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THREE LIMIT CYCLES IN DISCONTINUOUS PIECEWISE

LINEAR DIFFERENTIAL SYSTEMS WITH TWO ZONES

JAUME LLIBRE1 AND ENRIQUE PONCE2

Abstract. In this paper we study a planar piecewise linear differential system
formed by two regions separated by a straight line so that one system has a
real unstable focus and the other a virtual stable focus which coincides with
the real one. This system was introduced by S.-M. Huan and X.-S. Yang
in [8] who numerically showed that it can exhibit 3 limit cycles surrounding
the real focus. This is the first example that a non–smooth piecewise linear
differential system with two zones can have 3 limit cycles surrounding a unique
equilibrium. We provide a rigorous proof of this numerical result.

1. Introduction and statement of the main result

The analysis of piecewise linear differential systems can be traced back to An-
dronov and coworkers [1] and still continues to receive attention by researchers.
Effectively, in recent years there has been an upsurge of interest from the math-
ematical community in understanding their dynamical richness, as such systems
are widely used to model many real processes and different modern devices, see
for instance [4] and references therein. Recently, they have been shown to be also
relevant as idealized models of cell activity, see [3, 11, 12].

The case of continuous piecewise linear systems, when they have only two lin-
earity regions separated by a straight line is the simplest possible configuration in
piecewise linear systems. We remark that even in this seemingly simple case, only
after a thorough analysis it was possible to establish the existence at most of one
limit cycle for such systems, see [6]. The reason for that misleading simplicity of
piecewise linear systems is twofold. First, even one can easily integrate solutions
in any linearity region, the time that each orbit requires to pass from a linearity
region to each other is unknown and so the matching of the corresponding solutions
is an intricate problem. Second, the number of parameters to consider in order to
be sure that one copes with all possible configurations is typically not small, so that
the achievement of efficient canonical forms with fewer parameters is crucial.

Discontinuous piecewise linear systems with only two linearity regions separated
by a straight line have been studied recently in [7, 8], among other papers. In [7]
some results about the existence of two limit cycles appeared, so that the authors
conjectured that the maximum number of limit cycles for this class of piecewise
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linear differential systems is exactly two. This conjecture is analogous to Conjec-
ture 1 in the discussion included in [11]. However, by considering a specific family
of discontinuous PWL differential systems with two linear zones sharing the equi-
librium position, in [8] strong numerical evidence about the existence of three limit
cycles was obtained. The example in [8] represents up to the best of our knowledge
the first non-smooth piecewise linear differential system with two zones with 3 limit
cycles surrounding a unique equilibrium. We will provide in this paper a rigorous
proof of the the existence of such 3 limit cycles.

The planar non-smooth piecewise linear differential system with two zones sep-
arated by a straight line corresponding to the example 5.1 of Huan and Yang in [8]
is

(1) Ẋ =

{
A+X if x ≥ 1,
A−X if x < 1,

where X = (x, y)T with

A+ =




19

500
− 1

10
1

10

19

500


 , and A− =




1 −5

377

1000
−13

10


 .

The dot denotes derivative with respect to the independent variable t, that we call
here the time. The point (0, 0) is a virtual unstable focus for the system Ẋ = A+X

and a real stable focus for the system Ẋ = A−X. Our main result is the following.

Theorem 1. The planar non–smooth piecewise linear differential system with two
zones (1) has 3 limit cycles surrounding its unique equilibrium point located at the
origin.

Theorem 1 is proved in section 2. For proving it we shall use ideas from the paper
[2]. The three limit cycles cross the line x = 1 and have alternating stabilities, see
Figure 1.

2. Proof of Theorem 1

The flow of system (1) enters to the half plane x > 1 through the half straight line
{(1, y) : y < 1/5}, and exits it through the half straight line {(1, y) : y > 19/50}.
Therefore if the system (1) has crossing periodic orbits (by concatenating orbits of
each linearity region) these must surround the segment {(1, y) : 1/5 ≤ y ≤ 19/50}.
This segment is the so-called sliding set where some dynamics could be defined
using the Filippov’s method, see [5]. In contrast to the crossing periodic orbits, we
note that periodic orbits using some part of the sliding set through the Filippov’s
dynamics (a situation not possible here) are called sliding periodic orbits.

