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Three nonhomogeneous Poisson models for the probability 
of basaltic volcanism: 

Application to the Yucca Mountain region, Nevada 

Charles B. Connor and Brittain E. Hill 

Center for Nuclear Waste Regulatory Analyses, Southwest Research Institute, San Antonio, Texas 

Abstract. The distribution and timing of areal basaltic volcanism are modeled using 
three nonhomogeneous methods: spatio-temporal nearest neighbor, kernel, and nearest- 
neighbor kernel. These models give nonparametric estimates of spatial or spatio- 
temporal recurrence rate based on the positions and ages of cinder cones and related 
vent structures and can account for migration and shifts in locus, volcano clustering, 
and development of regional vent alignments. The three methods are advantageous 
because (1) recurrence rate and probability maps can be made, facilitating comparison 
with other geological information; (2) the need to define areas or zones of volcanic 
activity, required in homogeneous approaches, is eliminated; and (3) the impact of 
uncertainty in the timing and distribution of individual events is particularly easy to 
assess. The models are applied to the Yucca Mountain region (YMR), Nevada, the site 
of a proposed high-level radioactive waste repository. Application of the Hopkins F 
test, Clark-Evans test, and K function indicates volcanoes cluster in the YMR at the 

>95% confidence level. Weighted-centroid cluster analysis indicates that Plio- 
Quaternary volcanoes are distributed in four clusters: three of these clusters include 
cinder cones formed < 1 Ma. Probability of disruption within the 8 km 2 area of the 
proposed repository by formation of a new basaltic vent is calculated to be between 
1 x 10 -4 and 5 x 10 -4 in 10 4 years (the kernel and nearest-neighbor kernel methods 
give a maximum probability of 5 x 10 -4 in 10 4 years), assuming regional recurrence 
rates of 5-10 volcanoes/m.y. An additional finding, illustrating the strength of 
nonhomogeneous methods, is that maps of the probability of volcanic eruption for the 
YMR indicate the proposed repository lies on a steep probability gradient: volcanism 
recurrence rate varies by more than 2 orders of magnitude within 20 km. Insight into 
this spatial scale of probability variation is a distinct benefit of application of these 
methods to hazard analysis in areal volcanic fields. 

Introduction 

The distribution and timing of volcanism in areal basaltic 

volcanic fields have been the focus of numerous studies, 

primarily with the aim of better understanding the processes 

that govern magma supply and the role of crustal structure in 

influencing magma ascent [Settle, 1979; Nakarnura, 1977; 

Wadge and Cross, 1988; Connor, 1990; Lutz and Gutmann, 

1995]. Three basic aspects of cinder cone distribution have 

been described through these and related studies: (1) shifts in 

the locus of cinder cone volcanism are a common phenom- 

enon in volcanic fields; (2) cinder cones cluster within these 

fields, often on several scales; and (3) vent alignments are 

ubiquitous, including short local alignments of several vents 

and more regional alignments that are usually more than 20 

km in length and consist of numerous vents. Patterns in the 

distribution and timing of basaltic volcanism also have been 

used to assess hazards. For example, Wadge et al. [1994] 

made a quantitative analysis of the distribution of lava 

boccas on Mount Etna as part of their assessment of lava 
flow hazards. 

Here, three spatial and spatio-temporal nearest-neighbor 
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models are presented to describe areal patterns in basaltic 

volcanism. These models are applied to the probability of 

volcanic eruption occurring in the Yucca Mountain region 

(YMR), Nevada. This approach features several character- 

istics of nearest-neighbor methods which make them ame- 

nable to volcano distribution studies and hazard analysis in 

areal volcanic fields. First, volcanic eruptions, such as the 

formation of a new cinder cone, are discrete in time and 

space. Using nearest-neighbor methods, the probability sur- 

face is estimated directly from the location and timing of 

these past, discrete volcanic events. As a result, nearest- 

neighbor models are sensitive to the patterns generally 

recognized in cinder cone distributions. Furthermore, the 

resulting probability surfaces are continuous, rather than 

consisting of abrupt changes in probability that must be 

introduced in spatially homogeneous models. Continuous 

probability surfaces can be readily compared to other geo- 

logic data, such as fault location, that may influence volcano 

distribution. Nearest-neighbor methods also eliminate the 

need to define areas or zones of volcanic activity as is 

required by all spatially homogeneous Poisson models. Fi- 

nally, uncertainties in the ages of individual volcanic events 

and the distribution of Neogene volcanoes are important 

limitations on the usefulness of all probability approaches. 

The impact of these uncertainties in the timing and distribu- 

10,107 
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Figure 1. Basaltic vents, lavas, and intrusions of the Yucca Mountain region (YMR) younger than about 
9 Ma. Geology compiled from Byers et at. [1966]; Ekren et at. [1966]; Carr and Quintivan [1966]; Byers and 
Barnes [1967]; Byers and Cummings [1967]; Hinrichs et at. [1967]; Noble et at. [1967]; Tschanz and 
Pampeyan [1970]; Cornwall [1972]; Crowe et at. [1983, 1986]; Carr [1984]; Swadtey and Carr [1987]; and 
Fautds et at. [1994]. Locations of aeromagnetic anomalies (stars) from Kane and Bracken [1983] and 
Langenheim et at. [1993]. Sources for age estimates are listed in Table 1. Dashed line is the Crater Flat 
Volcanic Zone (CFVZ) [Crowe and Perry, 1989], dashed-dotted line is the area of most recent volcanism 
(AMRV) [Smith et at., 1990]. Contours generated from regional a 3-arc-sec digital elevation model, 200-m 
contour interval. Universal transverse mercator projection, Nevada zone 11, North American Datum 1983. 

tion of individual events is relatively easy to assess using 

nearest-neighbor models. 

Basaltic volcanism in the YMR has been the topic of 

numerous previous studies focusing on the probability of 

volcanic disruption of a proposed high-level radioactive 

waste repository [Crowe et al., 1982; Ho, 1991; Ho et al., 

1991; Crowe et al., 1992a; Sheridan, 1992]. These studies are 

pursued largely because the proposed waste repository is 

located within 10-20 km of at least five Quaternary cinder 

cones (Figure 1) and the high-level radioactive waste must be 

isolated from the surrounding environment for a period of at 

least 10,000 years. Most models assessing the probability of 

future volcanism in the YMR and the likelihood of a repos- 

itory-disrupting event rely on the assumption that Plio- 

Quaternaw basaltic volcanoes are distributed in a spatially 

uniform random manner over some bounded area [e.g., 

Crowe et al., 1982, 1992a; Ho et al., 1991; Margulies et al., 

1992]. However, as in many other volcanic fields, patterns in 

the distribution and age of basaltic volcanoes in the YMR 

make the choice of these bounded areas somewhat subjec- 
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tive. Spatial variations in the YMR volcanic field are shown 

by shifts in the locus of basaltic volcanism from east to west 

since the cessation of caldera-forming volcanism in the 

Miocene Southern Nevada Volcanic Field [Crowe and 

Perry, 1989]. Crowe et al. [1992a] and Sheridan [1992] also 

noted that basaltic vents appear to cluster in the YMR. 

Sheridan [1992] suggests that one parametric method of 

accounting for spatial heterogeneity in vent distribution is to 

assume that post-4 Ma volcanoes located close to the pro- 

posed repository are formed as a result of steady state 

activity and that the dispersion of these vents represents two 

standard deviations on an elliptical Gaussian probability 

surface. Using this assumption, Sheridan [ 1992] modeled the 

probability of repository disruption by Monte Carlo simula- 

tion for both volcanic events and dike intrusions, noting that 

variations in the shape of the probability surface significantly 

alter the probability of igneous disruption of the proposed 

repository. An alternative approach used to assess volcanic 

hazards in the YMR has been to define specific areas in 

which the recurrence rate of igneous events is increased. 

Smith et al. [ 1990] and Ho [1992] define NNE trending zones 

within which average recurrence rates exceed that of the 

surrounding region. These zones correspond to cinder cone 

alignment orientations that Smith et al. [1990] and Ho [1992] 

hypothesize may occur as a result of structural control. The 

objectives of our application of nearest-neighbor methods in 

the YMR are (1) to account for observed heterogeneities in 

volcano distribution in our estimate of the probability of 
•volcanism in the area and within the boundaries of the 

proposed repository; (2) to use these methods to map 

variation in probability of volcanism across the region for the 

first time, thus placing the probability of volcanic eruption 

occurring at or near the repository in a more regional 

context; and (3) to compare the three nearest-neighbor 

estimates, and previous estimates, of the probability of 

volcanic eruption in the area. 

Patterns in Cinder Cone Volcanism 

Patterns in the distribution and timing of cinder cone 

volcanism in the YMR are similar to patterns identified in 

other, often more voluminous volcanic fields. For example, 

shifts or migration in the location of volcanism over periods 

of millions of years have been documented in many basaltic 

volcanic fields. In the Coso Volcanic Field, California, 

Duffield et al. [1980] found that basaltic volcanism has taken 

place in essentially two stages. Eruption of basalts occurred 
over a broad area in what is now the northern and western 

portions of the Coso Volcanic Field from approximately 4 to 

2.5 Ma. In the Quaternary the locus of volcanism shifted to 

the southern portion of the Coso field. Condit et al. [1989] 

noted the tendency for basaltic volcanism to gradually 

migrate from west to east in the Springerville Volcanic Field 

between 2.5 and 0.3 Ma. Other examples of continental 
basaltic volcanic fields in which the location of cinder cone 

volcanism has migrated include the San Francisco Volcanic 

Field, Arizona [Tanaka et al., 1986], the Lunar Crater 

Volcanic Field, Nevada [Foland and Bergman, 1992], the 

Michoacfin-Guanajuato Volcanic Field, Mexico [Hasenaka 

and Carmichael, 1985], and the Cima Volcanic Field, Cali- 

fornia [Dohrenwend et al., 1984; Turrin et al., 1985]. In some 

areas, such as the San Francisco and Springerville Volcanic 

Fields, migration is readily explained by plate movement 

[Tanaka et al., 1986; Condit et al., 1989; Connor et al., 

1992]. In other areas the direction of migration or shifts in 
the locus of volcanism does not correlate with the direction 

of plate movement. In either case, models developed to 

describe the recurrence rate of volcanism or to predict 

locations of future eruptions in volcanic fields need to be 

sensitive to these shifts in the location of volcanic activity. 

