20-prob_diff=0.4:0.2-data_size=10000-nr=1.arff 0.7334 -0.002588489 0.7567 -0.012030555 0.0 0.0 0.0 0.0

sets/gen-num_attributes=20-prob_diff=0.4:0.2-data_size=10000-nr=2.arff 0.7181 -0.00722449 0.7222 -0.020214669 0.0 0.0 0.0 0.0

sets/gen-num_attributes=20-prob_diff=0.4:0.2-data_size=10000-nr=3.arff 0.711 -0.00379968 0.7169 -0.0108014 0.0 0.0 0.0 0.0

sets/gen-num_attributes=20-prob_diff=0.4:0.2-data_size=10000-nr=4.arff 0.7324 0.0006322415 0.7374 -0.011015475 0.0 0.0 0.0 0.0

sets/gen-num_attributes=20-prob_diff=0.4:0.2-data_size=10000-nr=5.arff 0.6801 0.0015638924 0.71 -0.008327105 0.0 0.0 0.0 0.0

sets/gen-num_attributes=20-prob_diff=0.4:0.4-data_size=10000-nr=1.arff 0.8344 0.0246873624 0.8426 0.0151092397 0.0 0.0 0.0 0.0

sets/gen-num_attributes=20-prob_diff=0.4:0.4-data_size=10000-nr=2.arff 0.873 0.0113783715 0.8761 0.0088021418 0.0 0.0 0.0 0.0

sets/gen-num_attributes=20-prob_diff=0.4:0.4-data_size=10000-nr=3.arff 0.8553 -0.004260536 0.8711 0.0010677743 0.0 0.0 0.0 0.0

sets/gen-num_attributes=20-prob_diff=0.4:0.4-data_size=10000-nr=4.arff 0.8544 0.012035673 0.8731 0.0050592979 0.0 0.0 0.0 0.0

sets/gen-num_attributes=20-prob_diff=0.4:0.4-data_size=10000-nr=5.arff 0.8643 0.0198866673 0.8731 0.0155361862 0.0 0.0 0.0 0.0

sets/gen-num_attributes=20-prob_diff=0.4:0.8-data_size=10000-nr=1.arff 0.9658 -0.000781242 0.9676 1.60E-05 0.0 0.0 0.0 0.0

sets/gen-num_attributes=20-prob_diff=0.4:0.8-data_size=10000-nr=2.arff 0.9662 -0.019248923 0.9672 -0.016840512 0.0 0.0 0.0 0.0

sets/gen-num_attributes=20-prob_diff=0.4:0.8-data_size=10000-nr=3.arff 0.9623 -0.011935111 0.9649 -0.009945633 0.0 0.0 0.0 0.0

sets/gen-num_attributes=20-prob_diff=0.4:0.8-data_size=10000-nr=4.arff 0.9847 0.0308857645 0.9857 0.037007994 0.0 0.0 0.0 0.0

sets/gen-num_attributes=20-prob_diff=0.4:0.8-data_size=10000-nr=5.arff 0.9593 0.0084096336 0.9618 0.0037964152 0.0 0.0 0.0 0.0

sets/gen-num_attributes=20-prob_diff=0.8:0.2-data_size=10000-nr=1.arff 0.6917 -0.00056301 0.7147 0.0159015939 0.0 0.0 0.0 0.0

sets/gen-num_attributes=20-prob_diff=0.8:0.2-data_size=10000-nr=2.arff 0.689 0.0146170271 0.7229 0.034135946 0.0 0.0 0.0 0.0

sets/gen-num_attributes=20-prob_diff=0.8:0.2-data_size=10000-nr=3.arff 0.7367 0.0006666833 0.766 -0.000276371 0.0 0.0 0.0 0.0

sets/gen-num_attributes=20-prob_diff=0.8:0.2-data_size=10000-nr=4.arff 0.6921 0.0101961599 0.7352 -0.000349603 0.0 0.0 0.0 0.0