To alleviate all the expressions in this proof, we start by making a rescaling in
time different for each zone, which amounts to multiply each matrix for an adequate
constant, namely 10 for the zone x > 1 and 4/3 for the zone x < 1. Thus we work
with a topologically equivalent system to system (1), where from now on we assume

A+ =




19

50
−1

1
19

50


 , and A− =




4

3
−20

3
377

750
−26

15


 .
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Figure 1. The three limit cycles surrounding the origin and hav-
ing different stabilities (stable in blue, unstable in red).

The solution (x+(t), y+(t)) of system Ẋ = A+X which pass through the point
(1, Y ) when the time t = 0 is

x+(t) = e19t/50 (cos t− Y sin t) ,

y+(t) = e19t/50 (Y cos t+ sin t) ,

and the solution (x−(t), y−(t)) of system Ẋ = A−X which pass through the point
(1, Y ) when the time t = 0 is

x−(t) =
1

15
e−t/5 (15 cos t− 100Y sin t+ 23 sin t) ,

y−(t) =
1

750
e−t/5 (750Y cos t− 1150Y sin t+ 377 sin t) .

Assume that for the point (1, Y ) with Y > 19/50 pass a periodic solution
(x+(t), y+(t)) ∪ (x−(t), y−(t)). Then if t+ > 0 is the smallest time such that
x+(−t+) = 1, and t− > 0 is the smallest time such that x−(t−) = 1, we have
that y+(−t+) = y−(t−) < 1/5. Hence a periodic solution of system (1) is charac-
terized by a solution (t+, t−, Y ) of the system

(2)
f1(t

+, t−, Y ) = x+(−t+)− 1 = 0,
f2(t

+, t−, Y ) = x−(t−)− 1 = 0,
f3(t

+, t−, Y ) = y+(−t+)− y−(t−) = 0.
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We shall prove that there are three isolated solutions (t+k , t
−
k , Yk) for k = 1, 2, 3

of system (2) near

t+1 = 1.48663280365501727068752016595..,
t−1 = 3.45108332296097156801770033378..,
Y1 = 1.68119451051893996990946394580..,

t+2 = 0.85668322292111353096467693501..,
t−2 = 3.78234111866076263903523393333..,
Y2 = 0.96579985584668225513544927484..,

t+3 = 0.39178388598443280650466201997..,
t−3 = 4.66507269554569223774066305515..,
Y3 = 0.61885416518252501376067323768...

So these three solutions will correspond to isolated periodic orbits of system (1),
i.e. to limit cycles of that system. For proving the existence of these three isolated
solutions of system (2) we shall use the Newton-Kantorovich Theorem.

Let Br(x0) be the points x ∈ Rn such that |x − x0| < r, i.e. the open ball of

center x0 and radius r. We denote by Br(x0) the closure of Br(x0).

Theorem 2 (Newton-Kantorovich Theorem). Given a function f : C ⊂ Rn → Rn

and a convex C0 ⊂ C, assume that f is C1 in C0 and that the following assumptions
hold:

(a) |Df(z)−Df(z′)| ≤ γ|z − z′| for all z, z′ ∈ C0,
(b) |Df(z0)

−1f(z0)| ≤ α,
(c) |Df(z0)

−1| ≤ β,

for some z0 ∈ C0. Consider

h = αβγ, r1,2 =
1±

√
1− 2h

h
α.

If h ≤ 1/2 and Br1(z0) ⊂ C0, then the sequence {zk} defined by

zk+1 = zk −Df(zk)
−1f(zk) for k = 0, 1, ...

is contained in Br1(z0) and converges to the unique zero of f(z) contained in C0 ∩
Br2(z0).