On a slightly finer scale, cinder cones are known to cluster 

within many volcanic fields [Heming, 1980; Hasenaka and 

Carmichael, 1985; Tanaka et al., 1986]. Spatial clustering 

can be recognized through field observation, or through the 

use of exploratory data analysis or cluster analysis tech- 

niques [Connor, 1990]. Clusters identified using the latter 

approach in the Michoacfin-Guanajuato and the Springerville 
Volcanic Fields were found to consist of 10-100 individual 

cinder cones. Clusters in these fields are roughly circular to 

elongate in shape with diameters of 10-50 km. The simplest 

explanation for the occurrence, size, and geochemical dif- 

ferences between many of these clusters is that these areas 

have higher magma supply rates from the mantle. Factors 

affecting magma pathways through the upper crust, such as 

fault distribution, appear to have little influence on cluster 

formation [Connor, 1990; Connor and Condit, 1994]. In 

some volcanic fields, such as Coso, the presence of silicic 

magma bodies in the crust may influence cinder cone distri- 

bution by impeding the rise of denser mafic magma [Eichel- 

berger and Gooley, 1977; Bacon, 1982], resulting in the 

formation of mafic volcano clusters peripheral to the silicic 

magma bodies. 

Tectonic setting, strain rate, and fault distribution all may 

influence the distribution of basaltic vents within clusters, 

and sometimes across whole volcanic fields [Nakamura, 

1977; Smith et al., 1990; Parsons and Thompson, 1991; 

Takada, 1994]. Kear [1964] discussed local vent alignments, 

in which vents are the same age and easily explained by a 

single episode of dike injection, and regional alignments, in 

which vents of varying age and composition are aligned over 
distances of 20-50 km or more. Numerous mathematical 

techniques have been developed to identify and map vent 

alignments on different scales, including the Hough trans- 

form [Wadge and Cross, 1988], two-point azimuth analysis 

[Lutz, 1986], and frequency domain map filtering techniques 

[Connor, 1990]. Regional alignments identified using these 

techniques are commonly colinear or parallel to mapped 

regional structures. For example, Draper et al. [1994] 

mapped vent alignments in the San Francisco Volcanic Field 

which are parallel to, or colinear with, segments of major 

fault systems in the area. About 30% of the cinder cones and 

maars in the San Francisco Volcanic Field are located along 

these regional alignments [Draper et al., 1994]. Lutz and 

Gutmann [1995] identified similar patterns in the Pinacate 

Volcanic Field, Mexico. Although alignments can clearly 

form due to episodes of dike injection [Nakamura, 1977] and 
therefore are sensitive to stress orientation [Zoback, 1989], 

there are also examples of injection along preexisting faults 

[e.g., Kear, 1964; Draper et al., 1994] oblique to maximum 

horizontal compressional stress. 

Cumulatively, these studies indicate that models describ- 

ing the recurrence rate, or probability, of basaltic volcanism 
should reflect the clustered nature of basaltic volcanism and 

shifts in the locus of basaltic volcanism through time. 

Models also should be amenable to comparison with basic 

geological data, such as fault patterns and neotectonic stress 
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information, which may impact vent distributions on a 

comparatively more detailed scale. In addition, probability 

models should incorporate uncertainties in the distribution 

and timing of volcanism. Uncertainty in the distribution of 

volcanoes is particularly important for Neogene volcanoes. 

These volcanoes may be buried as a result of subsequent 

volcanic activity [e.g., Condit et al., 1989] or sedimentation 

[e.g., Langenheim et al., 1993], or have been so deeply 

eroded that vent locations can not be recognized. Uncer- 

tainty in the ages of volcanoes is due to variations in the 

precision and accuracy of different techniques used to date 

volcanic events and to open-system movement of radiogenic 

components. 

Finally, it is possible to define a volcanic event in various 

ways. A simple definition that can be applied to young cinder 

cones, spatter mounds, and maars is based on morphology: 

an individual edifice represents an individual volcanic event. 

Volcanic events used in distribution analyses are commonly 

defined as mapped vents [Condit et al., 1989; Connor et al., 

1992; Lutz and Gutmann, 1995; Wadge et al., 1994], or 

volcanic edifices of a minimum size [Hasenaka and Car- 

michael, 1985; Connor, 1990; Bemis and Smith, 1993]. In 

older, eroded systems, evidence for the occurrence of vents, 

such a near-vent breccias or radial dikes, is required. How- 

ever, several edifices can form in single, essentially contin- 

uous, eruptive episodes. For example, three closely spaced 

cinder cones formed during the 1975 Tolbachik fissure 

eruption [Tokarev, 1983; Magus'kin et al., 1983]. In this 

case, the three cinder cones represent a single eruptive event 

that is distributed over a larger area than is represented by a 

single cinder cone. The three 1975 Tolbachik cinder cones 

have very different morphologies and erupted adjacent to 

three older (late? Holocene) cinder cones [Braytseva et al., 

1983]. Together this group forms a 5-km-long north trending 

alignment. Without observing the formation of this align- 

ment, it likely would be difficult to resolve the number of 

volcanic events represented by these six cones. This type of 
eruptive activity results in uncertainty in the number of 

volcanic events represented by individual cones, even where 

these vents are well-preserved. 

These uncertainties represent a serious problem in most, if 

not all volcanic fields, because often there is no clear way to 

resolve them. An alternative approach is to ascertain the 

impact of these uncertainties on the probability model. This 

approach is adopted by developing several data sets for 

basaltic volcanism in the YMR that likely bound the uncer- 

tainties associated with the age, distribution, and number of 
volcanic events in the area. 

Modeling Vent Distribution 
Aherne and Diggle [ 1978] define two measures of intensity 

(expected number of points (i.e., volcanoes) per unit area): 

m Ap - m E Ui 
i=1 

(1) 

A v = m 71) i (2) 

i=1 
where u i and v i are areas of circles whose radii are the 
distance from the ith randomly chosen point to the nearest 

volcano, and the ith volcano to its nearest neighbor, respec- 

tively; m is the number of nearest neighbors and in this case 

is equal to the number of volcanoes; A•, is the intensity 
estimated from m point-to-volcano measurements; and A v is 
the intensity estimated from m volcano-to-volcano measure- 

ments. Aherne and Diggle [1978] used these measures of 

intensity to distinguish between homogeneous Poisson point 

distributions, for which A•, and A v should be approximately 
equal, and clustered distributions, for which Av tends to 

measure the intensity within clusters and A•, is a measure of 
cluster intensity [Ripley, 1981]. The Hopkins F test [Ripley, 
1981] uses the ratio 

Hope = Ap/Av (3) 

tested against a Fisher F(2m, 2m) distribution [Byth and 

Ripley, 1980], the null hypothesis being that Hope = 1 and 
volcanoes have a homogeneous Poisson distribution. As- 

suming that some area can be identified in which all points, 

p, are located, Hope provides one means of distinguishing 
clustered and random volcano distributions. Numerous sim- 

ilar tests exist, including the Clark and Evans [1955] test and 

the K function [Ripley, 1977]. Calculation of these statistics, 

coupled with a spatial cluster analysis [Spiith, 1980; Connor, 

1990], provides an effective means of characterizing the 

spatial distribution of volcanoes. 

The expected recurrence rate per unit area [Diggle, 1977; 

1978; Ripley, 1977; 1981; Cressie, 1991] must be estimated in 

most volcanic fields because clustering causes a marked 

departure of recurrence rate per unit area from the average 

recurrence rate. Here, three nearest-neighbor estimates of 

recurrence rate and their assumptions are described. All 

three methods are nonparametric, and the recurrence rate 

estimates are controlled by the distribution and timing of 

past volcanism. 

Method 1: Spatio-temporal Nearest-Neighbor Estimate 

The first method provides a spatial and temporal estimate 
of recurrence rate: 

A n(X, y) = m uit i (4) 

i=1 
where nearest-neighbor volcanoes are determined as the 

minimum u it i, t i is the time elapsed since the formation of 

the ith nearest-neighbor volcano, and u i is defined as before 
(equation (1)), with u i -> 1 km2. 

