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Abstract TheMay 12, 2008Wenchuan earthquake of China (Mw 7.9

or Ms 8.0) triggered hundreds of thousands of landslides. Mapping

such a large number of landslides is a major task, considering the

large size of the affected area and the availability of pre- and post-

earthquake remote sensing images. This paper compares three (near-

ly) complete landslide inventories that were compiled from visual

image interpretation. The three inventories differ in the manner in

which the landslides are represented, either as polygons, centroid

points, or top points. Landslides in the three inventories use one-to-

one correspondence. Each of the three inventories includes a large

proportion of the 197,481 landslides triggered by the earthquake.

These landslides were delineated as individual solid polygons and

points using visual interpretation of high-resolution aerial photo-

graphs and satellite images acquired following the earthquake and

verified by selected field checking throughout a broad area of ap-

proximately 110,000km2. These landslides cover a total area of ap-

proximately 1,160km2. Based on the inventories of landslide polygons

and landslide centroid points, two types of density maps were

constructed. Correlations of landslide occurrence with seismic, geo-

logic, and topographic parameters were analyzed using the three

landslide inventories. Statistical analysis of their spatial distribution

was performed using both the landslide area percentage (LAP), de-

fined as the percentage of the area affected by the landslides and the

landslide number density (LND), defined as the number of landslides

per square kilometer. There are two types of LNDs: the LND-centroid

(based on the centroid point of the landslide) and the LND-top (based

on the top point of the landslide). We used the three indexes to

determine how the occurrence of the landslides correlates with eleva-

tion, slope angle, slope aspect, slope position, slope curvature, lithol-

ogy, distance from the epicenter, seismic intensity, distance from the

Yingxiu-Beichuan surface fault rupture, peak ground acceleration

(PGA), and coseismic surface displacements (including horizontal,

vertical, and total displacements). Both the LAP and the two types of

LND values were observed to have continuous positive or negative

correlations with the slope angle, slope curvature, distance from the

epicenter and from the Yingxiu-Beichuan surface fault rupture, seis-

mic intensity, and coseismic surface displacement. In addition, the

highest values of the LAP and LND values appear at ranges from 1,200

to 3,000m in elevation. Moreover, the landslides have preferred ori-

entations, dominated by the eastern, southeastern, and southern di-

rections. In addition, the sandstone, siltstone (Z), and granitic rocks

experienced more concentrated landslides. No obvious correlations

were observed between the LAP and LND values and slope position.

Finally, we studied the orders of eight earthquake-triggered landslide

impact factor effect on landslide occurrence.

Highlights The 197,481 landslides triggered by the 2008 Wenchuan

earthquake were delineated.

Three landslide inventories were constructed: polygon, cen-

troid, and top point inventories.

The landslides were spatially analyzed with topographic, li-

thology, and seismic parameters.

Keywords The 2008Wenchuan earthquake . Landslides .

Inventory . Statistical analysis . Spatial distribution . Landslide

area percentage . Landslide number density

Introduction

The landslides triggered by the 2008 Wenchuan earthquake have

received much attention in recent years due to the size of the event

and the resulting tragic loss of life and economic devastation.

Correlating landslide occurrence with controlling parameters is

important for understanding the spatial distribution of earth-

quake-triggered landslides. It is important to understand what

areas are most likely to experience landsliding in future earth-

quakes. A detailed, comprehensive, and accurate earthquake-trig-

gered landslide inventory is an essential part of improving the

understanding of seismic landslide hazard analysis (e.g., Keefer

2002; Harp et al. 2011a; Guzzetti et al. 2012). After the 2008

Wenchuan earthquake, some landslide inventories were compiled

(e.g., Dai et al. 2011; Xu et al. 2009a; Gorum et al. 2011; Huang and

Li 2009; Parker et al. 2011; Chigira et al. 2010; Yin et al. 2010a; Qi et

al. 2010; Li et al. 2009; Han et al. 2009; Di et al. 2010; Chen et al.

2009; Ren and Lin 2010; Zhang et al. 2010), and correlations of

landslide occurrence with geologic and geomorphologic condi-

tions as well as seismic parameters were constructed. However,

almost all of the inventories are either incomplete or only record

landslide locations; no landslide inventories are comprehensive

considering the following seismic landslide mapping criteria: (1)

coverage of the entire area affected by landslides, (2) inclusion of

all landslides down to a small enough scale, and (3) depiction of

landslides as polygons rather than points (Harp et al. 2011a).

Therefore, in this paper, three (nearly) complete landslide inven-

tories were compiled for a detailed and objective spatial distribu-

tion statistical analysis of the landslides triggered by the 2008

Wenchuan earthquake.

Concerning single earthquake events, most studies have fo-

cused on compiling landslide inventories, scenario-based analysis,

and finding general correlations of landslide occurrence with

various landslide-controlling parameters, such as the slope gradi-

ent, distance from the earthquake source, geologic units, and slope

aspect. The analysis of earthquake-triggered landslide inventories

was initiated by Keefer (1984) who performed a statistical analysis
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of landslide distributions associated with 40 historical worldwide

earthquakes occurring from 1811 to 1980. A database of earth-

quake-triggered landslide inventories was compiled to cover the

period from 1980 to 1997 by Rodriguez et al. (1999), which extends

the work of Keefer (1984). However, most of the inventories in this

database are incomplete. Keefer (2002) and Harp et al. (2011a)

discussed the quality of landslide inventories and the need to

represent landslides as individual polygons. One of the first com-

plete landslide inventories was performed for the 17 January 1994

Mw 6.7 Northridge earthquake (Keefer 1984, 2002; Harp et al.

2011a). Examples of earlier earthquake-triggered landslide inven-

tory maps include the one with more than 220 large landslides in

the Madrid seismic zone, Tennessee, and Kentucky, which was

triggered by the 16 December 1811 New Madrid, Mo., earthquakes

(Jibson and Keefer 1989). At least 1,850 landslides were triggered

by the 17 June 1929 M 7.7 Murchison earthquake (Pearce and

O'Loughlin 1985). Other coseismic landslide inventories for earth-

quakes that occurred before the 1994 Mw 6.7 Northridge earth-

quake include the December 26, 1949 M 6.2 and 6.4 Imaichi

earthquakes (Morimoto 1950, 1951; Morimoto et al. 1957), the

May 31, 1970 M 7.9 Peru earthquake (Plafker et al. 1971), the M

6.7 February 9, 1971 San Fernando earthquake (Morton 1971), the

1976 Guatemala earthquake (Harp et al. 1978, 1981), the 1980

Mammoth Lakes earthquake (Harp et al. 1984), the 1983 Coalinga

earthquake (Harp and Keefer 1990), the May 1976 Friuli, Italy M

6.4 earthquake (Govi 1977), the 17 October 1989 Mw 6.9 Loma

Prieta earthquake (Keefer 2000), the March 5, 1987 Ecuador earth-

quake (Tibaldi et al. 1995), and the 23 November 1980 Ms 6.9

Irpinia earthquake (Wasowski et al. 2002).

The first digital inventory map for earthquake-triggered land-

slides was compiled by Harp and Jibson (1995, 1996). More than

11,000 landslides were registered by the 17 January 1994 Mw 6.7

Northridge earthquake from visual interpretation of aerial photog-

raphy and select field verification. The most common types of

landslides triggered by the earthquake were highly disrupted falls

and slides (Jibson and Harp 1994). This landslide inventory was used

to assess the correlation between landslides and slope gradient, slope

aspect, Arias intensity, and geologic units (Parise and Jibson 2000;

Khazai and Sitar 2004; Malamud et al. 2004a; Meunier et al. 2007,

2008; Harp et al. 2011a) as well as the correlations among landslides,

earthquakes, and erosion (Malamud et al. 2004b).

The 21 September 1999, Mw 7.5 Chi-chi earthquake in Taiwan

resulted in a landslide inventory map that is comprised of 9,272

landslides interpreted from SPOT images (Liao and Lee 2000; Liao

et al. 2002). Furthermore, this inventory has also been used exten-

sively to compare various landslide controlling factors with the

landslide distribution (Weissel and Stark 2001; Wang et al. 2003;

Lin and Tung 2004; Lee et al. 2008; Khazai and Sitar 2004) and

geomorphology evolution in a part of the earthquake-affected area

(Dadson et al. 2003, 2004, 2005; Hovius et al. 2009, 2011; Harp et al.