sets/gen-num_attributes=20-prob_diff=0.8:0.2-data_size=10000-nr=5.arff 0.7061 0.0046891069 0.7361 0.0048644874 0.0 0.0 0.0 0.0

sets/gen-num_attributes=20-prob_diff=0.8:0.4-data_size=10000-nr=1.arff 0.8554 -0.007648765 0.8724 -0.01319732 0.0 0.0 0.0 0.0

sets/gen-num_attributes=20-prob_diff=0.8:0.4-data_size=10000-nr=2.arff 0.8157 -0.004706461 0.848 0.00462958 0.0 0.0 0.0 0.0

sets/gen-num_attributes=20-prob_diff=0.8:0.4-data_size=10000-nr=3.arff 0.814 0.0154427536 0.8382 0.0019389545 0.0 0.0 0.0 0.0

sets/gen-num_attributes=20-prob_diff=0.8:0.4-data_size=10000-nr=4.arff 0.8224 0.0100740907 0.854 0.0277618499 0.0 0.0 0.0 0.0

sets/gen-num_attributes=20-prob_diff=0.8:0.4-data_size=10000-nr=5.arff 0.7555 -0.015516657 0.7851 -0.020432255 0.0 0.0 0.0 0.0

sets/gen-num_attributes=20-prob_diff=0.8:0.8-data_size=10000-nr=1.arff 0.9543 0.0096952222 0.9628 0.0122942524 0.0 0.0 0.0 0.0

sets/gen-num_attributes=20-prob_diff=0.8:0.8-data_size=10000-nr=2.arff 0.9721 -0.002535805 0.9749 0.0010179142 0.0 0.0 0.0 0.0

sets/gen-num_attributes=20-prob_diff=0.8:0.8-data_size=10000-nr=3.arff 0.9072 -0.01256738 0.9223 -0.019546297 0.0 0.0 0.0 0.0

sets/gen-num_attributes=20-prob_diff=0.8:0.8-data_size=10000-nr=4.arff 0.9851 0.0019710493 0.9892 0.0005700143 0.0 0.0 0.0 0.0

sets/gen-num_attributes=20-prob_diff=0.8:0.8-data_size=10000-nr=5.arff 0.9283 -0.022756445 0.9377 -0.021914058 0.0 0.0 0.0 0.0
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Fig. 3. Results of Figure 2 grouped per maximal difference value. The charts show the
average values achieved by all methods for all combinations of the possible maximum
bound values: 0.2, 0.4, and 0.8. The values on the x-axis are the maximum bound on
|P (A|L+)− P (A|L−)| (bottom) and on |P (A|S+)− P (A|S−)| (top, in boxes).

5.2 Tests on Census Income

From the census income is a data-set containing both numeric and categorial
attributes that should be used to decide whether a new individual should get
be classified as having a high or a low income. We want to do so with zero
discrimination with respect to the gender attribute. Our methods, however, are
based on simple implementations and do not (yet) contain methods to deal with
numeric attributes.2 We therefore first discretize these attributes into 4 bins.
The boundaries of these bins are the boundaries of the interquartile ranges. In
addition, we remove low frequency counts (which can lead to problems for EM)
by pooling any bin that occurs less than 50 times (out of a total of about 16.000).
Thus, all infrequent attribute values are replaced by a unique (more frequent)
‘pool’ value. On this modified data-set we tested our algorithms.

Results Figure 4 shows runs of the algorithms on the discretized and pooled
census income data-set. The consecutive accuracy-discimination values reached
by the algorithms are connected by lines. These values are based on the data-
set itself, not on a separate test-set. There are some interesting observations
we can make from these plots. First of all, both the modified naive Bayes and
2 naive Bayes models seem to perform very well: the drop in accuracy is much
smaller than the drop in discrimination. Logically, both of these plots stop at zero
discrimination. This does not hold for the expectation maximization methods.
After reaching zero discrimination, these methods are not yet converged to a
local optimum of the likelihood function. Unfortunately, they converge to a point
that is considerably worse in terms of accuracy and discrimination than the

2 We want to study the effect of discrimination and do not focus on maximizing the
accuracy scores of our classifiers. The resulting accuracy values can therefore be a
little lower than expected.