The relationship between this estimate of recurrence rate 

and homogeneous Poisson models, in which the recurrence 

rate is a constant over time and within a specified area, can 

be illustrated by describing the behavior of An(X, y) when a 
completely spatially and temporally random process is sam- 

pled. Modifying (4) slightly, 

Zi = uiti (5) 

m An(X , y)= m E Zi = 1/E(Z) 
i=1 

(6) 

where E(Z) is the expected value of z. If volcanoes form as 

the result of a completely spatially and temporally random 

process, E(Z) can be thought of as the expected time and 
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area within which n volcanoes will form and z must have a 

gamma density distribution [Ripley, 1981]. Therefore the 

probability density function for z is 

A n 

fz(Z) = Z n-le-xz (7) 
(n- 

where A is the average recurrence rate within some specified 

area and over some specified time interval. The expected 

value of z, given this probability density function, becomes 

E(Z) (n - '1)! zne •z dz (8) 

YMR, greater uncertainty exists in recurrence rate estimates 

because of the comparatively small number of events [Crowe 

et al., 1982; Ho et al., 1991]. In addition, the use of (4) 

assumes that u i and t i have been adequately determined for 
each volcano. Here, t i is taken to represent the time since 
the formation of the volcano. Finally, it is assumed that each 

volcano is adequately represented as a point. However, as 

described below, various area terms may be used to alleviate 

this assumption. In practice, it is relatively simple to test the 
sensitivity of the model results to both uncertainty in the 

ages of volcanoes and estimates of the regional recurrence 

rate of volcanism by computing the recurrence rate using a 

range of parameters. 

A n n! n 

E(Z) (n - 1)! A n+l A (9) 

In order to compare E(Z) with the recurrence rate per unit 

area, as defined in (6), E(Z) is evaluated for n = 1, that is, 

the expected time and area within which one new volcano 

will form. Combining (6) and (9), 

An(X , y)= A (10) 

for completely spatially and temporally random distribu- 

tions. The nearest-neighbor estimate of recurrence rate 

An(X, y) becomes a constant equal to the average recurrence 
rate over some specified area if the underlying distribution is 

completely spatially and temporally random. This nearest- 

neighbor nonhomogeneous Poisson model thus is simply a 

general form of homogeneous Poisson models. One distinct 

advantage of using the more general nearest-neighbor nonh- 

omogeneous Poisson models rather than homogeneous Pois- 

son models is that regions within which A is taken to be 
constant need not be defined. 

Therefore it is reasonable to compare the expected re- 

gional recurrence rate calculated using various nearest- 

neighbors (equation (4)): 

Method 2: Kernel Estimate 

Lutz and Gutmann [ 1995] applied a kernel method [Silver- 

man, 1986] for estimation of the spatial recurrence rate of 

volcanism in their study of vent alignment distribution in the 

Pinacate Volcanic Field. In the kernel estimation technique, 

spatial variation in estimated recurrence rate is a function of 

distance to nearby volcanoes and a smoothing constant h. 

The kernel function is a probability density function which is 

symmetric about the locations of individual volcanoes. Fol- 

lowing the example of Lutz and Gutmann [1995], an 

Epanechnikov kernel is used [Cressie, 1991]. For a purely 

spatial, bivariate distribution 

tt i = (2/,r)[1 - (di/h)2], (di/h) 2 < 1, 

K i = 0, otherwise 
(13) 

where h is the smoothing constant used to normalize the 

distance d i between the location for which recurrence rate is 
estimated and the ith volcano. The spatial recurrence rate at 

point (x, y) is then 

n 

A h(X, y) = -- E h -2K i 
eh i=1 

(14) 

At=fxfyAn(X, y ) dy dx (11) 

with the observed regional recurrence rate. In practice, 

recurrence rates An(X, y) are calculated on a grid and these 
values are summed over the region of interest: 

q n 

At--• E An(g' j)AxAy 
i=0 /=0 

(12) 

where in this case, Ax and Ay are the grid spacing used in the 

calculations and q and n are the number of grid points used 

in the X and Y directions, respectively. 

Summarizing the first method, several assumptions are 

made in the application of (4) to estimate the intensity of 

volcanism and the probability of volcanic eruption in a 

particular volcanic field. The most important assumption is 

that the appropriate number of nearest-neighbor volcanoes 

can be estimated from the regional recurrence rate. In areas 

of concentrated volcanism, such as the Springerville Volca- 

nic Field, the frequency of vent-forming eruptions is high 

enough to make recurrence rate estimates fairly straightfor- 

ward [Connor and Condit, 1994]. In other areas, such as the 

where n volcanoes are used in the analysis and e n is an edge 
correction [Diggle, 1985; Cressie, 1991]. In the case of a 

volcanic field, integrating Ah(X, y) over some large area A 
relative to the size of the field and the smoothing constant, h, 

should yield n. Therefore, if en = n, then 

Ah(X, y) da = 1, 
where the units of An(x, y) are volcanoes per square 

kilometer. Using this value for en, An(x, y) can be multi- 
plied by an estimate of the temporal recurrence rate A t to 

calculate the expected number of volcanoes per unit area per 

time. The value of An(x, y) at a given point (x, y) depends 
on the number of volcanoes found within a distance h of the 

point. If no volcanoes are located within h of the point, then 

Ah(X , y) = O. 
Eruptions will have a high probability close to existing 

volcanoes if h is chosen to be small. Conversely, a large 

value of h will result in a more uniform probability distribu- 
tion. Clearly, utility of the kernel model depends on the 

assumption that the smoothing constant can be estimated in 
a geologically meaningful way. Silverman [1986] recom- 

mends using a wide range of smoothing constants in density 
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calculations, an approach adopted by Lutz and Gutmann 

[1995]. An identical approach is used here. However, the 

range of reasonable smoothing constants is further con- 

strained by using a spatial cluster analysis. The shape of the 

kernel function is an additional assumption in the model. 
Alternative kernel functions include uniform random and 

normal density distributions. Although Cressie [1991] and 
Lutz and Gutmann [1995] indicate that the choice of the 

kernel function is not as important as the choice of an 

appropriate smoothing constant, we used several different 

kernels in our analysis of volcano distribution in the YMR. 

Even with this limited number of volcanic events, we also 

found that the kernel function has a trivial impact on 

probability calculations compared with the choice of a 

smoothing constant. 

Method 3: Nearest-Neighbor Kernel Estimate 

In method 3 a value rm(X, y) is substituted for the 

smoothing constant, h, in (14), where rm(X, y) is the 
distance between point (x, y) and the ruth nearest-neighbor 

volcano [Silverman, 1986]. In this case, the nearest-neighbor 

is determined on the basis of distance only, rather than using 

the measure ltit i used in method 1. For m -> 1, Ar(X , y) > 
0 everywhere. Thus this nearest-neighbor kernel method 

produces smoother variation in the probability surface than 

is calculated for all but the largest values of a smoothing 

constant in method 2. Nonetheless, the estimated recurrence 

rate will be higher near the center of clusters than is 

estimated using the large values for the smoothing constant 

in method 2. As in method 1, the number of nearest 

neighbors used to estimate Ar(X, y) will strongly impact the 

results and experimentation using a range of nearest neigh- 

bors is necessary to identify the resulting variation in Ar(X, 

y). Unlike method 2, eh will not always equal n in applica- 
tion of the nearest-neighbor kernel method [Silverman, 

1986]. The simplest approach to determination of e h is to 

first integrate estimates of Ar(X, y) over the entire region 

using eh = n, then chose a value of eh such that 

A A.r(X, y) da = 1. 
The value of e h typically varies from 0.9n to n when 
estimated using this approach. 

The three methods yield three different measures of recur- 

rence rate, which are distinguished by subscript (method 1, 

An(X, y); method 2, Ah(x, y); method 3, At(x, y)). Com- 
monality between the three methods lies in the fact that each 

method depends fundamentally on the distribution of past 

volcanic events in order to estimate the probable locations of 
future volcanism. In the case of methods 1 and 3 the m 

nearest-neighbor volcanoes are used, defined by the distance 

to, or distance to and time since, past eruptions in the area. 

in method 2, only nearby volcanoes are used in the estimate 

of recurrence rate, where "nearby" is defined by the 

smoothing constant. Furthermore, in all three methods the 

calculation of a probability of future volcanism at a given 

location within a volcanic field depends on an estimate of the 

regional recurrence rate A t which is generally not known 
with certainty [McBirney, 1992; Ho, 1991]. 

Application to the Yucca Mountain Region 
The proposed geological repository for high-level radioac- 

tive waste at Yucca Mountain, Nevada, provides one exam- 

pie of the increasing need to evaluate hazards due to areal 

basaltic volcanism. The objective of the repository is to 

isolate high-level radioactive waste from the accessible 

environment for at least the next 10,000 years, through deep 

(about 300 m) burial in Tertiary ignimbrites situated in the 
unsaturated zone several hundred meters above the local 

water table [Department of Energy (DOE), 1988]. Volcanic 

eruptions at or near the repository could potentially release 

high-level radioactive waste into the accessible environment 

[DOE, 1988]. Therefore, determining the probability of a 

volcanic eruption in the repository area during the next 

10,000 years is an important step in evaluating the potential 
risks associated with the Yucca Mountain site. The nearest- 

neighbor models described above provide one means of 

calculating these probabilities and evaluating their uncertain- 
ties. 

Basaltic Volcanism in the Yucca Mountain Area 

The YMR contains more than 30 late Miocene to Quater- 

nary basaltic volcanoes distributed over approximately 2500 

km 2. The region has been the site of recurring basaltic 
volcanism since the cessation of late Miocene caldera- 

forming activity in the Southwestern Nevada Volcanic Field 

[e.g., Sawyer et al., 1994]. Basalts younger than about 9 Ma 

appear petrogenetically distinct from older basalts and better 

represent the mafic system that produced Quaternary erup- 

tions in the YMR [Crowe et al., 1983, 1986]. Figure 1 

illustrates the location of mapped and inferred basaltic vents 

younger than about 9 Ma. Several subdivisions have been 

proposed for YMR postcaldera basaltic volcanism. The 

Crater Flat Volcanic Zone (CFVZ) of Crowe and Perry 

[1989] is a NNW trending zone that includes all YMR 

Quaternary volcanoes, most Pliocene volcanoes, and the 

Amargosa Valley aeromagnetic anomalies. The area of most 

recent volcanism (AMRV) of Smith et al. [1990] includes all 

Pliocene and younger YMR volcanoes. Both the CFVZ and 

AMRV are expanded from their original boundaries to 

include all of the aeromagnetic anomalies of Amargosa 

Valley [Langenheim et al., 1993]. 