2011a; Wasowski et al. 2011). In addition, Wang et al. (2002) reported

the numbers of landslides to be approximately 26,000 (Wasowski et

al. 2011) when landslides of smaller size are included.

There are several papers on the October 8, 2005Mw 7.6 Kashmir

earthquake-triggered landslides. Das et al. (2007) performed a rapid

analysis of earthquake-triggered landslide spatial patterns using

satellite data, and the results highlighted a trend in landslide zones

in the NW–SE direction, mostly affecting the southeast-facing slopes.

Kamp et al. (2008) identified 2,252 landslides triggered by the earth-

quake and analyzed the correlations between landslides and lithol-

ogy, faults, slope gradient, slope aspect, elevation, land cover, rivers,

and roads. Sato et al. (2007) interpreted 2,424 landslides triggered by

the earthquake using SPOT 5 stereo images. The landslide distribu-

tion indicated that most of the landslides occurred along the

seismogenic fault, concentrated on the hanging wall. Owen et al.

(2008) reported that earthquake-triggered landslides concentrated in

specific zones were associated with the lithology, tectonic, geomor-

phology, and topography as well as with human activities.

For the October 23, 2004 Mid-Niigata earthquake-triggered

landslides, Yamagishi and Iwahashi (2007) mapped approximately

3,500 landslides triggered by the July 13, 2004 heavy rainfalls and

4,400 landslides triggered by the earthquake. These authors provided

a comparison of the distribution of features between these landslides

and compared the correlations between landslide spatial distribution

and lithology, curvatures, and slope gradient. Chigira and Yagi

(2006) mapped approximately 1,000 landslides by field investigation

and aerial photograph interpretation and analyzed the geological

and geomorphologic characteristics of the landslides. Sato et al.

(2005) identified 1,353 individual landslides triggered by the earth-

quake as single polygons and overlaid the landslides on the earth-

quake source, and geological and topographical data to determine

the characteristics of the landslide distribution triggered by the

earthquake. Wang et al. (2007) mapped 1,212 landslides triggered by

the earthquake in a selected landslide intensity square area near the

epicenter and provided useful insights into the correlations between

the earthquake-triggered landslides and the geology, slope gradient,

and earthquake shaking.

In addition, Fukuoka et al. (1997) mapped 674 landslides trig-

gered by the 17 January 1995 Hyogo-ken earthquake (Ms 7.2 or Mw

6.9) within an area of approximately 700 km2. These researchers

revealed an attenuation trend between the landslide frequency and

distance from the assumed fault rupture zone. Marzorati et al. (2002)

mapped approximately 200 landslides triggered by the 26 September

1997 Umbria-Marche earthquake using a set of aerial photographs

and field surveys. These authors analyzed the correlation between

the landslides and environmental and seismic factors such as the

distance from epicenter, peak ground acceleration (PGA), and slope

gradient. Other inventories of landslides triggered by earthquakes

occurring between the January 17, 1994 Mw 6.7 Northridge earth-

quake and the 2008 Wenchuan earthquake were also prepared, such

as for the July 16, 2007 Mw 6.6 Niigata Chuetsu-Oki earthquake

(Collins et al. 2012), the January 21, 2003 Mw 7.6 Tecomán, Mexico

earthquake (Keefer et al. 2006), and the 2007 Aysén Fjord earthquake

(Sepúlveda et al. 2010).

After the 2008 Wenchuan earthquake, several inventories of

coseismic landslides were compiled. These events include the April

14, 2010 Mw 6.9 Yushu earthquake of China, the January 12, 2010 Mw

7.0 Haiti earthquake, the June 14, 2008 Iwate-Miyagi Nairiku earth-

quake, and the May 11, 2011 Mw 5.1 Lorca, SE Spain earthquake. In

total, 282 landslides were triggered by the Yushu earthquake

according to a post-earthquake emergency investigation (Yin et al.

2010b). A detailed inventory revealed that 2,036 landslides were

delineated from high-resolution aerial photographs and satellite
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images, which were verified by selected field checking (Xu et al.

2012a, 2013a). Similarly, some inventories of landslides triggered by

the Haiti earthquake were also constructed for coseismic landslide

spatial distribution analysis and hazard analysis (Xu et al. 2012b; Xu

and Xu 2012a; Gorum et al. 2013; Harp et al. 2011b). The June 14, 2008

Iwate-Miyagi Nairiku earthquake triggered at least 4,161 landslides

(Yagi et al. 2009), and the May 11, 2011 Mw 5.1 Lorca, SE Spain

earthquake triggered more than 250 landslides (Alfaro et al. 2012).

In the following text, three (nearly) complete inventories of

landslides triggered by the 2008 Wenchuan earthquake will be intro-

duced in detail. The spatial distribution of the landslides triggered by

the earthquake was obtained by correlating the landslide area per-

centage (LAP), landslide number density (LND)-centroid, and LND-

top with the impact factors that control earthquake-triggered land-

slide occurrence. These factors include the elevation, slope angle,

slope aspect, slope curvature, slope position, lithology, distance from

epicenter, distance from the Yingxiu-Beichuan surface fault rupture,

PGA, seismic intensity, and coseismic surface displacement (hori-

zontal, vertical, and total displacements). Furthermore, the effects of

eight impact factors on landslide occurrence were compared using a

bivariate statistical method.

Tectonic setting and the 2008 Wenchuan earthquake

At 14:28 (Beijing Time) on May 12, 2008, a catastrophic earthquake

with Mw 7.9 (or Mw 8.0) struck Wenchuan County in Sichuan

Province, China. This earthquake is known as the Wenchuan earth-

quake, as its epicenter was located in the administrative region of

Wenchuan County. The epicenter, approximately 80 km west-north-

west of Chengdu, the capital of Sichuan Province, is located at

31.021°N and 103.367°E with a focal depth of 14 km. As of February

10, 2010, 311 major aftershocks with magnitudes of Ms≥4.0 have been

recorded, with the strongest measured Ms 6.4 occurring on May 25,

2008. According to the Government of China, as of September 25,

2008, 69,227 people have been confirmed dead, with 17,923 missing,

and 374,643 injured in this earthquake, which also destroyed innu-

merable infrastructures and houses.

The Ms 8.0 Wenchuan earthquake occurred in the Longmenshan

mountain range, an area that is deforming because of the collision

between the Indian plate and the Eurasian plate. The Indian plate has

been moving northward, resulting in an uplift of the Tibetan Plateau.

The deformation has also resulted in the extrusion of crustal material

from the high Tibetan Plateau in the west against the strong crustal

material of the Sichuan Basin, which is a part of the Yangtze block (Xu

et al. 2008a). The Ms 8.0 Wenchuan earthquake ruptured two large

thrust faults along the Longmenshan thrust belt at the eastern margin

of the Tibetan Plateau. This earthquake produced a 240-km-long

surface rupture zone along the Yingxiu-Beichuan fault characterized

by right-lateral oblique faulting and a 72-km-long surface rupture

zone along the Guanxian-Jiangyou fault characterized by dip-slip

reverse faulting (Xu et al. 2008b; Xu et al. 2009b, 2009c). In addition,

a 6-km-long NW-trending surface rupture with reverse and left-slip

components was also observed (Fig. 1).

Mapping of landslides triggered by the earthquake

Figure 2 shows the spatial coverage of the remote sensing images

collected for landslide visual interpretation. We collected 86 im-

ages pre- and post-earthquake: 63 images representing the pre-

earthquake and 23 images associated with the post-earthquake.

The post-earthquake images include aerial photographs acquired

at 1-m, 2-m, 2.4-m, and 5-m resolutions, SPOT 5 with 2.5-m reso-

lution, CBERS02B with 19.5-m resolution, IKONOS with 1-m reso-

lution, ASTER with 15-m resolution, IRS-P5 with 2.5-m resolution,

QuickBird with 0.6- and 2.4-m resolutions, and ALOS with 2.5-m

resolution (Table 1). A few hundred landslides occurred in areas

lacking clear images, and these were delineated from the visual

interpretation of images post-earthquake on the Google Earth

platform. The pre-earthquake images consisted of SPOT 5 with

2.5-m resolution covering some parts of the approximate distribu-

tion area of the landslides and ETM+ with 15-m resolution

throughout the entire approximate landslide area (Table 1).

A detailed and accurate landslide inventory is an essential

component of seismic landslide hazard analyses (e.g., Xu et al.

2012c, 2012d, 2012e, 2012f, 2013b, 2013c; Xu and Xu 2012c) and spatial

distribution statistical analyses (e.g., Xu and Xu 2012b, 2013; Dai et al.