Proof. See [10]. �
We shall apply Theorem 2 to our function f = (f1, f2, f3). So n = 3, C = R3

and C0 will be

(3)

C1
0 = [1.48, 1.49]× [3.45, 3.46]× [1.68, 1.69],

C2
0 = [0.85, 0.86]× [3.78, 3.79]× [0.96, 0.97],

C3
0 = [0.39, 0.40]× [4.66, 4.67]× [0.61, 0.62],

for the solutions of system (2) near (t+k , t
−
k , Yk) for k = 1, 2, 3 respectively.

The norm that we shall use in the statement of Theorem 2 will be the norm
| |∞, i.e.

|z|∞ = max
i

|zi| if z = (z1, z2, z3).

In what follows sometimes we shall use (z1, z2, z3) instead of (t+, t−, Y ) for simpli-
fying the notation.



DISCONTINUOUS PIECEWISE LINEAR DIFFERENTIAL SYSTEMS 5

In order to find the constants α, β and γ for which the inequalities (a), (b) and
(c) of Theorem 2 hold for every one of our convex sets C0 we need some preliminary
results.

Let z = (z1, z2, z3) and z′ = (z′1, z
′
2, z

′
3). If g : C0 → R is C1 and z, z′ ∈ C0, then

|g(z)− g(z′)| ≤ |g(z1, z2, z3)− g(z′1, z2, z3)|+
|g(z′1, z2, z3)− g(z′1, z

′
2, z3)|+

|g(z′1, z′2, z3)− g(z′1, z
′
2, z

′
3)|

≤
[
∂g

∂z1

]
|z1 − z′1|+

[
∂g

∂z2

]
|z2 − z′2|+

[
∂g

∂z3

]
|z3 − z′3|

≤ 3max

{[
∂g

∂z1

]
,

[
∂g

∂z2

]
,

[
∂g

∂z3

]}
|z − z′|∞,

where [∂g/∂zk] denotes the maximum of |∂g/∂zk| on C0.

The matrix norm | |∞ of a matrix A = (aij) is given by

|A|∞ = max
i




∑

j

|aij |



 ,

see for instance [9]. Therefore for our f = (f1, f2, f3) with z = (z1, z2, z3) we obtain

|Df(z)−Df(z′)|∞ = max
1≤i≤3





3∑

j=1

∣∣∣∣
∂fi
∂zj

(z)− ∂fi
∂zj

(z′)

∣∣∣∣





≤ max
1≤i≤3

{
3 max
1≤j≤3

∣∣∣∣
∂fi
∂zj

(z)− ∂fi
∂zj

(z′)

∣∣∣∣
}

≤ 3 max
1≤i,j≤3

{∣∣∣∣
∂fi
∂zj

(z)− ∂fi
∂zj

(z′)

∣∣∣∣
}

≤ 9 max
1≤i,j,h≤3

[
∂2fi

∂zj∂zh

]
|z − z′|∞.

Consequently, for finding an estimation for γ, we must compute the second partial
derivative of the functions fi, and after we must bound them in C0. Thus we have

∂2f1
(∂t+)2

=
1

2500
e−19t+/50 (−(1900Y + 2139) cos t+ + (1900− 2139Y ) sin t+) ,

∂2f1
∂t+∂Y

=
1

50
e−19t+/50 (50 cos t+ − 19 sin t+) ,

∂2f2
(∂t−)2

= − 1

375
e−t−/5 (10(100Y − 59) cos t− + 6(400Y − 67) sin t−) ,

∂2f2
∂t−∂Y

=
4

3
e−t−/5 (sin t− − 5 cos t−) ,
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∂2f3
(∂t+)2

=
1

2500
e−19t+/50 ((1900− 2139Y ) cos t+ + (1900Y + 2139) sin t+) ,

∂2f3
∂t+∂Y

= − 1

50
e−19t+/50 (19 cos t+ + 50 sin t+) ,

∂2f3
(∂t−)2

=
13

9375
e−t−/5 (5(50Y + 29) cos t− + 6(58− 225Y ) sin t−) ,

∂2f3
∂t−∂Y

=
26

75
e−t−/5 (5 cos t− + 2 sin t−) .