Vent locations in Table 1 were generally reported as such 

on geologic maps and in reports [Byers et al., 1966; Ekren et 

al., 1966; Carr and Quinlivan, 1966; Byers and Barnes, 1967; 

Byers and Cummings, 1967; Hinrichs et al., 1967; Noble et 

al., 1967; Tschanz and Pampeyan, 1970; Cornwall, 1972; 

Crowe and Perry, 1991; Crowe et al., 1983, 1986, 1988; Carr, 

1984; $wadley and Carr, 1987; Faulds et al., 1994] or 

interpreted in the field from the presence of feeder dikes, 

vent agglutinate, or cinder cone remnants. Some of the 
Miocene volcanic centers have been eroded to hundreds of 

meters below the paleosurface, removing most of the evi- 

dence for vent locations. The number of vents reported for 

Pliocene and older volcanic centers should be regarded as a 

minimum estimate. Difficulty in recognizing older volcanic 

vents may impact estimated cluster size, shape, and longev- 

ity but has little impact on spatial or spatio-temporal recur- 

rence rates when data are weighted by age. 

Over 200 isotopic age determinations have been published 

for YMR basaltic rocks younger than about 9 Ma. Many of 

the older analyses have relatively low degrees of precision 

and are occasionally inaccurate. For example, dates as old 

as 10.4 -+ 0.4 Ma are reported for the basalt of Pahute Mesa 
[Crowe et al., 1983], which overlies the 9.40 ___ 0.03 Ma 

Rocket Wash Tuff [Sawyer et al., 1994]. Following the 
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Table 1. Data Used in the Analyses 

Age 
Volcano UTM Estimate, 

(Abbreviation) Coordinate Ma Source Explanation 

Data 

Set 1, 
Ma 

Data 

Set 2, 
Ma 

Hidden Cone (hc) 523230E 0.38 _+ 0.02 
4112530N 

Little Black Peak 522130E 0.32 -+ 0.03 

(lb) 4110340N 

Northern Cone (nc) 540330E 
4079130N 

1.09 + 0.07 

Black Cone (bc) 538840E 1.0 _+ 0.1 
4073990N 0.71 + 0.06 

Red Cone (rc) 537450E 
4071470N 

Little Cone NE 535500E 

(lcne) 4069490N 

Little Cone SW 535131E 

(lcsw) 4069220N 

Lathrop Wells (lw) 543780E 
4060380N 

Buckboard Mesa 554680E 

(bb) 4108970N 

1.0 + 0.1 

0.77 + 0.04 

0.94 + 0.01 

0.77 + 0.04 

0.1 +0.05 

2.87 _+ 0.06 

Buckboard Mesa 556060E 2.87 -+ 0.06 

SE (bbse) 4107580N 
Crater Flat A (cfa) 540232E 3.7 -+ 0.2 

4071610N 

Crater Flat B (cfb) 540330E 3.7 -+ 0.2 
4070050N 

Crater Flat C (cfc) 540365E 3.7 -+ 0.2 
4068790N 

Crater Flat D (cfd) 540696E 3.7 -+ 0.2 
4067830N 

Crater Flat E (cfe) 540300E 3.7 -+ 0.2 
4068390N 

Crater Flat F (cff) 540660E 3.7 -+ 0.2 
4067470N 

Amargosa Valley B 553720E 4.3 _+ 0.1 
(avb) 4052990N 3.8 + 0.1 

Amargosa Valley A 546130E 
(ava) 4054260N 

Amargosa Valley E 538300E 
(ave) 4047200N 

3.8 +0.1 

3.8 +0.1 

Quaternary 
Turrin [ 1992] 

R. J. Fleck et al. 

(unpublished 
manuscript, 1994) 

Faulds et al. [1994] 

Perry [1994] 
Faulds et al. [1994] 

Faulds et al. [1994] 

Faulds et al. [1994] 

Heizler et al. [1994] 

Faulds et al. [1994] 

Crowe et al. [1992b], 
Zreda et al. [1993], 

Poths et al. [1994], 
and Turrin et al. 

[19911 

Pliocene 

R. J. Fleck et al. 

(unpublished 
manuscript, 1994) 

Perry [1994] 

Turrin [ 1992] 

Perry [1994] 

Ar/Ar step heating, one sample 

K-Ar, best estimated age from 
four measurements 

K-Ar on plagioclase separate, 
one sample; reversed 
magnetic polarity 

Ar/Ar, average of four samples 
K-Ar on plagioclase separates, 

one sample; reversed 
magnetic polarity 

K-Ar on plagioclase separates, 
average of three samples; 
reversed magnetic polarity 

K-Ar on plagioclase separate, 
one sample; reversed 
magnetic polarity 

Ar/Ar step heating of sanidine 
xenocyrsts, one sample 

K-Ar on plagioclase separate, 
one sample; reversed 
magnetic polarity 

U/Th series and At/At dates 

enerally > 100 ka, 36C1 and 
He cosmogenic exposure 

dates generally <90 ka 

K/Ar, best estimated age from 
four samples 

assumed to correlate with main 

Buckboard Mesa vent 

average of three Ar/Ar step- 
heating measurements, for 
undifferentiated Pliocene 

Crater Flat; all events in 
Pliocene Crater Flat are 

assumed to be relatively 
synchronous based on 

paleomagnetic work by 
Champion [ 1991] 

aeromagnetic anomaly 
[Langenheim et al., 1993]; 
drilled and dated by Ar/Ar 
step heating; reversed 
magnetic polarity 

aeromagnetic anomaly 
[Langenheim et al., 1993], not 
drilled; assumed to correlate 

with anomaly B 
aeromagnetic anomaly 

[Langenheim et al., 1993], not 
drilled; assumed to correlate 

roughly with anomaly B; 
normal polarity 

0.36 

0.29 

1.02 

0.78 

0.90 

0.78 

0.78 

0.05 

2.8 

2.8 

3.5 

3.5 

3.5 

3.5 

3.5 

3.5 

3.7 

3.7 

3.8 

0.4 

0.35 

1.16 

1.1 

1.1 

0.94 

0.15 

2.9 

3.9 

3.9 

3.9 

3.9 

4.3 



10,114 CONNOR AND HILL: PROBABILITY MODELS FOR BASALTIC VOLCANISM 

Table 1. (continued) 

Age 
Volcano UTM Estimate, 

(Abbreviation) Coordinate Ma Source Explanation 

Data 

Set 1, 
Ma 

Data 

Set 2, 
Ma 

Amargosa Valley C 547050E 3.8 +- 0.1 
(avc) 4042950N 

Amargosa Valley D 549430E 4.3 +- 0.1 
(avd) 4040080N 3.8 +- 0.1 

Pliocene 

Thirsty Mountain 529390E 4.6 +- 0.1 R.J. Fleck et al. 
(tm) 4112330N (unpublished 

manuscript, 1994) 

Rocket Wash 536110E 8.0 +- 0.2 

4109120N 

Pahute Mesa A 548920E 9.8 +- 0.8 

4133270N 

Miocene 

Crowe et al. [1983] 

Crowe et al. [1983] 

and Sawyer et al. 
[ 1994] 

Pahute Mesa B 554090E 8.8 +- 0.1 Crowe et al. [1983] 
4135430N 

Pahute Mesa C 562370E 9.8 +-- 0.8 Crowe et al. [1983] 
4132680N 

Paiute Ridge A 594860E 8.5 +- 0.3 Crowe et al. [1983] 
4107970N 

Paiute Ridge B 595780E 8.5 +- 0.3 
4 ! 06340N 

Paiute Ridge C 592810E 8.5 +-- 0.3 
4105890N 

Paiute Ridge D 593411E 8.5 +- 0.3 
4105540N 

Paiute Ridge E 591480E 8.5 +- 0.3 
4105170N 

Nye Canyon A 603230E 6.8 +- 0.2 
4095790N 

Nye Canyon B 602170E 6.8 +- 0.2 
4088960N 

Nye Canyon C 600950E 6.8 +-- 0.2 
4085920N 

Nye Canyon D 600550E 6.8 +-- 0.2 
4085450N 

Nye Canyon E 599160E 6.8 +-- 0.2 
4085820N 

Nye Canyon F 598030E 6.8 +-- 0.2 
4090090N 

Nye Canyon G 597930E 6.8 +-- 0.2 
4082470N 

Crowe et al. [1983] 

Carr [1984] 

Yucca Flat 577860E 8.1 +- 0.3 Carr [1984] 
4093930N 

aeromagnetic anomaly 3.7 ''' 
[Langenheim et al., 1993], 
not drilled; assumed to 

correlate roughly with 
anomaly B; reversed polarity 

aeromagnetic anomaly, not 3.8 4.4 
drilled; assumed to correlate 

roughly with anomaly B; 
normal polarity; basalt found 
in nearby well [Langenheirn 
et al., 1993] 

K/Ar estimate based on three 4.5 4.7 

samples 

K/Ar date 

overlies 9.40 +-- 0.03 Pahute 

Mesa Member of Thirsty 
Canyon Tuff, two K/Ar 
dates 

single K/Ar date 

correlative with Pahute Mesa A 

average of three K/Ar dates, 
undifferentiated Paiute 

Ridge; vent locations marked 
by exposed vent breccia, 
feeder dikes, or cone 
remnants 

average of three K/Ar 
dates, for undifferentiated 

Nye Canyon 

drill hole in Frenchman Flat, 

assumed correlation with Nye 

Canyon 

basalt in drill holes UElh, 

UElj, and UE6d; one K/Ar 
date 

7.8 8.2 

9.0 9.4 

8.7 8.9 

9.0 9.4 

8.3 8.8 

8.3 8.8 

8.3 8.8 

8.3 8.8 

8.3 8.8 

6.6 7.0 

6.6 7.0 

6.6 7.0 

6.6 

6.6 

6.6 7.0 

6.6 7.0 

7.8 8.4 

UTM, universal transverse mercator. 

example of Crowe [1994], age estimates reported in Table 1 
were selected from more recent analyses, which are gener- 

ally regarded as more precise and accurate than older 
analyses [Sinnock and Easterling, 1983; Vaniman and 
Crowe, 1981; Vaniman et al., 1982]. For units with multiple 

analyses the age estimates represent the mean and one 
standard deviation of the data set, and in cases where there 

is apparent discrepancy between two recent dates, both are 
incorporated in the analyses. 