2011; Gorum et al. 2011, 2013; Harp et al. 2011a). Harp et al. (2011a)

considered an ideal inventory as one covering the entire area affected

by an earthquake, including all the landslides that are detectable

down to a size of 1–5 m in length, with the landslides being accurately

located and mapped as polygons depicting their true shapes. Such

mapped landslide distributions can then be used to perform seismic

landslide hazard analysis and other quantitative analyses.

Because of the large area throughout which the Wenchuan

earthquake triggered landslides, it is impossible to perform detailed

fieldmapping on every landslide. Instead, the location and boundary

of each landslide was delineated by computer screen-based visual

interpretation of high-resolution color aerial photographs and satel-

lite remote sensing images, and some landslides were verified by

field checking. Due to the high resolution of the true color aerial

photographs and satellite remote sensing images, almost all the

Wenchuan earthquake-triggered landslides, including the small

slope failures, were detected. A spatial distribution map of the

earthquake-triggered landslides was prepared in a GIS platform.

Up to 197,481 landslides triggered by the earthquake were delineated

as individual solid polygons. Furthermore, two types of landslide

point inventories were constructed, including landslide centroid

points similar to Dai et al. (2011) and landslide top points similar to

Qi et al. (2010) and Gorum et al. (2011). Therefore, we compiled three

(nearly) complete inventories of landslides triggered by the 2008

Wenchuan earthquake on a GIS platform. As demonstrated in

Fig. 1, the results indicate that the earthquake triggered 197,481

landslides throughout an approximately limited area of more than

110,000 km2. The total surface area of these landslides was approx-

imately 1,160 km2. According to the empirical relationship between

the total area affected by landslides and the Richter earthquake

magnitude (Keefer 1984; Rodriguez et al. 1999), an earthquake in

Ms 8.0 corresponds to approximately 100,000 km2 of the upper limit

landslide-affected area value. Therefore, the 2008 Ms 8.0 Wenchuan

earthquake was slightly beyond the upper band of this prediction.

In the approximately limited area but far away from the

Yingxiu-Beichuan fault, there are a few landslides and a lack of

high-resolution satellite images. The landslides that occurred in

these areas were too small and rare to identify objectively. Therefore,

we selected a smaller area than the approximate limited area of the

landslides around the coseismic surface fault ruptures as the study

area (Fig. 2). The study area covers approximately 44,031 km2. In

total, 196,007 landslides, with a total area of 1,150.622 km2, occurred

in the study area. The study area ranges from 452.9 to 6,245.4 m in

elevation over an area of approximately 44,031 km2. The natural
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Fig. 1 Distribution of coseismic surface ruptures (white lines) and earthquake-triggered landslides (red polygons) triggered by the 2008 Wenchuan earthquake. A the

Yingxiu-Beichuan coseismic surface rupture, B the Guanxian-Jiangyou coseismic surface rupture, C the Xiaoyudong coseismic surface rupture

Fig. 2 Pre- and post-earthquake remote sensing image coverage. a Pre-earthquake; b post-earthquake
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Table 1 Remote sensing images data index table

ID Sensor Acquisition date Resolution (m) Production ID or name

Post-earthquake

1 Airphoto 2008-05 1, 2, 5

2 Airphoto 2008-06-13 2.4

3 SPOT5 2008-05-15 2.5 Missing

4 SPOT5 2008-05-15 2.5 Missing

5 SPOT5 2008-05-15 2.5 Missing

6 SPOT5 2008-05-16 2.5 Missing

7 SPOT5 2008-05-16 2.5 Missing

8 SPOT5 2008-05-16 2.5 Missing

9 SPOT5 2008-05-16 2.5 Missing

10 SPOT5 2008-06-04 2.5 Fusion-261286-080604

11 SPOT5 2009-06-03 2.5 2602862009060320120508000717

12 SPOT5 2009-05-20 2.5 2592882009052020120507114100

13 SPOT5 2009-05-20 2.5 2592872009052020120507114041

14 SPOT5 2009-05-20 2.5 Missing

15 CBERS02B 2008-05-16 19.5 876411

16 CBERS02B 2009-09-21 19.5 949728

17 CBERS02B 2010-01-24 19.5 1103161

18 CBERS02B 2008-11-10 19.5 611641

19 CBERS02B 2008-06-27 19.5 430088

20 CBERS02B 2008-06-27 19.5 430089

21 CBERS02B 2008-06-27 19.5 430090

22 CBERS02B 2008-06-27 19.5 444597

23 CBERS02B 2008-11-27 19.5 635012

24 CBERS02B 2009-02-13 19.5 733872

25 CBERS02B 2009-02-10 19.5 208424

26 CBERS02B 2008-09-04 19.5 157592

27 CBERS02B 2009-04-29 19.5 222402

28 CBERS02B 2009-02-10 19.5 379415

29 CBERS02B 2009-02-10 19.5 208423

30 CBERS02B 2008-12-23 19.5 195239

31 IKONOS 2008-07-01 1 2008070104115830000011619801

32 IKONOS 2008-05-23 1 2008052303514730000011605286

33 IKONOS 2008-05-23 1 2008052303513600000011605290

34 IKONOS 2008-06-28 1 2008062804023290000011616350

35 IKONOS 2008-06-28 1 2008062804022210000011616349

36 ASTER 2008-06-01 15 AST14DMO_00306012008035043_20081216080647_17451

37 ASTER 2008-06-01 15 AST14DMO_00306012008035034_20081216080656_17926

38 ASTER 2008-06-01 15 AST14DMO_00306012008035025_20081216080706_17979

39 ASTER 2008-07-10 15 AST14DMO_00307102008035653_20081216080706_17991

40 ASTER 2008-05-23 15 AST14DMO_00305232008035718_20081216080706_17997

41 ASTER 2008-05-16 15 AST14DMO_00305162008035020_20081216080716_18141

42 ASTER 2008-05-16 15 AST14DMO_00305162008035029_20081216080716_18144

43 ASTER 2008-05-16 15 AST14DMO_00305162008035011_20081216080716_18148
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Table 1 (continued)

