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We perform the first fully consistent analysis of nd scattering at next-to-next-to-leading order in chiral

effective field theory including the corresponding three-nucleon force and extending our previous work, where

only the two-nucleon interaction has been taken into account. The three-nucleon force appears first at this order

in the chiral expansion and depends on two unknown parameters. These two parameters are determined from

the triton binding energy and nd doublet scattering length. We find an improved description of various

scattering observables in relation to the next-to-leading order results especially at moderate energies (E lab

565 MeV). It is demonstrated that the long-standing Ay problem in nd elastic scattering is still not solved by

the leading 3NF, although some visible improvement is observed. We discuss possibilities of solving this

puzzle. The predicted binding energy for the a particle agrees with the empirical value.
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I. INTRODUCTION

Effective field theory has become a standard tool for ana-

lyzing the chiral structure of quantum chromodynamics
~QCD! at low energy, where the perturbative expansion in
powers of the coupling constant cannot be used. The chiral
symmetry of QCD is spontaneously broken and the corre-
sponding Goldstone bosons can be identified with pions, if
one considers the two flavor sector of the up and down
quarks as done here. The pions are not exactly massless as it
would be the case for massless u and d quarks, but are much
lighter than all other hadrons and are therefore sometimes
called pseudo-Goldstone bosons. It is a general property of
Goldstone bosons that their interactions become weak for
small momenta. Chiral perturbation theory ~CHPT! is an ef-
fective field theory which allows to describe the interactions
of pions and between pions and matter fields ~nucleons,
r-mesons, D-resonances, . . . ) in a systematic way. This is
achieved via an expansion of the scattering amplitude in
powers of small external momenta and the pion mass. Pion
loops are naturally incorporated and all corresponding ultra-
violet divergences can be absorbed at each fixed order in the
chiral expansion by counter terms of the most general chiral
invariant Lagrangian.

This perturbative scheme works well in the pion and pion-
nucleon sector, where the interaction vanishes at vanishing
external momenta in the chiral limit. The situation in the
purely nucleonic sector is somewhat different, since the in-

teraction between nucleons is strong and remains strong even

in the chiral limit at vanishing three-momenta of the external

nucleons. The main difficulty in the direct application of the

standard methods of CHPT to the nucleon-nucleon ~NN! sys-

tem is due to the nonperturbative aspect of the problem. One

way to deal with this difficulty has been suggested by Wein-

berg, who proposed to apply CHPT to the kernel of the cor-

responding integral equation for the scattering amplitude,

which can be viewed as an effective NN potential @1,2#.
Following this idea Weinberg was able to demonstrate the

validity of the well-established intuitive hierarchy of the

few-nucleon forces: the two-nucleon interactions are more

important than the three-nucleon ones, which are more im-

portant than the four-nucleon interactions and so on.

The first quantitative realization of the above idea has

been performed by Ordóñez and co-workers, who derived

the 2N potential and performed a numerical analysis of the

two-nucleon system @3#. To calculate an expression for the

effective Hamiltonian for two nucleons the authors of @3#
made use of Rayleigh-Schrödinger perturbation theory ~the

method is closely related to the Tamm-Dancoff approach

@4,5#!, which leads to a non-Hermitian and energy-dependent

potential. The D-degree of freedom has been included ex-

plicitely. The 26 free parameters, many of them being redun-

dant due to the property of antisymmetry of the wave func-

tions, have been fixed from a global fit to the low-energy

observables. Ordóñez et al. obtained qualitative fits to deu-

teron properties as well as quantitative fits to most of the
scattering phase shifts up to E lab5100 MeV.

The property of the effective potential from Ref. @3# of
being explicitly energy-dependent makes it difficult to apply
it to systems different from the two-nucleon one. In fact,
such an energy dependence is not a fundamental feature of
the effective interaction and can be eliminated by certain
techniques, see, e.g., @6#. In @7# we have demonstrated how to
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derive the energy-independent and Hermitian potential from

the chiral Lagrangian using the method of unitary transfor-

mation @8#. The advantage of this scheme is that it is easily
extendable to processes with more than two nucleons and/or
external fields. In @9# we applied the above mentioned
method to calculate the NN scattering observables and deu-
teron properties up to NNLO in the chiral expansion. As
described in Ref. @10#, the nine unknown low-energy con-
stants ~LECs! related to contact interactions and the LECs c3

and c4 related to the subleading ppNN vertices have been
fixed by a fit to the Nijmegen phase shifts @11# in the 1S0 ,
3S12