Several of the age estimates reported in Table 1 require 
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further explanation. The dipolar aeromagnetic anomalies in 

Amargosa Valley [Kane and Bracken, 1983; Langenheim et 

al., 1993] have both normal (Figure 1, sites D and E) or 

reversed (Figure 1, sites B and C) magnetic polarities. 

Anomaly B has been drilled and samples of this basalt dated 

at 4.3 _+ 0.1 [Turrin, 1992] and 3.8 -+ 0.1 Ma [Perry, 1994]. 

Magnetic polarities are used to constrain the ages of the 

other anomalies, which have not been drilled but are inter- 

preted to be caused by buried basaltic centers [Langenheim 

et al., 1993]. The aeromagnetic anomaly in southern Crater 

Flat (Figure 1) likely represents a buried basalt with normal 

magnetic polarity [Kane and Bracken, 1983; Crowe et al., 

1986]. The age of this unit is problematic, as all of the other 

basalts in Crater Flat have reversed magnetic polarities 

[Crowe et al., 1986]. This possible volcanic center is not 

included in our analyses. Over 100 age determinations are 

published for the Lathrop Wells volcano, which range from 

about 0.4 Ma to younger than 0.01 Ma and represent 

numerous analytical methods such as 4øAr/39Ar [Turrin et 
al., 1991], U series disequilibrium [Crowe et al., 1992b], and 

cosmogenic isotopes [Paths and Crowe, 1992; Zreda et al., 

1993; Paths et al., 1994]. In an attempt to encompass many 

of the higher-precision age determinations for Lathrop 

Wells, we use an estimated age of 0.1 _+ 0.05 for this 

volcano. A posteriori experimentation indicates that the age 

of Lathrop Wells may vary from 0.01 to 0.4 Ma with little 

impact on the probability of establishing a new volcano at 

the location of the repository. 

Data Used in Models 

On the basis of the abundant geological and geochrono- 

logical data available for the YMR, we use two data sets 

throughout the following analyses. These two data sets are 

meant to encompass most of the uncertainty in the number 

and timing of volcanoes formed in the YMR. Data set 1 

(Table 1) maximizes the number of events in the YMR. For 

example, closely spaced cinder cones, like Little Cone NE 
and Little Cone SW are treated as distinct events in data set 

1. Furthermore, minimum ages are used in data set 1. These 

minimum ages are defined by the one-sigma uncertainty 

reported for age determinations. In cases where there is no 

overlap between two recent age determinations, such as is 

the case for Black Cone (Table 1), we use the younger of the 

dates in data set 1. Data set 2 excludes several mapped vents 

from the analysis because these vents are closely spaced and 

therefore may represent a single eruptive event. For exam- 

ple, Little Cone NE is not included in data set 2 because of 

its proximity to Little Cone SW. Also, several undrilled 

aeromagnetic anomalies are not included in data set 2. Older 

volcano ages are used in data set 2 (Table 1). These two data 

sets bound current estimates of the timing and distribution of 

postcaldera basaltic volcanic events in the YMR, noting that 

alternative data sets may certainly be developed and ages 

may be revised as additional geochronological analyses are 

published. 

The type of event modeled using these two data sets is 
formation of a new volcano. Individual cones, isolated lava 

boccas, or mappable remnants of these structures represent 
events. In data set 1 these events include the construction of 

any Quaternary edifice by volcanic eruption. In data set 2, 

events include individual cones and cone pairs separated by 

< 1 km. Events in this data set imply that vent pairs may be 

fed by the same intrusions at shallow levels during an 

eruption. Champion [1991] has argued that the Quaternary 

Crater Flat alignment and similar cone alignments in the area 

formed during single episodes of volcanism. Thus all five 

cones in the Quaternary Crater Flat alignment may represent 

one eruptive event. One way to think of the two data sets is 

that they weight episodes of alignment formation by the 

number of volcanoes formed in each. This approach is 

consistent with the use of spatially nonhomogeneous mod- 
els. 

These two data sets are not appropriate for modeling the 

probability of reactivation of an existing cinder cone, a 

process that some investigators have suggested occurs in the 

YMR [e.g., Wells et al., 1990; Bradshaw and Smith, 1994]. 

The probability models in this paper are used to determine 

the probability of formation of a new volcano, a spatial or 

spatio-temporal process. Reactivation of an existing vent is 

essentially a temporal process and should be modeled ac- 

cordingly. 

In addition, these two data sets are further divided by 

volcano age throughout the analyses that follow. Each 

analysis is made for all volcanoes in the data set (i.e., all 

mapped postcaldera basalts), volcanoes less than 5 Ma, and 

volcanoes less than 2 Ma. This is done in recognition of the 

nonstationary character of YMR cinder cone volcanism. 

Inspection of Figure 1, for example, reveals that late Mi- 

ocene clusters have little spatial relationship to Pliocene and 

Quaternary cluster distribution [Crowe and Perry, 1989]. 

However, most Pliocene clusters have reactivated in the 

Quaternary. Thus further division of the two data sets 

preferentially weights the distribution of younger volcanoes. 

Estimate of the regional recurrence rate of new volcano 

formation, At, in the YMR during the Quaternary has 
received a great deal of study. These estimates range from 

about one volcano per million years (v/m.y.) to 8 v/m.y. 

[e.g., Ha, 1991; Ha et al., 1991; Crowe et al., 1992a]. This 

range of estimates is based on the application of various 

averaging techniques and statistical estimators. For exam- 

ple, one approach has been to consider that 7-8 volcanoes 

have formed in the last 1.8 m.y., yielding A t • 4 v/m.y. 
[Crowe et al., 1982]. However, the YMR Quaternary volca- 

noes are all less than approximately 1 Ma, so averaging over 

the last one million years, A t • 7--8 v/m.y. For all post- 

caldera basalts, A t • 3 v/m.y. Using a maximum likelihood 
estimator, Ha et al. [1991] calculated A t • 5--6 v/m.y. 
Finally, on the basis of a Poisson-Weibull model, Ha [ 1992] 

calculated that A t • 2-13 v/m.y. with 90% confidence. We 
do not attempt to refine these estimates here. Rather, our 

probability estimates assume A t --}5-10 v/m.y. This range 
encompasses the known recurrence rate of volcano forma- 

tion over the last 1 m.y. and allows for some variation about 
this value. 

Probability Models 

As a first step in analysis of volcano distribution in the 

YMR, the presence of volcano clusters is tested using data 

sets 1 and 2 (Table 1) and equations (1) and (2). Random 

points within the AMRV are used to calculate volcano 

intensity, A•, (equation (1)). The value of A•, may change 
depending on the position of the m random points. So, Ap 
and Hope are calculated averaging the results of 100 simu- 
lations [Cressie, 1991] and reported with the standard error 

on the mean. Considering all volcanoes in the AMRV (i.e., 

data set 1), Hope = 2.6 m 0.1. Considering only Quater- 
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Figure 2. Weighted-centroid cluster analysis of volcano distribution in the YMR, calculated using data 
set 1 (Table 1) and volcanoes less than 5 Ma. Vent pairs group at distances of less than 2 km, clusters are 
completely formed at linkage distances of 15 km or less, and clusters begin to group at distances of greater 
than 23 km. Volcano abbreviations are given in Table 1. 

nary volcanoes within the AMRV (data set 2), Hope = 
7.1 - 0.3. In either case, the null hypothesis that volcanoes 

are randomly distributed in the AMRV is rejected with 
greater than 95% confidence. Hopkins F test may be applied 
to smaller regions also. The CFVZ (Figure 1) is approxi- 
mately 70 km long and 20 km wide and is a minimum area 
which includes Quaternary cinder cones of the YMR and the 
Amargosa Valley vents. Even using areas as small as the 
CFVZ, Hope = 3.1 - 0.2 (data set 1) and clustering is 
significant with greater than 95% confidence. Application of 
similar measures of clustering, including the Clark-Evans 

test [Clark and Evans, 1955] and the K function [Ripley, 
1977] shows that volcanoes in these areas are not randomly 
distributed at similar confidence levels. Consequently, we 
conclude that the recurrence rate of volcanism varies across 

the YMR, and therefore application of nearest-neighbor 
estimates of spatial and spatio-temporal variation in recur- 
rence rate is appropriate. 