ID Sensor Acquisition date Resolution (m) Production ID or name

44 ASTER 2008-05-16 15 AST14DMO_00305162008035047_20081216080727_18339

45 ASTER 2008-06-17 15 AST14DMO_00306172008035018_20081216080738_18933

46 ASTER 2008-07-10 15 AST14DMO_00307102008035644_20081216083230_26664

47 ASTER 2008-12-08 15 AST14DMO_00312082008040342_20081216083321_27056

48 ASTER 2008-12-08 15 AST14DMO_00312082008040333_20081216083322_27065

49 ASTER 2008-11-15 15 AST14DMO_00311152008035703_20081216083321_27068

50 ASTER 2008-08-04 15 AST14DMO_00308042008035020_20081216083332_27188

51 ASTER 2008-07-26 15 AST14DMO_00307262008035724_20081216083342_27256

52 ASTER 2008-07-17 15 AST14DMO_00307172008040245_20081216083402_27355

53 ASTER 2008-07-10 15 AST14DMO_00307102008035636_20081216083402_27361

54 ASTER 2008-07-17 15 AST14DMO_00307172008040236_20081216083402_27371

55 ASTER 2008-07-10 15 AST14DMO_00307102008035627_20081216083402_27373

56 ASTER 2008-12-10 15 AST14DMO_00312102008035055_20081216083311_26906

57 IRS-P5 2008-06-03 2.5 200806032902

58 IRS-P5 2008-06-03 2.5 200806032802

59 QuickBird 2008-06-03 0.6 08JUN03041541-S2AS_R05C1-052017323010_01_P001

60 QuickBird 2008-06-03 0.6 08JUN03041541-S2AS_R05C2-052017323010_01_P001

61 QuickBird 2008-09-01 2.4 08SEP01041602-M2AS-052099005020_01_P001

62 ALOS 2008-06-04 2.5 ALPSMB125753025

63 ALOS 2008-06-04 2.5 ALPSMF125752920

Pre-earthquake

1 SPOT5 2005-02-10 2.5 SPOT5-261-287-20050210-fusion

2 SPOT5 2005-08-15 2.5 SPOT5-260-288-20050815-fusion

3 SPOT5 2005-08-15 2.5 SPOT5-260-289-20050815-fusion

4 SPOT5 2005-11-01 2.5 SPOT5-259-286-20051101-fusion

5 SPOT5 2005-11-11 2.5 SPOT5-258-290-20051111-fusion

6 SPOT5 2006-12-01 2.5 SPOT5-259-287-20061201-fusion

7 SPOT5 2007-09-18 2.5 SPOT5-256-287-20070918-fusion

8 SPOT5 2008-01-05 2.5 SPOT5-258-289-20080105-fusion

9 SPOT5 2008-01-05 2.5 SPOT5-256-285-20080105-fusion

10 SPOT5 2005-05-09 2.5 52592880505090348341B

11 SPOT5 2005-05-09 2.5 52592880505090348341A

12 SPOT5 2005-11-07 2.5 52592870511070345371J

13 SPOT5 2005-12-03 2.5 52602880512030345112J

14 SPOT5 2006-01-28 2.5 52592880601280408441A

15 SPOT5 2006-08-09 2.5 52582900608090358051A

16 SPOT5 2006-09-05 2.5 52622840609050338001J

17 SPOT5 2006-11-10 2.5 52602850611100408531J

18 SPOT5 2006-11-10 2.5 52602860611100409021J

19 SPOT5 2007-03-20 2.5 52592860703200408062J

20 SPOT5 2007-03-21 2.5 52622860703210348471J

21 SPOT5 2007-05-06 2.5 52602870705060403402J

22 SPOT5 2007-12-06 2.5 52592850712060345201A

23 ETM+a 1999–2003 15 N-48-30, throughout the study area

a http://datamirror.csdb.cn/mosaicMetaData.lan?mosaicId0N-48-30
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slopes in this area are steep, with an average slope angle of 29.2°. In

the study area, as shown in Fig. 1, 196,007 landslides, with a total area

of 1,150.622 km2, were triggered by the 2008 Wenchuan earthquake.

LAP01,150.622 km2 / 44,031.130 km2×100 %02.613 %, and LND0

196,007 landslides / 44,031.130 km2
04.452 landslides/km2. The LAP

and LND of the study area are 2.613 % and 4.452 landslides/km2,

respectively. These landslides are concentrated along the coseismic

surface fault rupture, and most of the landslides occurred on the

hanging wall.

Landslide size and landslide density maps

Landslide size

The relationship of the cumulative landslide number and the

landslide area related to the 2008 Wenchuan earthquake can be

represented as the logarithm of the number N of landslides ex-

ceeding a given area A and is linearly related to the area as

described in Formula 1:

lgNðAÞ ¼ aþ bA ð1Þ

where N(A) represents the cumulative number of landslides which

area is larger than or equal to A, and a and b are constants. As A is

measured on a logarithmic scale, this relationship is a straight line on

a “lg to lg” scale. In Fig. 3, the cumulative number of landslides is

plotted as a function of area. Landslides with areas between 10,000

and 1,000,000 m2 are defined by the equation lg N ¼ �2:0745Aþ 13,

with R2
00.9931. For small areas, the curve bends toward the horizon-

tal, as small landslides would overlap with large landslides, or perhaps,

it is more difficult to obtain a detailed sample for small landslides.

Landslide density maps

Figure 4 presents the landslide area and LND grid cell maps

related to the Wenchuan earthquake. The landslide area and num-

ber density (centroid) maps were produced in 1 km×1 km calcu-

lation windows for the study area. Figure 4a indicates that the

maximum landside density of LAP is 100 %, and Fig. 4b indicates

that the largest LND value is 281 landslides/km2, demonstrating a

dense landslide distribution. This figure also reveals that the land-

slides were primarily concentrated along the Yingxiu-Beichuan

surface fault rupture, and most of the landslides occurred on the

hanging wall. The highest landslide density area appears in areas

near the Yingxiu-Beichuan fault on the hanging wall of the south-

west segment (from Yingxiu Town to Beichuan County) of the

Yingxiu-Beichuan fault.

Furthermore, correlations between the area distribution and

LAP and LND were also constructed. Table 2 provides detailed

data on the classes of LAP and LND (centroid) and the area

distribution. Figure 5 presents the correlation curves of LAP and

LND (centroid) with area distribution. According to Fig. 5a, the

area–LAP relationship for the landslides triggered by the Wenchuan

earthquake can be represented by y061918e−0.9574x, R2
00.9725, where

y is the area and x is the LAP value. For the LND values (Fig. 5b),

there is no data for the ranks of 240–270 (class 10); thus, the math-

ematical relationship is not obvious. However, we observe that there

is a power relationship between the area, and the LAP and LND

(Fig. 5b, between classes 1 and 9) values.

Spatial analysis of landslides with controlling parameters

Multivariate statistical methods (e.g., logistic regression, artificial

neural network, and support vector machine) are time-consuming

and require complex calculations. These methods are not suitable

for large areas such as the 2008 Wenchuan earthquake-triggered

landslide affected area. Therefore, the bivariate statistics method

was selected in this study. However, multivariate statistical

methods are more advanced than the bivariate statistical method

for factors that are conditionally independent of one another (Xu

et al. 2013b). The Wenchuan earthquake provides a good opportu-

nity to study the distribution and effects of landslides triggered by

earthquakes on a thrust-strike fault.

Landslide occurrence in an earthquake-struck area is a func-

tion of various internal and external dynamic impact factors (Dai

et al. 2011), such as slope angle, slope aspect, lithology, distance

from the earthquake source, PGA, and coseismic surface displace-

ment. The following correlation analysis of the landslide distribu-

tion was performed for the 196,007 landslides triggered by the

Wenchuan earthquake, using three indexes of one type of LAP

and two types of LND (LND-centroid and LND-top). In the LND

analysis, the centroid of the landslides was used to represent the

corresponding landslides. These values were extracted from the

Fig. 3 Curve depicting correlation between the cumulative landslide number and the landslide area
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landslide polygons using the same procedure as Dai et al. (2011), in

which no weight is assigned to account for differences in landslide

volumes. Furthermore, another inventory of landslide points,

identified by the top position of the landslide scar, similar to the

procedure used by Qi et al. (2010) and Gorum et al. (2011), is also

plotted for further LND analysis.

The analysis was performed using the digital geological map

compiled from 1:200,000 scale standard geological maps (from

China Geological Survey Bureau) and digital topographical maps

with a scale of 1:50,000 (from the National Administration of

Surveying, Mapping and Geoinformation). The digital elevation

model (DEM) has a resolution of 20 m×20 m and is constructed

by implementation of 1:50,000 scaled topographical map contour

lines, contour points, and drainages using GIS software. Some

topographical, geological, and seismic parameters, including ele-

vation, slope angle, slope aspect, slope position, slope curvature,

lithology, distance from the epicenter, seismic intensity, distance

from the Yingxiu-Beichuan surface fault rupture, PGA, and

coseismic surface displacements (horizontal, vertical, and total

displacements) were selected for the following landslide spatial

analysis.

Correlations with topographical parameters

Five topographical parameters, elevation, slope angle, slope aspect,

slope curvature, and slope position, were used for correlation with

landslide occurrence. The respective classifications of the five

layers are indicated below Figs. 6 and 7. Figure 6a presents the

LAP, LND-centroid, and LND-top values in relation to the eleva-

tion. Area distributions of the 24 elevation classifications are also

presented in Fig. 6a. The highest LAP, LND-centroid, and LND-top

values are observed to occur at elevations from 1,200 to 3,000 m

(classes 5–13). For a landslide, the elevation of the top point is

Fig. 4 Density maps of LAP and LND. a LAP density map; b LND density map. The coseismic surface ruptures were also shown in Fig. 1

Table 2 Area distribution with LAP and LND values

Classes of LAP (%) Area (km2) Classes of LND (landslides/km2) Area (km2)

(1): 0 26,124 (1): 0 26,941

(2): 0–10 14,461 (2): 0–30 15,281

(3): 10–20 1,575 (3): 30–60 1,482

(4): 20–30 858 (4): 60–90 269

(5): 30–40 516 (5): 90–120 39

(6): 40–50 310 (6): 120–150 19

(7): 50–60 128 (7): 150–180 4

(8): 60–70 59 (8): 180–210 4

(9): 70–80 5 (9): 210–240 1

(10): 80–90 3 (10): 240–270 0

(11): 90–100 2 (11): 270–281 1
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higher than that of the centroid point. Therefore, compared with

the curve of LND-centroid values, the curve of the LND-top values

is at higher elevation.