Relabel single no prior fixed

Relabel single no prior random

Relabel single prior fixed

Relabel single prior random

Relabel no prior fixed

Relabel no prior random

Relabel prior fixed

Relabel prior random

NB modified

Accuracy average 0.81475344003

Discrimination average 
0.0059547662997

NB per sensitive value

Accuracy average 0.813893300634

Discrimination average 
0.00231354679492

EM no prior fixed

EM no prior random

Accuracy average 0.799950754371

Discrimination average 
-0.00784101566647

EM prior fixed

Accuracy average 0.799336918536

Discrimination average 
0.00771893689491

EM prior random

Accuracy average 0.799950867492

Discrimination average 
-0.000787489395703

Discrimination Accuracy

0.190979829821 1.0

0.190979829821 1.0

0.076486774881 0.949511700755

-0.0172213440467 -0.918002579694

0.0786814322448 0.954056876113

0.0207790248889 0.93065536515

0.138633164866 0.974080216203

0.0213330398155 0.930716786438

0.190979829821 1.0

0.190979829821 1.0

0.0947515340893 0.95510103802

-0.0137164556498 0.919169584178

-0.0383445899464 0.911307659235

-0.0547631423123 0.906025428413

-0.0578103772825 0.90571832197

-0.053015437204 0.907560960629

-0.0414875749209 0.911676186966

-0.0351269515624 0.914501566243

-0.0350351762789 0.91462440882

-0.0375271733315 0.914133038511

-0.038727284216 0.913948774645

-0.0407570416255 0.913395983048

-0.044631171391 0.912167557275

-0.0490590103353 0.910816288926

-0.0531179136589 0.909587863153

-0.0587458634877 0.908052330938

-0.0631740081798 0.906762483877

-0.0704612510587 0.904489896198

-0.073781977393 0.903445734292

-0.0737822831408 0.90350715558

-0.0735057342991 0.903629998157

-0.0731374101739 0.903875683312

-0.0726770050173 0.904182789755

-0.072584923986 0.904244211044

-0.0724928429547 0.904305632332

-0.0724928429547 0.904305632332

-0.0723086808921 0.904428474909

0.0786814322448 0.954056876113

0.0207790248889 0.93065536515

-0.00761587075431 0.918555371292

-0.0230129708388 0.912228978564

-0.037212100273 0.906516798722

-0.0451417701368 0.903384313003

-0.0485533545115 0.902033044653

-0.0488289861099 0.90172593821

-0.0488283746144 0.901603095633

-0.0484591332459 0.901664516922

-0.0486429895608 0.901480253056

-0.049010090695 0.900988882747

-0.049010090695 0.900988882747

-0.0491021717263 0.900927461458

0.137254701126 0.972606105276

0.0190276508075 0.929856888398

-0.0161013900312 0.915729992015

-0.0310371677159 0.909526441865

-0.0420997328784 0.904735581352

-0.0433891730644 0.9039371046

-0.0481844188907 0.902155887231

-0.0484600504891 0.901848780787

-0.0475370999418 0.902033044653

-0.047075777542 0.902155887231

-0.0473517148882 0.901910202076

-0.0484566872639 0.901173146613

-0.0486411550742 0.901111725324

-0.0487332361055 0.901050304035

-0.0487329303578 0.900988882747

-0.0486408493265 0.901050304035

-0.0486408493265 0.901050304035

-0.0490097849472 0.900927461458

0.247898391869 0.841103126344

0.232956499229 0.842638658559

0.221888430607 0.841655917941

0.211373765416 0.840734598612

0.201965907087 0.840058964437

0.195140598104 0.839260487685

0.186655078827 0.838277747067

0.177616156119 0.837233585161

0.167285958738 0.836005159388

0.152276750635 0.836557950986

0.142131021065 0.834408205884

0.132723162736 0.833364043978

0.126451257184 0.83238130336

0.115309452396 0.831582826608

0.10756180436 0.829863030526