A weighted-centroid cluster analysis [Spiith, 1980] of vent 
distribution in the YMR helps illustrate vent clustering and 

provides additional insight into vent distribution. The results 
of the cluster analysis are shown by a dendrogram (Figure 2), 
which plots the distance at which individual cones and 
cluster centers link [Spiith, 1980]. The dendrogram shown 
was calculated using data set 1 and volcanoes less than 5 Ma. 
The cluster analysis was repeated using both data sets, 
subdivided by age and a variety of clustering algorithms, 
with very similar results to those plotted (Figure 2). 

The dendrogram shows that volcanoes form pairs and then 
larger clusters at short linkage distances. Cluster member- 

ship changes rapidly until a linkage distance of 15 km, at 
which point four clusters occur. These are named the 
Amargosa Valley Cluster, including Lathrop Wells; the 
Crater Flat Cluster; Sleeping Butte Cluster, including Hid- 

den Cone; Little Black Peak, and Thirsty Mountain (Figure 

1); and the Buckboard Mesa Cluster, which consists of only 
two closely spaced vents. Each of these four clusters are 

complete and self-contained at linkage distances of 15 km or 
less and do not group with other clusters until linkage 

distances of ->23 km, comparatively large changes in linkage 

distances. At 23 km the Amargosa Valley and Crater Flat 

Valley Clusters form a single group (Figure 2). Together 
these volcanoes are isolated from the Sleeping Butte and 

Buckboard Mesa Clusters. The Amargosa Valley and Crater 

Flat Clusters are less distinct using a single linkage clustering 

algorithm because of the comparatively intermediate posi- 
tion of Lathrop Wells (Figure 1). 

Vent pairs that are grouped as single events in data set 2, 
such as the Little Cones, link at distances of less than 1 km. 

The absence of these vent pairs in the Amargosa Valley 

Cluster is evident comparing linkage distances in this cluster 
with Crater Flat. This may indicate the comparatively low 

resolution of aeromagnetic methods for the delineation of 

buried vent pairs or reflect a difference in the style of 
volcanism between the two clusters. 

Adding a hypothetical volcanic event at the location of the 
candidate repository (Figure 1) alters the cluster analysis 
very little. The hypothetical repository event links with 
Northern Cone at a distance of 8.2 km; this group then links 
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with the rest of the Crater Flat Cluster at a distance of 

approximately 11 km. 

In summary, the analysis of volcano distribution yields 

several observations that are useful for interpretation of the 

nearest-neighbor analyses. First, vents form statistically 

significant clusters in the YMR. Spatially, volcanoes less 

than 5 Ma form four clusters, the Crater Flat and Amargosa 

Valley Clusters overlapping somewhat due to the position of 

Lathrop Wells volcano and aeromagnetic anomaly A. Sec- 

ond, a volcanic event located at the repository would be 

spatially part of, albeit near the edge of, the Crater Flat 

Cluster, rather than forming between or far from clusters in 

the YMR. Third, three of the four clusters contain Quater- 

nary basalt, indicating that these clusters are long-lived and 

provide some indication of the likely areas of future volca- 

nism. Finally, the cluster analysis provides one means of 

estimating the smoothing constant h used in method 2. If h is 

chosen to be less than 15 km, then significant, perhaps 

unwarranted, variation in recurrence rate will be predicted 

within clusters. If h is chosen to be greater than 25-30 km, 

recurrence rate will be comparatively high between clusters. 

Choosing h between 15 and 25 km therefore will best capture 
the clustered nature of volcano distribution in the YMR. 

Application of method 1. Regional recurrence rate is 

calculated using (3) and then compared with expected re- 

gional recurrence rate A t using (12). The calculations are 
repeated using the two data sets, further subdivided by age 

(Figure 3). For data set 1, 6 to 11 nearest-neighbor volcanoes 

give regional recurrence rates of 5-10 v/m.y. Data set 2 

models this range of recurrence rates with 6-8 nearest- 

neighbor volcanoes. Limiting the analysis to younger volca- 

noes results in lower regional recurrence rates at a given 

number of nearest neighbors because Quaternary volcanoes 

are tightly clustered. Ten to thirteen nearest-neighbor vol- 

canoes are required to model recurrence rates similar to the 

estimated postcaldera recurrence rate of <4 v/m.y. 

In (7) the gamma density distribution was introduced to 

determine the expected time and area over which a new 
volcano will form. The Poisson distribution is used to 

determine the number of volcanoes that can be expected to 
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Figure 4. Estimated probability of disruption of the poten- 
tial repository site, calculated using method 1, varies with 
the number of nearest neighbors used in the nonhomoge- 
neous model. Calculations are made for the probability of a 
volcano forming within an 8 km 2 block at the Yucca Moun- 
tain repository site (Figure 1), during the next 10,000 years, 
using data set 1 (solid triangles) and data set 2 (open 
triangles). Each curve is calculated by solving equation (4) 
for rn -- 3 to 13 nearest-neighbor volcanoes, then using this 
value of An(X, y) to calculate probability at the repository 
(equation (16)). Different rn nearest neighbors correspond to 
different regional recurrence rates A t (Figure 3). 

form over a given time and area. In this case the probability 
of one or more volcanoes, PIN(t) >- 1 ], is of interest. The 

probability of volcanic disruption of the potential repository 

site is calculated for various estimates of A n (x, y) (equation 
(4)), 

PIN(t) > 1] - 1 - exp An(X , y) dy dx (15) 

where the limits of integration define the area of the repos- 

itory. This relation is closely approximated in discretized 
form 

2O 

2 4 6 8 10 12 14 

Number of Nearest Neighbors 

Figure 3. Recurrence rate for the formation of new volca- 
noes in the YMR is estimated using method 1 (equations (4) 
and (12)), calculated using data from Table 1. Solid triangles, 
data set 1; open triangles, data set 2. These data sets are 
further subdivided and calculations repeated for all volca- 
noes <10 Ma, <5 Ma, and <2 Ma. 

P[N(t) •- 1] = 1 -exp [-t Z An(X' y)AxAy , (16) a 

where Ax and Ay each are 1 km and a is the area within 

which a volcanic eruption may occur and intersect the 

repository. These probabilities are very close to the proba- 
bility of one volcanic event because the probability of two or 
more events is vanishingly small (PIN(10,000 years) > 1] • 

1 x 10-9), although it is noted that a single event using data 
set 2 may form more than one volcanic vent. Note that 

independence of events is always assumed in the application 
of the Poisson distribution. Because there is significant 

variation in ,Xn (X, y) and other estimates of recurrence rate 
of volcano formation across the region, the area Ax ß Ay and 

time interval t must be small enough to be reasonably 

assured of independence. The application of (15) and (16) 

assumes that An(X, y) does not vary in a significant way 
within the area Ax ß Ay or over the time interval t. 

The probabilities of volcanic disruption of the repository 
using a range of nearest-neighbor models are given in Figure 
4, calculated of t -- 10,000 years and a -- 8 km 2. The area 
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Figure 5. Probability of a new volcano forming during the next 10,000 years varies in the YMR because 
of the tendency for volcanoes to cluster. Here the logarithm of probability of a volcano forming within a 
8 km 2 area during the next 10,000 years is contoured using (a) nine nearest neighbors and all volcanoes in 
data set 1, (b) eight nearest neighbors and all volcanoes in data set 1 formed <5 Ma, (c) seven nearest 
neighbors and all volcanoes in data set 2 formed <5 Ma, and (d) 11 nearest neighbors and all volcanoes 
in data set 2 formed <10 Ma. The four maps reflect different regional recurrence rates A t (Figure 3), 
ranging from A t -- 3 v/m.y. (Figure 5d) to A t = 8.5 v/m.y. (Figure 5a). In these and all of the following 
maps, the solid triangles indicate the positions of volcanoes used in the calculation (data set 1 or 2), and 
open triangles indicate the positions of volcanoes that are part of the data set but are not included in the 
calculation because of their age. The location of the proposed repository (solid rectangle) is indicated. The 
contour interval is 0.25 log (P[N > 1, 10,000 years]) (e.g., -4 is a probability of 1 x 10 -4 of a new 
volcano forming within an 8 km 2 area in 10,000 years). Map coordinates are in universal transverse 
mercator, North American Datum 1983. 

of the actual repository is currently undetermined but is 

estimated to be approximately 6 km 2. Larger area terms 
(i.e., 8 km 2) are presented to indicate the effects of an 
increase in repository size and, more importantly, to account 

for the subsurface area directly affected by the emplacement 

of a new volcanic center. For example, emplacement of a 

cinder cone 500 m outside the repository boundary may 

result in dike injection within the repository itself. Using A t 
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= 5-10 v/m.y., a = 8 km2 and both data sets in Table 1 the 
probability of disruption during a 10,000-year isolation pe- 

riod is between 9.0 x 10 -5 and 3.3 x 10 -4 (Figure 4). 
Altering the area term a from 6 to 10 km 2 has little impact on 
these probabilities. The probability of volcanic disruption of 

the proposed repository is greater than 1 x 10 -4 for all but 
the lowest proposed values of At (<3 v/m.y.). 