The slope angle, slope aspect, and slope curvature were

extracted based on the DEM at 20 m×20 m resolution. The slope

angle was reclassified at intervals of 5°. The slope angle is known to

have a significant effect on landslide occurrence. Steeper and

higher slopes have higher susceptibility for landslide occurrence,

even when the slope failure is not triggered by an earthquake. As

demonstrated in Fig. 6b, both the LAP and LND values generally

increase with the slope angle, but slopes exceeding 35° (classes 8–

13) are more susceptible to landsliding. Furthermore, the area

distributions of the 13 slope angle classifications are also presented

in Fig. 6b. The largest area is distributed from 30 to 40° (classes 7

and 8). In addition, Fig. 6b also demonstrates that the curve of the

LND-centroid values has higher slope angle. In other words, the

LND-centroid values of those slopes exceeding 40° (classes 9–13)

are higher than the LND-top values. This result implies that part of

the landslides occurred on the mountain peak. Although the ele-

vation of these locations is higher, the slope angle is relatively low.

The highest LAP and LND values are also observed for such slopes

exceeding a 60° angle (class 13). The LAP and LND values are as

high as 17.871 %, and 15.510 and 13.598 landslides/km2, respectively,

as the slope angle exceeds 60°.

The slope aspect is defined as the direction of the maximum

slope of the terrain surface and is related to factors such as

exposure to sunlight, drying winds, rainfall (degree of saturation),

and discontinuities, which may control landslide occurrence

(Yalcin 2008). The slope aspect may also have an effect on

landsliding because it is related to factors such as directional PGAs

(Dai et al. 2011). In addition, the slope aspect of landslide occur-

rence is perhaps affected by the slipping orientations of the

seismogenic fault. The slope aspect was divided into nine classes

for the study, including flat, N, NE, E, SE, S, SW, W, and NW. Area

distributions of the nine slope aspect classifications are presented

in Fig. 6c. The figure also indicates that the eastern, southeastern,

and southern directions (classes 4, 5, and 6) were the preferred

orientations of landslide-occurring slopes. The main direction

roughly corresponded to the thrust direction of the hanging wall.

A significant effect of the direction of the hanging wall thrust

movement and the seismic wave propagation was observed.

Slope position could also be a controlling factor of landslide

occurrence. Landscapes can be classified into discrete slope posi-

tions, including ridge, upper slope, middle slope, flat slope, lower

slope, and valley (Weiss 2006). The slope position layer is also

extracted from DEM at 20 m×20 m resolution based on the GIS

platform. Area distributions of the six slope position classifica-

tions are presented in Fig. 6d. Both the LAP and LND values

(Fig. 6d) exhibit obscure correlations with slope position. Perhaps

the reason for these obscure correlations is that two contradictory

parameters, seismic wave amplification and distance from drain-

ages, affect landslide occurrence. The undercutting action of the

river may trigger instability of the slopes. Thus, the distance of a

landslide from drainages was considered as a controlling factor of

earthquake-triggered landslides. The slope position effect on land-

slide occurrence is based on other factors. Perhaps different basin

evolution stages have different slope position effects. Even so, the

flat slope class (class 4) occupies the special lowest LAP and LND

values.

In terms of the slope curvature, negative curvatures represent

concave surfaces, a zero curvature represents a flat surface, and

positive curvatures represent convex surfaces (Pradhan et al.

2010). The classifications of slope curvature are presented in

Fig. 7. Area distributions of the 12 slope curvature classifications

Fig. 5 Correlation curves of LAP, LND with area distribution. a LAP; b LND (centroid)

Landslides 11 & (2014) 449



are presented in Fig. 7a. Correlations between this classification

and the LAP, LND-centroid, and LND-top values are also displayed

in Fig. 7a. As the slope curvature values move further away from

zero, the susceptibility to landsliding is observed to increase.

Rugged slope (both concave and convex slopes) failures occur

during strong ground shocking. This interesting phenomenon

has received little attention in earthquake-triggered landslide spa-

tial distribution statistical analysis. Another phenomenon is of

interest, which involves the higher LND-centroid values compared

with the LND-top values for concave slopes (classes 1–6). In turn,

for convex slopes, the LND-top values are higher than the LND-

centroid values (classes 9–12). In our opinion, the top point of a

landslide tends to be on a mountain peak, which represents a

convex slope. Therefore, the curve of LND-top values tends to

have positive curvatures. Figure 7b presents another classification

for slope curvature. Absolute values of the curvature were used in

Fig. 6 Relationships between landslide occurrence and topographic parameters. a
Elevation: 1 <600 m, 2 600–800 m, 3 800–1,000 m, 4 1,000–1,200 m, 5 1,200–1,400
m, 6 1,400–1,600 m, 7 1,600–1,800 m, 8 1,800–2,000 m, 9 2,000–2,200 m, 10 2,200–
2,400 m, 11 2,400–2,600 m, 12 2,600–2,800 m, 13 2,800–3,000 m, 14 3,000–3,200 m,
15 3,200–3,400 m, 16 3,400–3,600 m, 17 3,600–3,800 m, 18 3,800–4,000 m, 19 4,000–

4,200 m, 20 4,200–4,400 m, 21 4,400–4,600 m, 22 4,600–4,800 m, 23 4,800–5,000 m,
and 24 >5,000 m. b Slope angle: 1 0–5°, 2 5–10°, 3 10–15°, 4 15–20°, 5 20–25°, 6
25–30°, 7 30–35°, 8 35–40°, 9 40–45°, 10 45–50°, 11 50–55°, 12 55–60°, and 13 >60°.
c Slope aspect: 1 flat, 2N, 3 NE, 4 E, 5 SE, 6S, 7 SW, 8W, and 9 NW. d Slope position: 1
ridge, 2 upper slope, 3 middle slope, 4 flat slope, 5 lower slope, and 6 valley

Original Paper

Landslides 11 & (2014)450



Fig. 7b, which reveals that landslide occurrence is more difficult as

flat slopes are approached. In addition, area distributions of the six

slope curvature classifications are also presented in Fig. 7b.

Correlation with lithology

To investigate the relationship between lithology and landslides, a

geological map on a scale of 1:200,000 from China Geological

Survey was used to provide information on lithology of the study

area. Lithology is widely recognized to play an important role in

determining landslide hazard because different geological units

have different susceptibilities to landslide occurrence, even when

the slope failure is not triggered by an earthquake. Lithological and

structural variations often lead to a difference in the strength and

permeability of rocks and soils. In the study area, the lithology was

divided into 20 categories (as indicated in Table 3). Area distribu-

tions of the 20 lithology classifications are presented in Fig. 8. The

lithology map in vector format was converted into raster format at

20 m×20 m resolution using GIS software. As demonstrated by the

LAP and LND values in Fig. 8, sandstone and siltstone (Z) (class

17) have the most concentrated landslide activity with 12.490 % for

the LAP and LND values of 19.147 and 18.996 landslides/km2,

respectively. The class 20 of granitic rocks has slightly lower LAP

and LND values, 12.385 %, and 18.675 and 18.681 landslides/km2,

respectively. Furthermore, sandstone, siltstone, chert, and slate (Є)

(class 16) follows, with one LAP and two LND values, 11.143 %, and

12.151 and 12.186 landslides/km2, respectively. In addition, although

limestone (T), and schist and andesite (PZ) (classes 4 and 19)

exhibit lower LAP values (5.972 and 8.616 %), higher LND values

(12.647 and 12.841 landslides/km2, respectively, for class 4 and

13.092 and 13.176 landslides/km2, respectively, for class 19) can be

observed.

Correlations with seismic parameters

The correlations between landslide occurrences and earthquakes

were investigated using five different seismic parameters: (1) dis-

tance from coseismic fault ruptures (Xu et al. 2008b, 2009b,

2009c), (2) distance from the epicenter, (3) PGA, (4) seismic

intensity, and (5) coseismic horizontal surface displacement,

coseismic vertical surface displacement, and coseismic total sur-

face displacement (De Michele et al. 2010; Wang et al. 2011; Shen et

al. 2009). According to the empirical relationships between max-

imum epicentral distance, maximum distance to fault plane pro-

jection, and Richter earthquake magnitude (Keefer 1984;

Rodriguez et al. 1999), a Ms 8.0 earthquake corresponds to ap-

proximately 400 km for the upper limits of both the maximum

epicentral distance and maximum distance to the fault plane

projection. Therefore, the maximum epicentral distance (approx-

imately 400 km) related to the 2008 Ms 8.0 Wenchuan earthquake

is equal to the upper value from the statistical result using other

earthquake cases from Keefer (1984) and Rodriguez et al. (1999).