0.099445220704 0.828266077022

0.090406297996 0.82660770223

0.0791724121765 0.82660770223

0.0695800860374 0.824642220994

0.0631237126746 0.823598059087

0.056298403691 0.821939684295

0.0484715160298 0.821878263006

0.0410928036152 0.81991278177

0.0326072843383 0.817947300534

0.0226625329571 0.818192985689

0.0180508376979 0.817517351514

0.0132546746283 0.816903138628

0.00606043002402 0.814999078681

0.189258469977 0.827590442847

0.175998801469 0.829924451815

0.165777806994 0.832688409803

0.151321085078 0.83459246975

0.1366802011 0.834408205884

0.126919611782 0.836250844543

0.08578329007 0.82881886862

0.0772197541584 0.829125975063

0.0688403803094 0.828204655734

0.0452285005824 0.822308212026

0.0359283164204 0.820895522388

0.0217242950221 0.817517351514

0.0139894883923 0.817025981205

0.00181461290806 0.813832074197

0.107770171453 0.822308212026

0.107770171453 0.822308212026

0.107857921058 0.832565567226

-0.00229932501088 0.803513297709

-0.0229701151956 0.794545789571

-0.0272168495548 0.791966095449

-0.0325691677852 0.789754929058

-0.0273132110546 0.788710767152

-0.00979090930401 0.790676248388

0.00634864823823 0.791658989006

0.00874642402525 0.791290461274

0.00976114985615 0.790369141945

0.00791677750023 0.78969350777

0.00413534026158 0.788403660709

0.00210588859979 0.787175234936

-0.0021365652909 0.785823966587

-0.00813192200171 0.783612800197

-0.0130204718503 0.781647318961

-0.0194768452132 0.779129046127

-0.0231662014205 0.777654935201

-0.0235363600322 0.776672194583

-0.02353666578 0.776487930717

-0.0229832623489 0.776549352005

-0.0225225514446 0.776426509428

-0.0224304704133 0.776487930717

-0.0219700652568 0.776672194583

-0.0218779842255 0.776610773294

-0.0218779842255 0.776610773294

-0.0216938221628 0.776610773294

0.107770171453 0.822308212026

0.0354085962 0.81014679688

0.0106054722733 0.803758982863

0.00525774025913 0.799152386217

0.00655054367046 0.795344266323

0.00212270472615 0.79190467416

0.00673623447184 0.79147472514

0.0121766590128 0.791597567717

0.012087635459 0.791536146428

0.0123647957962 0.791413303851

0.0124568768275 0.791351882562

0.0125495693543 0.791290461274

0.0127340371647 0.791229039985

0.0127340371647 0.791106197408

0.0986262753503 0.83103003501

0.0230474184189 0.807628524046

-0.00350830258021 0.800565075855

-0.0129118804404 0.797186904981

-0.0164158515941 0.794238683128

-0.00414950657409 0.793931576684

0.00157113578156 0.791843252871

0.00959410966764 0.792088938026

0.0119955544277 0.792088938026

0.0136560704687 0.791966095449

0.0140250060895 0.791843252871

0.0140253118372 0.791658989006

0.0140253118372 0.791536146428

0.0140253118372 0.791413303851

0.09475153 0.95510104

-0.01371646 0.91916958

-0.03834459 0.91130766

-0.05476314 0.90602543

-0.05781038 0.90571832

-0.05301544 0.90756096

-0.04148757 0.91167619

-0.03512695 0.91450157

-0.03503518 0.91462441

-0.03752717 0.91413304

-0.03872728 0.91394877

-0.04075704 0.91339598

-0.04463117 0.91216756

-0.04905901 0.91081629

-0.05311791 0.90958786

-0.05874586 0.90805233

-0.06317401 0.90676248

-0.07046125 0.9044899

-0.07378198 0.90344573

-0.07378228 0.90350716

-0.07350573 0.90363

-0.07313741 0.90387568

-0.07267701 0.90418279

-0.07258492 0.90424421

-0.07249284 0.90430563

-0.07249284 0.90430563

-0.07230868 0.90442847

0.07868143 0.95405688