One way to illustrate spatial variation in estimated recur- 

rence rate in the YMR, and hence the probability of volcanic 

eruption, is to map probabilities calculated from nonhomo- 

geneous Poisson models. Applying (4), the expected recur- 

rence rate is estimated at points on a grid (grid node spacing 

of 2 kin) using varying numbers of nearest neighbors. Prob- 

abilities of at least one event occurring within one repository 

area (8 km 2) about each grid point during the next 10,000 
years are then calculated (equation (16)). Four such maps are 

illustrated in Figures 5a-5d. Using rn = 9 nearest-neighbor 

volcanoes and data set 1 (Figure 5a), the clustered nature of 

volcanism in the YMR is captured by the probability surface, 

with the most significant mode in probability being centered 

on the Crater Flat Cluster. Modes in probability are also 

preserved at late Miocene clusters in the eastern part of the 

YMR, although probabilities of eruption are estimated to be 

more than 1 order of magnitude lower than in Crater Flat. 

None of the maps shown indicate increased probability of 

volcanic eruption in the Sleeping Butte Cluster because of 

the few vents that compose this cluster. Probability contours 

on all four maps (Figures 5a-5d) are elongate NNW-SSE, 

reflecting the overall distribution of Quaternary cones in the 

CFVZ [Crowe and Perry, 1989]. This elongation is more 

subdued in Figures 5c-5d because of uncertainty in the 

origin of several aeromagnetic anomalies in Amargosa Val- 

ley, which are not included in data set 2. 

Application of method 2. Spatial recurrence rate A h (X, y) 
(equation (14)) is calculated for the 8 km 2 area about the 
repository using the same data sets for a range of smoothing 

constants (Figure 6). For h = 15 to 30 kin, Ah(X, y) = 2.3 x 
10 -4 to 6.0 x 10-4 volcanoes per square kilometer (v/kin2) 
at the repository with a maximum at h = 17-20 km for most 

data sets. At h < 15 km the recurrence rate drops with 

decreasing h to 0 at h = 8 km, the approximate distance 

between Northern Cone and the repository site. Letting A t = 

• • 3 
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Figure 7. The probability of volcanic disruption of the 
proposed repository, estimated using method 2, is bounded 
by the two curves calculated using a = 8 km 2, t = 10,000 
years. Solid triangles, data set 1, including volcanoes <5 Ma 

and /•t ---- 5 v/m.y. Open triangles, data set 2, including 
volcanoes formed <2 Ma and A t ---- 10 v/m.y. 

5-10 v/m.y., the probability of volcanic disruption of the 

repository (a = 8 km 2 and t = 10,000 years) is calculated 
in Figure 7 for data set 1 (volcanoes formed <5 Ma) and data 

set 2 (volcanoes formed <2 Ma), with other calculations 

falling at intermediate values. Taking 15 km< h < 25 kin, 

based on interpretation of the cluster analysis (Figure 2), the 

probability of volcanic disruption of the repository in 10,000 

years is between 1.6 x 10 -4 and 4.6 x 10 -4. Maps of the 
probability of volcanic eruption throughout the region are 

plotted in Figures 8a and 8b. The clustered nature of 

volcanism in the YMR is clearly illustrated on these maps, as 

is the overall NNW trend in post-5 Ma vent distribution. The 

probability of volcanic eruption drops to zero very close to 

the logP[n = 1, a = 8 km 2, t = 10,000 years] = -4.5 
contour, for h = 20 kin. 

Application of method 3. Spatial recurrence rate Ar(X, y) 

is calculated at the repository site using (14) where the 

smoothing constant h is replaced by the distance to the mth 

nearest-neighbor volcano. The maximum value of Xr(X, y) at 
the repository is estimated to be 4.2 x 10 -4 v/km2, for data 
set 2, using volcanoes <2 Ma and the fifth nearest-neighbor 

(Figure 9). Each of the data sets goes through a maximum, 

the value of Xr(X, y) at the maximum depending on the 
number of volcanoes included in the analysis. Data sets of 
volcanoes <5 Ma and 10 Ma have maxima at the same 

number of nearest neighbors because the nearest neighbors 

to the repository are all <5 Ma. Nearly all estimates of Xr(X, 

y) > 1 x 10 -4 v/kin 2 (Figure 9). Using volcanoes <5 Ma, 
the probability of volcanic disruption of the repository site 

varies from P[n = 1, a = 8 km 2, t = 10,000 years] = 5 x 
10 -5 to 1.5 X 10 -4. A maximum probability of 3.3 x 10 -4 
(Figure 10) is calculated using volcanoes <2 Ma and A t = 10 
v/m.y. Maps showing the variation in probability of volcanic 

eruption across the YMR calculated using Xr(X, y) are 

plotted in Figures 1 la and 1 lb. 

Figure 6. Spatial recurrence rate of volcanism estimated 
for the location of the proposed repository using method 2, 
where h is the smoothing constant. Symbols and line labels 
are as in Figure 3. 

Discussion 

The three nonhomogeneous methods are sensitive to basic 

patterns in cinder cone distribution to varying degrees. 
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Figure 8. Maps showing the variation in probability of volcanic eruption across the YMR calculated 
using method 2. As in Figure 5, the logarithm of probability of a volcano forming within a 8 km 2 area 
during the next 10,000 years is contoured using (a) h = 20 km and all volcanoes in data set 1 formed <5 
Ma and (b) h = 20 km and all volcanoes in data set 2 formed <2 Ma. The contour interval is 0.25 log (P[N 
-> 1, 10,000 years]) (e.g., -4 is a probability of 1 x 10 -4 of a new volcano forming within an 8 km 2 area 
in 10,000 years), and other symbols are as in Figure 5. 

These patterns include shifts in the location of cinder cone 

volcanism in time, cinder cone clustering, and the presence 

of vent and regional volcano alignments. These features of 

areal volcanic fields make nonhomogeneous models very 

useful for modeling volcano distributions and calculating the 

probability of future volcanic eruption within these areas. 

Comparison of the Three Methods 

Method 1 is most sensitive to shifts in the locus of cinder 

cone volcanism through time because equation (4) incorpo- 

rates time since volcano formation directly into the recur- 
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Figure 9. Spatial recurrence rate of volcanism estimated 
for the location of the proposed repository using method 3. 
Symbols and line labels are as in Figure 3. The distance to 
the mth nearest-neighbor volcano is used to calculate nor- 
malized distance in the Epanechnikov kernel. Therefore 
recurrence rate Ar(X, y) varies with the number of nearest 
neighbors. 

rence rate estimate. Thus, using all postcaldera basalts in the 

calculation of probability of future volcanic eruption in the 

YMR, method 1 produces a small mode in probability at late 

Miocene clusters, but this mode is distinctly smaller than the 

Crater Flat mode (Figure 5a). Using methods 2 and 3 and the 

same data, modes at Crater Flat and in late Miocene clusters 

are of nearly equal amplitude. However, application of 

method 1 to many other volcanic fields is also more difficult 

because the ages of all volcanoes in the region must be 

2 Ma - 
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Figure 10. The probability of volcanic disruption of the 
proposed repository, estimated using method 3, is shown for 
four curves calculated using a = 8 km2, t = 10,000 years. 
Open triangles, data set 2; solid triangles, data set 1. Calcu- 
lations using volcanoes formed <2 Ma use A t = 10 v/m.y.; 
calculations using volcanoes formed <5 Ma use A t = 5 
v/m.y. 
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Figure 11. Maps showing the variation in probability of volcanic eruption across the YMR calculated 
using method 3. As in Figure 5, the logarithm of probability of a volcano forming within a 8 km 2 area 
during the next 10,000 years is contoured using (a) m = 12 nearest neighbors and all volcanoes in data set 
1 formed <5 Ma and (b) m = 5 nearest neighbors and all volcanoes in data set 2 formed <2 Ma. The 
contour interval is 0.25 log (P[N > 1, 10,000 years]) (e.g., -4 is a probability of 1 x 10 -4 of a new 
volcano forming within an 8 km 2 area in 10,000 years), and other symbols are as in Figure 5. 
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known with reasonable precision. In areas where shifts in 

the locus of volcanism are as temporally distinct as they are 

in the YMR, methods 2 and 3 are easily adapted by subdi- 
viding the volcano data set on the basis of age, as was done 
for the YMR. Method 2 is least sensitive to shifts in the 

location of volcanism because the probability of volcanic 

eruption is zero at distances greater than the smoothing 
constant if the Epanechnikov kernel is used (equation (13)). 

Cinder cone clusters are common and well-documented in 

basaltic volcanic fields [e.g., Heming, 1980; Connor, 1990]. 

This clustering may be the result of various geologic controls 

on cinder cone emplacement, including the size, distribu- 

tion, and longevity of partial melt zones, or possibly the 
heterogeneity of extension rates within the crust [Heming, 

1980; Connor, 1990]. Geological factors such as these sug- 

gest a mechanistic basis for application of temporally and 

spatially nonhomogeneous Poisson probability models. The 
three nonhomogeneous methods treat clusters using differ- 

ent ariteria• with varying res•J!ts: Method 2 presupposes that 

volcano density and distance between volcanoes best defines 

clustering. As a result, for example, method 2 effectively 

identifies the Sleeping Butte area as a cluster of three 
volcanoes (Hidden Cone, Little Black Peak, and Thirsty 

Mountain), in a manner quite consistent with the cluster 

analysis (Figures 8a and 8b). Methods 1 and 3 presuppose 
that the number of volcanoes, or volcanic events, is the 

predominant characteristic defining clusters. Therefore 
these methods weight rates of volcanic activity between 

clusters much more heavily than does method 2. For exam- 

ple, methods 1 and 3 do not identify a separate cluster in the 
Sleeping Butte area, because only three volcanoes define the 
cluster (e.g., Figures 5a and 1 la). Rather, contour lines tend 

to elongate between the Sleeping Butte Cluster and the 

Crater Flat Cluster when recurrence rate is determined using 

methods 1 and 3, and probability of volcanic eruption in the 
center of the Crater Flat Cluster is calculated to be compar- 

atively high. 