The maximum distance to the fault plane projection (approxi-

mately 200 km) related to the 2008 Ms 8.0 Wenchuan earthquake

is less than the upper value from the statistical result using other

earthquake cases from Keefer (1984) and Rodriguez et al. (1999).

In general, there was a good correlation between the distance

from the main surface ruptures and the spatial distribution pat-

terns of earthquake-triggered landslide. The Yingxiu-Beichuan

fault rupture, the major surface rupture, was used to construct

Fig. 7 Relationships between landslide occurrence and slope curvature. a Consider
the sign of slope curvature: 1<−2, 2–2 to−1, 3–1 to−0.5, 4–0.5 to −0.2,

5–0.2 to−0.1, 6–0.1 –0, 7 0 –0.1, 8 0.1 –0.2, 9 0.2 –0.5, 10 0.5 –1, 11 1 –2,

and 12 >2. b Ignore the sign of slope curvature: 1<−2 and >2, 2–2 to−1 and 1 –2,

3–1 to−0.5 and 0.5 –1, 4–0.5 to−0.2 and 0.2 –0.5, 5–0.2 to−0.1 and 0.1 –0.2, and
6–0.1 –0.1
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the correlation between landslide occurrences and the major sur-

face. For the distance from the surface fault rupture, compared

with the buffer distance of epicenter, a lower buffer distance of

2 km was selected to construct the buffer map (Fig. 9a). There are

48 classes of distance from the Yingxiu-Beichuan fault on a hang-

ing wall and 22 classes on a footwall. Area distributions for clas-

sifications of distance from the main surface fault rupture are

indicated in Fig. 10a and b, respectively. In addition, Fig. 10a

illustrates the variations of the LAP and LND values with distance

from the Yingxiu-Beichuan fault. As demonstrated in Fig. 10a, the

highest LAP and LND values are adjacent to the fault, with values

decreasing rapidly as the distance is increased. The LAP and the

two types of LND values are as high as 10.261 %, and 17.645 and

17.579 landslides/km2, respectively, within 2 km of the Yingxiu-

Fig. 8 Relationships between landslide occurrence and lithology. 1 Unconsolidated
deposits (Q), 2 conglomerate, sandstone, siltstone, shale, and mudstone (K~N), 3
sandstone and siltstone interbedded with shale, claystone, and siltstone intercalated

with sandstone, conglomerate (J), 4 limestone (T), 5 sandstone, siltstone interbedded
with phyllite, shale, mudstone, phyllite, and siltstone (T), 6 limestone and shale (P), 7
limestone (P), 8 limestone, phyllite, and basalt (C-P), 9 limestone (C), 10 limestone,

slate, phyllite, and sandstone (C), 11 limestone and sandstone (D), 12 phyllite

and limestone (D), 13 phyllite, slate, sandstone, siltstone, and limestone (S), 14 phyllite,
schist, slate, sandstone, and limestone (S), 15 limestone, marl, and slate (O),

16 sandstone, siltstone, chert, and slate (Є), 17 sandstone and siltstone (Z),

18 quartz sandstone, feldspathic sandstone, phyllite, slate, and metamorphic

sandstone (PZ), 19 schist and andesite (PZ), 20 granitic rocks

Table 3 Geologic unit and descriptions in the study area

No. Geologic
unit

Description of lithology Area (km2) Ls area
(km2)

LAP
(%)

1 Q Unconsolidated deposits 3,494.455 7.132 0.204

2 K~N Conglomerate, sandstone, siltstone, shale, and mudstone 1,222.606 0.513 0.042

3 J Sandstone and siltstone interbedded with shale, claystone and siltstone
intercalated with sandstone, conglomerate

1,810.815 4.501 0.249

4 T Limestone 299.518 17.888 5.972

5 T Sandstone, siltstone interbedded with phyllite, shale, mudstone, phyllite,
and siltstone

10,102.104 80.295 0.795

6 P Limestone and shale 333.997 18.820 5.635

7 P Limestone 698.298 37.589 5.383

8 C-P Limestone, phyllite, and basalt 1,145.921 12.835 1.120

9 C Limestone 215.597 11.366 5.272

10 C Limestone, slate, phyllite, and sandstone 22.724 0.003 0.014

11 D Limestone and sandstone 1,158.133 45.469 3.926

12 D Phyllite and limestone 3,873.044 57.398 1.482

13 S Phyllite, slate, sandstone, siltstone, and limestone 1,083.450 14.948 1.380

14 S Phyllite, schist, slate, sandstone, and limestone 6,902.662 119.284 1.728

15 O Limestone, marl, and slate 332.812 5.347 1.607

16 Є Sandstone, siltstone, chert, and slate 856.737 95.470 11.143

17 Z Sandstone and siltstone 583.237 72.848 12.490

18 PZ Quartz sandstone, feldspathic sandstone, phyllite, slate, and metamorphic
sandstone

5,366.958 11.626 0.217

19 PZ Schist and andesite 623.947 53.757 8.616

20 Granitic rocks 3,904.1152 483.5336 12.385
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Beichuan surface fault rupture. Landslides at distances greater

than 30 km were rare.

In addition, to compare the differences of the LAN and LND

values for the hanging wall and the footwall, the LAP and LND

values were calculated for both sides of the Yingxiu-Beichuan

surface fault rupture (Fig. 10b). Most of the landslides (146,708

landslides, 74.86 % of the total landslide number, and these land-

slides composed an area of 924.089 km2, 80.31 % of the total

landslide area) occurred on the hanging wall. Similar to our

previous statistical results (Dai et al. 2011), the landslides were

concentrated on the hanging wall of the Yingxiu-Beichuan surface

fault rupture. The highest LAP and LND values occurred along the

rupture on both the hanging wall and the footwall. The LAP and

LND values were as high as 13.391 %, and 22.117 and 22.117 land-

slides/km2, respectively, within 2 km of the fault rupture on the

hanging wall. On the footwall, within 2 km of the fault rupture,

these values were 7.106 %, and 13.136 and 13.005 landslides/km2,

respectively. Furthermore, the LAP and the two LND values de-

creased rapidly as the distances increased for both the hanging

wall and the footwall. In summary, the LAP and two LND values

exhibit strong correlations with distance from the Yingxiu-

Beichuan surface fault ruptures.

As indicated in a previous paper (Dai et al. 2011), the correla-

tion between landslide occurrence and distance from the epicenter

is complicated; nevertheless, there is a lack of landslide data near

the epicenter. In this paper, the LAP and LND values were deter-

mined for a sequence of 5-km-wide concentric bands extending

outward from the source (Fig. 9b). The outer bands were truncated

where they intersected the study area boundary. There are 60

classes of distance from the epicenter. Figure 11a illustrates the

Fig. 9 Distribution maps of seismic parameters of the 2008 Wenchuan earthquake. a 2-km bands for classifying distance from the Yingxiu-Beichuan surface fault rupture;

b 5-km bands for classifying distance from epicenter; c distribution map of PGA; d seismic intensity map
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variations in the LAP and two LND values with distance from the

epicenter and presents the area distributions of the 60 classifica-

tions. The highest LAP and LND values are observed near the

epicenter. The LAP and two LND values are as high as 17.982 %,

and 60.148 and 59.995 landslides/km2, respectively, within 5 km of

the epicenter. Furthermore, both the LAP and LND values decrease

rapidly as the distances increase.

In general, there was a good correlation between the distribu-

tion of earthquake-triggered landslides and ground shaking. The

US Geological Survey (2008) created a PGA map based on the peak

ground motion amplitudes recorded on seismic sensors (acceler-

ometers), with interpolation based on both estimated amplitudes

where data are lacking, and site amplification corrections (Dai et

al. 2011). Most of the study area experienced high levels of ground

shaking during the Wenchuan earthquake. A regional contour

map of PGA from USGS (2008) indicated PGA values from 0.12

to 1.30 g in the study area (Fig. 9c). There are 31 classes of PGA

values (as shown in Fig. 11). Figure 11b illustrates the correlations of

the LAP and two LND values with PGA. In addition, the area

distribution of the 31 PGA classes is also presented in Fig. 11b.