All the second partial derivatives which do not appear explicitly previously are zero.

We note that all the second partial derivatives can be written in the form

∂2fk
∂zi∂zj

=
∑

l

clgl(zk),

where the functions gl are linear combinations of the functions sinus, cosinus and
exponential. So we can bound such partial derivatives taking absolute value of the
coefficients cl and bounding the sinus and cosinus by 1. Then the bounds for these
derivatives are

∣∣∣∣
∂2f1
(∂t+)2

∣∣∣∣ ≤
4039

2500
e−19t+/50(Y + 1),

∣∣∣∣
∂2f1

∂t+∂Y

∣∣∣∣ ≤
69

50
e−19t+/50,

∣∣∣∣
∂2f2
(∂t−)2

∣∣∣∣ ≤
8

375
e−t−/5(425Y + 124),

∣∣∣∣
∂2f2

∂t−∂Y

∣∣∣∣ ≤ 8e−t−/5,

∣∣∣∣
∂2f3
(∂t+)2

∣∣∣∣ ≤
4039

2500
e−19t+/50(Y + 1),

∣∣∣∣
∂2f3

∂t+∂Y

∣∣∣∣ ≤
69

50
e−19t+/50,

∣∣∣∣
∂2f3
(∂t−)2

∣∣∣∣ ≤
13

9375
e−t−/5(1600Y + 493),

∣∣∣∣
∂2f3

∂t−∂Y

∣∣∣∣ ≤
182

75
e−t−/5.

Now we shall apply Theorem 2 to C1
0 for proving that in this convex set the

unique solution of system (2) is the one near (t+1 , t
−
1 , Y1). As the upper bounds

functions that we have obtained are decreasing functions in the variables t+, t−

but increasing in Y , their maxima in C1
0 take place when t+ = 1.48, t− = 3.45 and
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Y = 1.69. Therefore we get
∣∣∣∣
∂2f1
(∂t+)2

∣∣∣∣ ≤ 2.47651,

∣∣∣∣
∂2f1

∂t+∂Y

∣∣∣∣ ≤ 0.78638,

∣∣∣∣
∂2f2
(∂t−)2

∣∣∣∣ ≤ 9.01232,

∣∣∣∣
∂2f2

∂t−∂Y

∣∣∣∣ ≤ 4.01261,

∣∣∣∣
∂2f3
(∂t+)2

∣∣∣∣ ≤ 2.47651,

∣∣∣∣
∂2f3

∂t+∂Y

∣∣∣∣ ≤ 0.78638,

∣∣∣∣
∂2f3
(∂t−)2

∣∣∣∣ ≤ 2.22358,

∣∣∣∣
∂2f3

∂t−∂Y

∣∣∣∣ ≤ 1.21716.

Hence an upper bound for all the second partial derivatives is 9.02. Then, from

|Df(z)−Df(z′)|∞ ≤ 9 max
1≤i,j,h≤3

[
∂2fi

∂zj∂zh

]
|z − z′|∞,

if we take γ = 82 ≥ 9 · 9.02, we get that this γ satisfies assumption (a) of Theorem
2.

Taking z0 = (t+1 , t
−
1 , Y1) we have

Df(z0) =




−0.86606 0 0.56639
0 4.57374 1.01822

−0.81529 −1.34517 0.29123


 ,

where the computations have been made with an accuracy of 10−20, but here we
present the numbers only with 5 decimals. The inverse of Df(z0) is

Df(z0)
−1 ≈ B =




−11.86035.. 3.34468.. 11.37230..
3.64432.. −0.91992.. −3.87124..

−16.36989.. 5.11429.. 17.38917..