0.02077902 0.93065537

-0.00761587 0.91855537

-0.02301297 0.91222898

-0.0372121 0.9065168

-0.04514177 0.90338431

-0.04855335 0.90203304

-0.04882899 0.90172594

-0.04882837 0.9016031

-0.04845913 0.90166452

-0.04864299 0.90148025

-0.04901009 0.90098888

-0.04901009 0.90098888

-0.04910217 0.90092746

0.1372547 0.97260611

0.01902765 0.92985689

-0.01610139 0.91572999

-0.03103717 0.90952644

-0.04209973 0.90473558

-0.04338917 0.9039371

-0.04818442 0.90215589

-0.04846005 0.90184878

-0.0475371 0.90203304

-0.04707578 0.90215589

-0.04735171 0.9019102

-0.04845669 0.90117315

-0.04864116 0.901111725

-0.04873324 0.9010503

-0.04873293 0.90098888

-0.04864085 0.9010503

-0.04864085 0.9010503

-0.04900978 0.90092746

0.19097983 1.0

0.19097983 1.0

A
c
c
u

ra
c
y

Discrimination

0.2478984 0.8411031

0.2329565 0.8426387

0.2218884 0.8416559

0.2113738 0.8407346

0.2019659 0.840059

0.1951406 0.8392605

0.1866551 0.8382777

0.1776162 0.8372336

0.167286 0.8360052

0.1522768 0.836558

0.142131 0.8344082

0.1327232 0.833364

0.1264513 0.8323813

0.1153095 0.8315828

0.1075618 0.829863

0.0994452 0.8282661

0.0904063 0.8266077

0.0791724 0.8266077

0.0695801 0.8246422

0.0631237 0.8235981

0.0562984 0.8219397

0.0484715 0.8218783

0.0410928 0.8199128

0.0326073 0.8179473

0.0226625 0.818193

0.0180508 0.8175174

0.0132547 0.8169031

0.0060604 0.8149991

0.1892585 0.8275904

0.1759988 0.8299245

0.1657778 0.8326884

0.1513211 0.8345925

0.1366802 0.8344082

0.1269196 0.8362508

0.0857833 0.8288189

0.0772198 0.829126

0.0688404 0.8282047

0.0452285 0.8223082

0.0359283 0.8208955

0.0217243 0.8175174

0.0139895 0.817026

0.0018146 0.8138321

0.1077702 0.8223082

0.1077702 0.8223082

0.1078579 0.8325656

-0.002299 0.8035133

-0.02297 0.7945458

-0.027217 0.7919661

-0.032569 0.7897549

-0.027313 0.7887108

-0.009791 0.7906762

0.0063486 0.791659

0.0087464 0.7912905

0.0097611 0.7903691

0.0079168 0.7896935

0.0041353 0.7884037

0.0021059 0.7871752

-0.002137 0.785824

-0.008132 0.7836128

-0.01302 0.7816473

-0.019477 0.779129

-0.023166 0.7776549

-0.023536 0.7766722

-0.023537 0.7764879

-0.022983 0.7765494

-0.022523 0.7764265

-0.02243 0.7764879

-0.02197 0.7766722

-0.021878 0.7766108

-0.021878 0.7766108

-0.021694 0.7766108

0.1077702 0.8223082

0.0354086 0.8101468

0.0106055 0.803759

0.0052577 0.7991524

0.0065505 0.7953443

0.0021227 0.7919047

0.0067362 0.7914747

0.0121767 0.7915976

0.0120876 0.7915361

0.0123648 0.7914133

0.0124569 0.7913519

0.0125496 0.7912905

0.012734 0.791229

0.012734 0.7911062

0.0986263 0.83103

0.0230474 0.8076285

-0.003508 0.8005651

-0.012912 0.7971869

-0.016416 0.7942387

-0.00415 0.7939316

0.0015711 0.7918433

0.0095941 0.7920889

0.0119956 0.7920889

0.0136561 0.7919661

0.014025 0.7918433

0.0140253 0.791659

0.0140253 0.7915361

0.0140253 0.7914133

0.76

0.783

0.805

0.828

0.85

-0.075 0 0.075 0.15 0.225 0.3

Runs on census_income

Naive Bayes

2 NB Models

EM

EM prior

Accuracy

Fig. 4. Lines showing the the consecutive values reached by the runs of each of our
algorithms. The accuracy and discrimination values are determined using the data-set.

first time they reached zero discrimination. Interestingly, the first expectation
maximization method reaches this point after just one iteration.

Another interesting observation is that, although the EM methods do not