Surprisingly, there is no clear trend between the LAP and two LND

values, and the PGA values. The area distribution of the PGA

classes resulted in a seemingly irregular pattern between landslide

occurrence and the PGA values. In fact, the PGA values exceeding

0.88 g (classes of 20–31) only cover 383.026 km2, or approximately

0.87 % of the total study area. The area is too small to obtain

objective statistical results. For PGA values of 0.12–0.84 g (classes

1–19), increasing PGA values show a positive correlation with

increasing LAP and LND values. The LAP and two LND values

are as high as 15.635 %, and 21.09 and 21.11 landslides/km2, respec-

tively, within the area of PGA values equal to 0.84 g (Fig. 11b). The

LAP and LND values increase rapidly with an increase in the PGA

values within the range of 0.12–0.84 g. Abnormal slightly higher

LAP and LND values are observed at 0.68 g (class 15) for the PGA.

We can conclude that the LAP and LND values increase with

increasing PGA values.

The seismic intensity map was produced by the China Earth-

quake Administration (CEA) (Fig. 9d), and the classes of seismic

intensity in the study area include VII, VIII, IX, X, and XI. Figure 11c

presents the variations of the LAP and LND values with the seismic

intensity and the area distributions of the VII, VIII, IX, X, and XI

intensity zones. As expected, both the LAP and two LND values

increase as the seismic intensity grades increase, with the highest

values occurring where the seismic intensity is XI. The LAP and two

LND values are as high as 17.852 %, and 28.487 and 28.489 landslides/

km2, respectively, within the XI intensity district (Fig. 11c).

Synthetic aperture radar (SAR) technology provides us with a

good opportunity to determine the correlation between landslide

occurrence and coseismic surface displacement. De Michele et al.

(2010) combined C- and L-band SAR offset data from ascending and

descending tracks to invert the 3-D surface displacement in the near

coseismic field of the Wenchuan earthquake. Their data, coupled

with a simple elastic dislocation model, provide new results that

strongly suggest the presence of a blind thrust striking along the

range front and being active at depths during the earthquake. Fur-

thermore, Wang et al. (2011) produced 38 stations of continuous GPS

data, 435 sites of campaign GPS data, and 33 sites of triangulation

sites, resurveyed with GPS after the earthquake. In addition, Shen et

al. (2009) produced 158 GPS data. These ground-based measure-

ments of surface displacement for the 2008 Wenchuan earth-

quake were used to supplement the results from De Michele et al.

(2010). The area beyond the study area from De Michele et al. (2010)

Fig. 10 Relationships between landslide occurrence and distance from the Yingxiu-Beichuan surface fault rupture. a Statistics with hanging wall and footwall; b
respective hanging wall and footwall, 2-km intervals, 48 classes on the hanging wall, and 22 classes on the footwall
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is interpolated using the GPS data fromWang et al. (2011) and Shen et

al. (2009). Then, three surface displacement (horizontal, vertical, and

total) grid layers with 20m×20m resolution were constructed in the

ArcGIS platform. The classes of each layer are listed in Fig. 13. The

classification maps of surface displacement are presented in Fig. 12a,

b, and c. Figure 13a, b, and c show the LAP and two LND values for

the three surface displacement (horizontal, vertical, and total)

values and the area distribution of the classes of the three

surface displacement layers. Both of these figures reveal a

general correlation that the LAP and two LND values increase

with increasing coseismic surface displacement. However, sev-

eral abnormal LAP and LND values are observed in the

classes where the surface displacements exceed 3 m (classes

after 12). We consider the main reason for these abnormalities

to be the small area covered by these classes. For the other cases, it

appears that surface displacement exceeding 3 m is sufficient to

trigger landslides, and other factors may control landslide distribu-

tion in areas suffering high surface displacement.

Comparison of the effect of eight impact factors on landslides

A bivariate statistical method was selected to compare the effect of

eight impact factors on landslide occurrence. Eight impact factors

including slope angle, slope curvature, lithology, distance from the

epicenter, distance from the Yingxiu-Beichuan surface fault rup-

ture, PGA, seismic intensity, and coseismic surface displacement

were selected as the objects for comparison. We assume that the

eight factors are conditionally independent of one another for

earthquake-triggered landslides. Descending (landslide occur-

rence) cumulative curves of the cumulative percentage area of

ranks and the percentage of landslide occurrence (measured by

one LAP and two LNDs) were constructed. As described above,

there were continuous positive or negative correlations between

earthquake-triggered landslide occurrence and controlling factors,

including slope angle, slope curvature, distance from the epicenter,

distance from the Yingxiu-Beichuan surface fault rupture, PGA,

seismic intensity, and coseismic surface displacement. Therefore,

the cumulative curves of these factors are constructed from ranks

Fig. 11 Relationships between landslide occurrence and seismic parameters. a Distance
from epicenter, 5-km intervals, 60 classes; b PGA: 1 0.12 g, 2 0.16 g, 3 0.20 g, 4 0.24 g,
5 0.28 g, 6 0.32 g, 7 0.36 g, 8 0.40 g, 9 0.44 g, 10 0.48 g, 11 0.52 g, 12 0.56 g, 13 0.60 g,

14 0.64 g, 15 0.68 g, 16 0.72 g, 17 0.76 g, 18 0.80 g, 19 0.84 g, 20 0.88 g, 21 0.92 g, 22
0.96 g, 23 1.00 g, 24 1.04 g, 25 1.08 g, 26 1.12 g, 27 1.16 g, 28 1.20 g, 29 1.24 g, 30
1.28 g, 31 1.30 g. c Seismic intensity: 1 VII, 2 VIII, 3 IX, 4 X, 5 XI
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of the highest effect on landslide occurrence for the eight

factors. These ranks are the steepest slope angle rank (>60°,

class 60), the most rugged slopes base on curvature (<−2 and

>2, class 1), the nearest distance from the epicenter (<5 km,

class 1), the nearest distance from the Yingxiu-Beichuan sur-

face fault rupture rank (<2 km, class 1), the highest PGA value

(1.30 g, class 31), the maximum seismic intensity (XI, class 5),

and the largest coseismic total surface displacement (>5.5 m,

class 23). For the lithology, a discrete factor, orders of the 20

classes effect on landslide occurrence, was based on the LAP

and two LND values. The cumulative percentage area curves

for lithology are constructed by ordering from 1 to 20 the

LAP and two types of LND (as shown in Fig. 14). The area

under the cumulative curve (AUC) is used as the contrast

factor to compare the effects on landslide occurrence.

The comparison of the LAP and two LND AUC values, as

shown in Table 4, of the eight impact factors revealed that PGA

and seismic intensity have the most significant effects on earth-

quake-triggered landslides. The LAP and AUC values' descending

order of the eight impact factors are PGA > seismic intensity >

lithology > distance from the Yingxiu-Beichuan surface fault

rupture > surface displacement > slope angle > distance from

the epicenter > slope curvature. The two groups of LND AUC

values' descending order of the eight impact factors are seismic

intensity > PGA > distance from the Yingxiu-Beichuan surface

fault rupture > lithology > surface displacement > distance from

the epicenter > slope angle > slope curvature. The AUC values of

the LAP and two types of LND revealed a generally similar order

for the eight landslide controlling parameters. Seismic parame-

ters including the PGA and seismic intensity had the most signif-

icant effect on landslide occurrence, followed by the geologic

parameter (lithology). The topographical parameters, such as

slope angle and slope curvature, had minimal effect on the land-

slide concentration.

Fig. 12 Coseismic surface displacement maps. a Horizontal displacement; b vertical displacement; c total displacement
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Analysis and discussions

As stated by Keefer (2002) and Harp et al. (2011a), a highly

accurate and complete landslide inventory is an essential compo-

nent of seismic landslide hazard analysis. In the following text,

some qualitative comparisons between our results and previously

published results were made. In this paper, 196,007 landslides,

with an area of 1,150.622 km2, were used to perform seismic

landslide spatial analysis, which can be compared with the

56,000 landslides, with a total area of approximately 811 km2,

studied by Dai et al. (2011); the nearly 60,000 landslides studied

by Gorum et al. (2011); and the 11,306 landslides studied by Huang

and Li (2009). The number and area of the new (nearly) complete

landslide inventory is approximately 350 and 142 % of the results

from Dai et al. (2011), approximately 327 % of the results from

Gorum et al. (2011), and approximately 1,734 % of the results from

Huang and Li (2009) based on the number of landslides. Therefore,

there is a large difference between the new inventories and these

previously published papers, especially the point inventories. Huang

and Li (2009) produced the landslide inventory only for emergency

investigation. The inventory of landslides triggered by theWenchuan

earthquake fromDai et al. (2011) did not cover the entire earthquake-

triggered landslide affected area because some areas lacked (high-

resolution) remote sensing images. Therefore, in our opinion, these

landslide inventories are incomplete.