 ,

again the computations have been made with an accuracy of 10−20, but we only
present the result only with 5 decimals. To control the error in the computation of
Df(t+1 , t

−
1 , Y1)

−1 we will use the following lemma, for a proof see Lemma 4.4.14 of
[10].

Lemma 3. Let A be an n× n real matrix and B an approximation of A−1. Then

|A−1| ≤ |B|
1− |Id−AB| .

The matrix Df(t+1 , t
−
1 , Y1)B satisfies that |Id−Df(t+1 , t

−
1 , Y1)B|∞ ≤ 10−18 (do-

ing the computations with an accuracy of 10−20), and since |B|∞ < 38.874 then,
by lemma 3, |Df(z0)

−1|∞ < 38.874.

Now, since

f(z0) =




1.65139.. · 10−16

−3.87795.. · 10−17

1.45690.. · 10−16


 ,

we have

|Df(z0)
−1f(z0)|∞ ≤ |Df(z0)

−1|∞|f(z0)|∞ ≤ 6.45 · 10−15.

So, taking α = 6.5 · 10−15 and β = 39, the assumptions (b) and (c) of Theorem 2
are satisfied. Since h = 2.07.. · 10−11, r1 = 0.00062539.. and r2 = 6.50000.. · 10−15,
it follows that h ≤ 1/2 and Br1(z0) ⊂ C0. Hence, from Theorem 2 the function
f(z) has a zero z0 in C0 ∩Br2(z0). Consequently, the non–smooth piecewise linear
differential system (1) has a limit cycle γ(t) = (x(t), y(t)) such that γ(0) = z0.
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The proof of the existence of the other two limit cycles passing near the points
(t+k , t

−
k , Yk) for k = 2, 3 is completely similar. We only provide the values of (α, β, γ),

i.e.
(8 · 10−15, 57, 49) and (8 · 10−15, 73, 69)

for k = 2 and k = 3, respectively. This completes the proof of Theorem 1.

References

[1] A. Andronov, A. Vitt and S. Khaikin, Theory of Oscillations Pergamon Press, Oxford,
1966.

[2] J. Bernat and J. Llibre, Counterexample to Kalman and Markus–Yamabe conjectures in
dimension larger than 3, Dynamics of Continuous, Discrete and Impulsive Systems 2 (1996),
337–379.

[3] S. Coombes, Neuronal networks with gap junctions: A study of piecewise linear planar
neuron models, SIAM Applied Mathematics 7, (2008) 1101–1129.

[4] M. di Bernardo, C.J. Budd, A. R. Champneys, P. Kowalczyk, Piecewise-Smooth Dy-
namical Systems: Theory and Applications, Appl. Math. Sci. Series 163, Springer-Verlag,
London, 2008.

[5] A. F. Filippov Differential Equations with Discontinuous Right-Hand Sides, (Kluwer Aca-
demic, Dordrecht, 1988).

[6] E. Freire, E. Ponce, F. Rodrigo and F. Torres, Bifurcation sets of continuous piecewise
linear systems with two zones, Int. J. Bifurcation and Chaos 8 (1998), 2073–2097.

[7] M. Han and W. Zhang, On Hopf bifurcation in non–smooth planar systems, J. of Differential
Equations 248 (2010), 2399–2416.

[8] S.-M. Huan and X.-S. Yang, The number of limit cycles in general planar piecewise linear
systems, to appear in Discrete and Continuous Dynamical Systems-A, 2011.

[9] E. Isaacson and H.B. Keller, Analysis of numerical methods, John Wiley and Sons, New
York, 1966.

[10] J. Stoer and R. Burlisch, Introduction to Numerical Analysis, Springer–Verlag, New York,
1980.

[11] A. Tonnelier , The McKean’s caricature of the FitzHugh-Nagumo model I. The space-
clamped system, SIAM J. Appl. Math. 63 (2003), pp. 459484.

[12] A. Tonnelier and W. Gerstner, Piecewise linear differential equations and integrate-and-
fire neurons: Insights from two-dimensional membrane models, Phys Rev. E 67 021908,
2003.
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