perform well in the end, they do start out good. Of all methods, they have the
smallest discrimination and a respectable accuracy. These points are determined
by fixing the latent values for females with a positive class label and males with
a negative class label, randomizing the other latent values, and using this set to
estimate the latent variable model. Thus the latent variable model itself seems
to perform good with respect to the other two approaches, only EM does not
converge to the point we want it to converge to.

We tested all of the methods using 10-fold cross-validation on census income.
These results are shown in the left part of Figure 5. In addition to the four
methods already discussed, we included the accuracy and dependency values
of the EM methods if they would be stopped after the iteration in which they
reached less than 0.01 discrimination. As expected, these perform better than the
EM methods that were left to converge to a local optimum. The main conclusion
we draw from the left part of Figure 5 is that both naive Bayes modifications
perform really well. However, they are still outperformed by previous methods
that use decision trees [2]. This is not very surprising since decision trees in
general work better than naive Bayes methods on this data-set. From the results
we can also conclude that using prior information in the EM method improves
its performance.

In the right part of Figure 5, we show the performance of each of the methods
when S is unknown during the testing phase. This shows the dependence of the
classifiers on the S attribute. Ideally, we would like this dependence to be zero.
In this case, it really does not matter what the value of the S attribute is, and
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Fig. 5. Discrimination and accuracy values resulting from of 10-fold cross-validation
of all methods with and without marginalizing over S on census income.

hence there is no discrimination whatsoever. In our case, however, we modify
the models using the S attribute, so there will be some dependence. However,
we want this dependence to be as small as possible. The scores of the classifiers
are computer by marginalization over S.

The first interesting observation we make from these scores is that the modi-
fied naive Bayes method suddenly obtains a very high discrimination. This is not
surprising since this model is almost identical to the standard naive Bayes model
with S removed from the training data-set. The second observation is that for
the (not stopped) EM methods, the accuracy drops significantly. Thus there is a
very high dependence on the S attribute. It is unclear why this is the case, but
we hope it will provide some hints for investigating the convergence behavior of
EM, which is planned for future research. The 2 naive Bayes models method has
the lowest dependence on S, resulting in only about 5% discrimination if S is
removed. This is somewhat surprising since this model uses S to split the data
and then learn two separate models. Apparently, these two separate models are
good at estimating S from the other attributes A1, . . . , An.

The overall conclusion of these experiments is that the 2 naive Bayes models
method performs best: it achieves high accuracy scores with zero discrimination,
and has the smallest dependency on S.