The LAP and two types of LND values in each class of all the

controlling parameters based on the new database were much higher

than the previous results (e.g., Dai et al. 2011; Gorum et al. 2011). A

detailed comparison of the relative relationship among different

Fig. 13 Relationships between landslide occurrence and surface displacement. a
Coseismic horizontal surface displacement: 1 0 –0.25 m, 2 0.25 –0.5 m, 3 0.5 –0.75 m,
4 0.75 –1 m, 5 1.0 –1.25 m, 6 1.25 –1.5 m, 7 1.5 –1.75 m, 8 1.75 –2.0 m, 9 2.0 –2.25
m, 10 2.25 –2.5 m, 11 2.5 –2.75 m, 12 2.75 –3.0 m, 13 3.0 –3.25 m, 14 3.25 –3.5 m, 15
3.5 –3.75 m, 16 3.75 –4.0 m, 17 4.0 –4.25 m, 18 >4.25 m. b Coseismic vertical surface
displacement: 1 0 –0.25 m, 2 0.25 –0.5 m, 3 0.5 –0.75 m, 4 0.75 –1 m, 5 1.0 –1.25 m,
6 1.25 –1.5 m, 7 1.5 –1.75 m, 8 1.75 –2.0 m, 9 2.0 –2.25 m, 10 2.25 –2.5 m, 11 2.5

–2.75 m, 12 2.75 –3.0 m, 13 3.0 –3.25 m, 14 3.25 –3.5 m, 15 3.5 –3.75 m, 16 3.75 –4.0
m, 17>4.0 m. c Coseismic total surface displacement: 1 0 –0.25 m, 2 0.25 –0.5 m, 3 0.5
–0.75 m, 4 0.75 –1 m, 5 1.0 –1.25 m, 6 1.25 –1.5 m, 7 1.5 –1.75 m, 8 1.75 –2.0 m, 9
2.0 –2.25 m, 10 2.25 –2.5 m, 11 2.5 –2.75 m, 12 2.75 –3.0 m, 13 3.0 –3.25 m, 14 3.25 –
3.5 m, 15 3.5 –3.75 m, 16 3.75 –4.0 m, 17 4.0 –4.25 m, 18 4.25 –4.5 m, 19 4.5 –4.75 m,
20 4.75 –5.0 m, 21 5.0 –5.25 m, 22 5.25 –5.5 m, 23 >5.5 m

Landslides 11 & (2014) 457



Fig. 14 Comparison of influence on landslide occurrence for five impact

factors. a Landslide area; b landslide centroid point number; c landslide top

point number. a slope angle, b slope curvature, c lithology, d distance from

epicenter, e distance from the Yingxiu-Beichuan surface fault rupture, f PGA,
g seismic intensity, h coseismic surface displacement

Table 4 Comparing of AUC values of landslide area and landslide number

Impact factors AUC for area order) AUC for number centroid (order) AUC for number top (order)

(A) Slope angle 72.391 (6) 68.867 (7) 67.764 (7)

(B) Slope curvature 61.325 (8) 60.257 (8) 61.495 (8)

(C) Lithology 81.919 (3) 78.865 (4) 78.961 (4)

(D) Distance from epicenter 70.400 (7) 71.748 (6) 71.742 (6)

(E) Distance from surface rupture 78.695 (4) 79.081 (3) 79.070 (3)

(F): PGA 84.887 (1) 81.528 (2) 81.529 (2)

(G): Seismic intensity 84.722 (2) 82.341 (1) 82.336 (1)

(H): Surface displacement 78.148 (5) 75.158 (5) 75.177 (5)
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classes of each controlling parameter was also performed. For the

relation between elevation and landslide occurrence, in this paper,

the most concentrated landslide areas were located between 1,200-

and 3,000-m elevation relatively compared with the 750 - to 1,500-m

elevation range cited in our original landslide inventory (Dai et al.

2011). In our opinion, this result occurred because there was no

landslide data in some areas around the epicenter. These areas are

mainly located at elevations between 1,000 and 3,000 m. In addition,

the distance from the epicenter is another obvious difference. Our

published paper (Dai et al. 2011) revealed a complex correlation

between landslide occurrence and the distance from the epicenter

of the earthquake, rather than a simple negative correlation, as

observed in other reported cases of earthquakes. In contrast, our

new results exhibit a good correlation between landslide occurrence

and distance from the epicenter, and both the LAP and two LND

values decrease rapidly as this distance increases. The statistical

results of lithology also show a significant difference; sandstone,

siltstone (Z), and granitic rocks exhibit the maximum LAP and

LND values from this study; carbonate and igneous rocks exhibit

the most landslide concentration according to Gorum et al. (2011);

and schist (PZ), sandstone, and siltstone intercalated with slate (Є)

exhibit the largest LAP and LND values according to our published

paper (Dai et al. 2011). In addition to these results, the statistical

results concerning other factors (e.g., slope angle, slope aspect, and

distance from the Yingxiu-Beichuan surface fault rupture) demon-

strate tendencies similar to those reported in other publications (Dai

et al. 2011; Gorum et al. 2011). The comparisons indicate that some of

the results obtained from analyzing incomplete landslide distribu-

tion data are not objective. Therefore, it is necessary and important

to produce a complete and detailed landslide inventory for subse-

quent seismic landslide studies.

Furthermore, Harp et al. (2011a) also considered the images

should ideally meet the following criteria: they (1) must be continu-

ous and span the entire landslide distribution, (2) must have a

resolution that allows identification of individual landslides as small

as a few meters across, (3) must have stereo coverage or be

able to be draped over a digital elevation model to obtain a

stereolike perspective view, and (4) must be as cloud-free as

possible and be acquired as soon as possible after the earth-

quake to capture the initial aspects of the landslides and the

terrain or infrastructure that they affect. Although a huge

number of 197,481 landslide polygons are present in our new

inventory, it is more appropriate considering that it is a

nearly complete landslide inventory rather than a strictly

complete inventory because large areas are affected by the

earthquake and a large number of landslides occurred. It is

very difficult to obtain a rigorously complete landslide inven-

tory following the landslide inventory criteria and mapping

criteria (Harp et al. 2011a) for several reasons such as: com-

mercially based satellite imagery with resolutions of less than 1 m is

often expensive, the rapid access to high resolution satellite imagery

in a large area several days after the earthquake is rather difficult, and

the weather is often cloudy in the Wenchuan earthquake struck area.

Therefore, strictly speaking, we have failed to obtain complete

coverage of landslide distributions triggered by the 2008

Wenchuan earthquake. In our opinion, the three landslide

inventories are nearly complete and sufficient to perform objective

seismic landslide spatial distribution and hazard analyses, as stated

in Harp et al. (2011a).

Conclusions

In conclusion, we mapped 197,481 landslide polygons from visual

interpretation of aerial photographs and satellite images and by

selected field verification. Three nearly complete inventories were

constructed, including landslide polygons, landslide centroid

points, and landslide top points. Density maps of the landslide

areas and numbers (centroid) were constructed. Most of the land-

slides were observed to be concentrated along the Yingxiu-

Beichuan surface fault rupture, and most of the landslides oc-

curred on the hanging wall. Landslide occurrence exhibits a con-

tinuous correlation (positive or negative) with slope angle, slope

curvature, distance from the epicenter and the Yingxiu-Beichuan

surface fault rupture, PGA, seismic intensity, and coseismic surface

displacement. The highest LAP and LND values occurred at ele-

vations ranging from 1,200 to 3,000 m. The landslides have pre-

ferred orientations, dominated by the eastern, southeastern, and

southern directions. The sandstone, siltstone (Z), and granitic

rocks experience more concentrated earthquake-triggered land-

slides. No obvious correlations were observed between LAP and

the two LND values, and the slope position. The results of the

bivariate statistical method for comparison of the effect of several

factors on landslide occurrence revealed the following descending

order of the 2008 Wenchuan earthquake-triggered landslide impact

factors: PGA > seismic intensity > lithology > distance from the

Yingxiu-Beichuan surface fault rupture > surface displacement >

slope angle > distance from the epicenter > slope curvature according

to the LAP values. According to the LND values, we observed that the

effect of the impact factors descended in the following order: seismic

intensity > PGA > distance from the Yingxiu-Beichuan surface fault

rupture > lithology > surface displacement > distance from the

epicenter > slope angle > slope curvature.
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