All three methods respond to the presence of regional 
volcano alignments. In the YMR, the NNW trend of the 

CFVZ is reflected in the overall shape of the probability 
surfaces calculated using the three methods (Figures 5b, 8a, 

and 11a). It is possible to model existing local vent align- 
ments, such as the vent alignments within the Crater Flat 

Cluster, by decreasing the smoothing constant h in method 2 
[Lutz and Gutmann, 1995] or decreasing the number of 

nearest neighbors used in methods 1 and 3. In the case of the 
YMR, this is achieved by choosing h < 5 km or m -< 3 

nearest-neighbor volcanoes. 

Probability of Volcanic Disruption of the Proposed 
Yucca Mountain Repository 

Volcano clustering in the YMR is statistically significant at 

the 95% confidence level. Probability models based on a 

homogeneous Poisson density distribution will overestimate 
the likelihood of future igneous activity in parts of the YMR 

far from Quaternary centers and underestimate the likeli- 
hood of future igneous activity within and close to Quater- 

nary volcano clusters. 

The probability of volcanic disruption of the proposed 
high-level waste (HLW) repository site, calculated using the 
three nearest-neighbor methods, is consistently between 1 x 

10 -4 and 5 x 10 -4 in 10,000 years for an 8 km 2 area. This 
range is close to, or slightly higher than, ranges indicated by 
most calculations based on homogeneous Poisson models. 

For example, Crowe et al. [1982] propose a range of proba- 
bility of disruption between 3.3 x 10 -6 and 4.7 x 10 -4 in 
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10,000 years, noting that only a "worst case" model leads to 

probabilities in excess of 1 x 10 -4. Other reported ranges 
between 1 x 10 -6 and 1 x 10 -4 in 10,000 years [Crowe et 
al., 1992a] are close to the probabilities calculated using 

nearest-neighbor nonhomogeneous models. Differences, es- 

pecially at the lower bound, arise because the candidate 

repository site is relatively close to the youngest large 

volcano cluster in the YMR. More recently, Crowe et al. 

[1993] proposed a range of models using various area terms 

and calculated probabilities of disruption between 9 x 10 -5 
and 2.6 x 10 -4 in 10,000 years. "Worst case" homogeneous 
Poisson models of repository disruption in which structural 

controls, such as those that may have resulted in the 

alignment of cinder cones in Crater Flat, are assumed to 

focus magmatism [Smith et al., 1990; Ho, 1992] and result in 

probabilities as high as 1 x 10 -3 in 10,000 years. The 
nonhomogeneous models developed here do not suppoet 

such high probabilities for the candidate repository site, 
because they do not include this kind of mechanistic control. 

It is noted that the nonhomogeneous methods do, however, 

give probabilities as high as 1 x 10 -3 in 10,000 years near the 
center of the Crater Flat Cluster. 

The basic agreement between many of these estimates of 

the probability of volcanic disruption of the proposed repos- 

itory site must be tempered, however, by a fundamental 

result of the spatial and spatio-temporal nonhomogeneous 

techniques developed here. All three nonhomogeneous 

methods indicate that the proposed repository is positioned 

on a probability gradient due to its proximity to Crater Flat. 

Immediately west of the proposed site, the probability of 

volcanism within the next 10,000 years increases to at least 

1 x 10 -3 in 10,000 years due to the presence of Quaternary 
volcanoes in Crater Flat Valley. However, the probability of 

volcanism within the next 10,000 years decreases east of the 

proposed repository site. The probability of a new volcano 

forming within an 8 km 2 area located 20 km east of the site 
is of the order of 1 x 10 -5 in 10,000 years or less. This rapid 
change in probability, resulting from clustering in volcano 

distribution, has important implications for the uncertainty 

associated with the use of probability models. Within 20 km 

of the proposed site, the probability of volcanism during the 

next 10,000 years and within a given 8 km 2 area varies by 
more than 2 orders of magnitude. Given the rapid change in 

probability across the area, it seems likely that additional 

geologic information, such as the role of preexisting struc- 

ture [Smith et al., 1990; McDuffie et al., 1994] or strain rate 

[Parsons and Thompson, 1991], may alter estimates of the 

probability of future volcanic activity at the proposed repos- 
itory site. 

The use of the estimates of regional recurrence rate A t and 
the area term for repository disruption a (equations (15) and 

(16)) and the effect of these assumed values on probability 

values warrant further discussion. Values of regional recur- 
rence rate of new volcano formation used in the calculations 

presented here are 5-10 v/m.y. It is a simple matter to 

recalculate probabilities using different regional recurrence 

rates. For example, using the range of spatial recurrence 

rates found using the kernel method (Figure 6), a - 8 km2, 
and t = 10,000 years, the probability of volcanic eruption at 
the repository site varies from 4.5 x 10 -5 to 5.8 x 10 -4 for 
A t = 2 to 12 v/m.y. 

Throughout the preceding calculations, A t represents the 
estimated recurrence rate of new volcano formation in the 

YMR. Some of the geochemical, geomorphological, and 

geochronological variation present at some YMR Quater- 

nary volcanoes is thought to represent reactivation of these 

volcanoes after more than 10,000-year quiescence [Wells et 

al., 1990; Crowe et al., 1992b; Bradshaw and Smith, 1994]. 

However, results from some other studies appear to contra- 

dict this interpretation [Champion, 1991; Turrin et al., 1991], 

which remains controversial [Whitney and Shroba, 1991; 

Wells et al., 1991, 1992; Turrin et al., 1992]. Given the 

possibility of cinder cone reactivation, the range of A t of 
5-10 v/m.y. may underestimate the rate of volcanic erup- 

tions that will occur in the future in the YMR. However, A t 
is only intended to represent an estimate of the rate of new 

volcano formation. This is the same as the eruption rate in a 

monogenetic model but less than the eruption rate in a 
reactivated volcano model. In the context of volcanic haz- 

ards for the proposed repository, the spatially dispersed 
character of volcanism gives rise to hazards, rather than the 

reactivation of an existing cinder cone, and A t is defined 
accordingly. 

Variation in the repository area term also results in 

variation in probability estimates. As mentioned above, the 

total area of the repository is currently estimated to be about 

6 km 2. The area radioactive waste occupies within reposi- 
tory depends on design but varies from about 2.3 km 2 for a 
high thermal load repository to 4.6 km 2 for a lower thermal 
load repository [Wilson et al., 1994]. Our calculations have 

been for 8 km2, which includes the total area of the reposi- 
tory and a buffer zone extending 500 m out from the 

repository perimeter. This is done in recognition that satel- 

lite vents and other direct disruptive effects commonly 
extend for about 500 m from the central vent. In addition, 

this buffer accounts for some of the possible deleterious 

effects of volcanism within a short distance of the repository, 

such as adverse impact on the hydrological and geochemical 

setting of the repository. Changing the area term from a = 8 

km 2 to a = 4 km 2 will decrease the range of probability 
estimates by about a factor of two. Using a = 4 km 2 (i.e., 
low thermal load design) to calculate probability of volcanic 

disruption implies that volcanism is a point source and that 

volcanism close to, but not within, a waste storage area has 

no impact on the isolation of radionuclides. Such assump- 

tions do not seem conservative; consequently, a larger area 
term is used. 

In a similar way, increasing the value of a will increase 

probability estimates. This is particularly important when 
probability estimates are made assuming distributed volca- 

noes represent a single event. This was done in data set 2 by 

treating NE and SW Little Cones as single events. As a 

further example, it is possible to consider episodes of cone 

alignment formation, such as the formation of the Quater- 

nary Crater Flat alignment, to be single events. Of course, 
this reduces both the total number of volcanic events in the 

region and the regional recurrence rate A t . However, the 
value of a must be increased to reflect the area impacted by 
the entire cone alignment. 

Experimentation with values of A t and a indicates that 
they have a very limited effect on probability calculations 

when considered together. Although these variables are 

important, spatial variation dominates uncertainty in the 

probability analysis. This salient point illustrates the basic 

advantages of applying spatially nonhomogeneous methods 

to volcanic hazards problems. 
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Conclusions 

Nearest-neighbor estimates of spatial and spatio-tcmporal 
variation in the recurrence rate of basaltic volcanism can 

account, to varying degrees, for several basic features of 
volcano distribution in areal basaltic fields. These features 

include spatial shifts in the locus of volcanism, the clustering 

of volcanoes within the field, and the occurrence of volcano 

alignments. A strength of nearest-neighbor methods is that 

uncertainty can be estimated, both by mapping variation in 

the probability surface across the region of interest and 

through experimentation encompassing the precision and 

accuracy of geochronological information. 

Application of the Hopkins F test and related methods 

shows that cinder cones cluster in the YMR with greater 

than 95% confidence. Assuming a regional Quaternary re- 

currence rate of 5-10 v/m.y., these models estimate proba- 

bilities of disruption are generally between 1 x 10 -4 and 5 x 
10 -4 in 10,000 years, in close agreement with some other 
recent estimates. However, spatial variation in estimated 

recurrence rate is substantial across the YMR, with the 

probability of volcanic eruption varying by more than 2 

orders of magnitude within 20 km of the proposed repository 
site. This variation indicates that refinement of models, 

primarily through the incorporation of additional geological 

information, may alter these probability estimates signifi- 
cantly. 
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