6 Related Work

In a series of recent papers [12, 11, 6, 1], the topic of discrimination in data mining
received quite some attention. In [12, 11], concepts of undesired dependency due
to discrimination were introduced. These works, however, concentrate mainly on
identifying the discriminatory rules that are present in a dataset, and the spe-
cific subset of the data where they hold, rather than on learning a classifier with
independency constraints for future predictions. Discrimination-aware classifica-
tion and its extension to independence constraints, were first introduced in [6, 1]
where the problem of undesired dependencies is handled by “cleaning away” the
dependency from the dataset before applying the traditional classification algo-
rithms. Other existing approaches include resampling [7], and the construction
of discrimination-aware decision trees [2].



There are many relations with more traditional techniques in classification as
well. Due to space restrictions, we only discuss the most relevant links. Despite
the abundance of related works, none of them satisfactory solves the classifica-
tion with independency constraints problem. In Constraint-Based Classification,
next to a training dataset also some constraints on the model have been given.
Only those models that satisfy the constraints are considered in model selection.
For example, when learning a decision tree, an upper bound on the number of
nodes in the tree can be imposed [10]. Our proposed classification problem with
independency constraints clearly fits into this framework. Most existing works
on constraint based classification, however, impose purely syntactic constraints
limiting, e.g., model complexity, or explicitly enforcing the predicted class for
certain examples. One noteworthy exception is monotonic classification [8, 4],
where the aim is to find a classification that is monotone in a given attribute.
Of all existing techniques in classification, monotone classification is probably
the closest to our proposal. In Cost-Sensitive and Utility-Bases learning [3, 5, 9],
it is assumed that not all types of prediction errors are equal and not all ex-
amples are as important. The type of error (false positive versus false negative)
determines the cost. Sometimes costs can also depend on individual examples.
Nevertheless it is unclear how these techniques can be generalized to indepen-
dency constraints. For example, satisfaction of monotonic constraints does not
depend on the data distribution, whereas for the independency constraints it
clearly does, and the independency between two attributes cannot easily be re-
duced to a cost on individual objects.

7 Discussion and Future Work

We studied three Bayesian methods for discrimination-aware classification. In the
first method, we change the observed probabilities in a Naive Bayesian model in
such a way that its predictions become discrimination-free. The second method
involved learning two different models; one for S = 0 and one for S = 1, and
balancing these models afterwards. In the third and most involved method we
introduced a latent variable L reflecting the latent “true” class of an object
without discrimination. The probabilities in the model are then learned with
the expectation maximization technique. All three methods were evaluated ex-
perimentally on an artificial and a real-life dataset. Surprisingly, the two-models
approach outperformed the model with the latent variable. We plan to extend
this work in the following ways:

– Right now our definition of discrimination is quite brute force. No discrim-
ination at all is allowed. We want to extend the notion of discrimination to
that of conditional discrimination; e.g., instead of requiring that there is no
discrimination at all, we could weaken this condition to no discrimination
unless it can be explained by other attributes. Other extensions we plan to
consider are numerical attributes (e.g., income) as sensitive attribute, and
sensitive attributes with multiple favorable and discriminated values (e.g.,
in ethnic discrimination). We believe these extensions can be modelled by



relatively small adaptations to our third model and without having a large
influence on the complexity of our methods.

– There are many other graphical models possible. We could consider turn-
ing the arrows towards S, reflecting the idea that we can derive quite some
information about the sensitive attribute S from the attributes Ai, but the
attribute L should not help us any further for deriving S; i.e., S is condition-
ally independent of L given the attributes Ai. One obvious drawback of such
a method is that the number of parameters to describe the distribution of
S is exponential in the number of attributes Ai. Therefore it would be ben-
eficial to consider other models that could be “inserted” into the Bayesian
model to replace the probability table, such as, e.g., a decision tree.

– Obviously we want to further explore why the convergence of EM was rel-
atively poor, even for the synthetic datasets where all conditions for a suc-
cessful convergence were satisfied.
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