3D1 , 1P1 , 3P0 , 3P1, 3P22
3F2 channels below E lab

5100 MeV. In contrast to Ref. @3# we did not perform a
global fit to the data, which due to the large dimension of the
parameter space and computational resource limitations
might not lead to the true global minimum in the x2-space
and cannot easily be performed. Instead we introduced an
alternative set of partial-wave projected LECs and consid-
ered each of the above indicated channels separately having
at most three unknown parameters in any given partial wave.
The chiral potential at NNLO has been shown to lead to a
reasonably good description of the NN phase shifts up to
E lab;200 MeV as well as of the deuteron properties. Further
we demonstrated that including the subleading two-pion ex-
change at NNLO allows to improve strongly the NLO results
without introducing additional free parameters associated
with short-range contact interactions, which is a good indi-
cation of consistency and convergence of the chiral expan-
sion. For our choice of the LECs c1,3,4 related to the sublead-
ing ppNN interactions see Ref. @10#. The corresponding NN

potential has been denoted in @10# by NNLO*. The LEC’s c i

chosen in @10# had the values c1520.81 GeV21, c3

521.15 GeV21, and c451.20 GeV21. These have to be
compared with the values extracted from various analyses of
pN scattering at leading and next-to-leading order: c1

520.64 to 21.53 GeV21, c3523.90 to 26.19 GeV21,
and c452.25 to 4.12 GeV21. As explained in @10#, using
average values in these ranges results in a very strong attrac-
tive two-pion exchange potential and, as a consequence, spu-
rious NN bound states appear in the low partial waves. The
latter do not lead to any harm in the NN system ~since they
are outside the range of the validity of the EFT description!
but cause technical difficulties in systems with more than
two nucleons. The NNLO* potential with numerically
smaller values of c3,4 given above leads to an equally good
description of the NN phase shifts as the one with the larger
values resulting from pN scattering but is free from the spu-
rious deeply bound states. Although some arguments have
been given in @10# in favor of the smaller values of these
low-energy constants, a better understanding of the link be-
tween pN scattering and NN two-pion exchange is needed.
In this sense the NNLO* potential should be considered as a
preliminary step. In a future investigation we are going to
study the role of regularization in generating the very strong
TPE, which might shed some light on that problem. Here in
this paper we stick to that choice of NNLO*, drop, however,
the star for simplicity.

The few-nucleon interactions in chiral effective field
theory have been first discussed qualitatively by Weinberg

@2#. The corresponding expressions have been derived later
by van Kolck, who demonstrated that the leading contribu-
tion, which appears at NLO in the chiral expansion of the
Schrödinger equation kernel, cancels against the iteration of
the energy-dependent part of the corresponding NN effective
potential @12#. Such a cancellation in case of the two-pion
exchange 3NF has already been observed earlier @13#. Thus
the first nonvanishing contribution to the 3NF appears at
NNLO. Note that if the D-resonance is included explicitly,
i.e., if the DN mass splitting is considered as a small quantity
of the order of the pion mass, the nonvanishing contributions
to the 3NF are shifted to NLO. Note, however, that such a
scheme is not strictly rooted in QCD because of the decou-
pling theorem @14# ~but can be justified in the large
Nc-expansion, with Nc the number of colors!. For the
energy-independent potential derived with the method of
unitary transformation one observes the vanishing of the
NLO 3NF as well ~as has also been pointed out in a different
context, e.g., in Ref. @15#! and the first nonvanishing contri-
butions appear at NNLO.

In our work @16# we performed a complete analysis of the
low-energy nd scattering at NLO in the chiral expansion
with the NN potential introduced in @9# and also calculated
the triton and a-particle binding energies ~BEs!. Since no
3NF has to be included at this order and all parameters in the
NN potential are fixed from the 2N system, the results for
A.2 systems are parameter-free predictions. We demon-
strated a reasonably good description of the nd elastic scat-
tering data at E lab53 MeV and E lab510 MeV as well as of
some break-up observables at E lab513 MeV while signifi-
cant deviations from the data were found at E lab565 MeV.
The predicted value for the triton BE is in the range compa-
rable to the one based upon various modern phenomenologi-
cal potentials, while for the a-particle BE somewhat larger
deviations have been observed depending on the chosen cut-
off value. Extending the analysis to NNLO requires, as al-
ready stated before, not only the appropriate modification of
the NN interaction, but also the inclusion of the 3NF. In @10#
we presented an incomplete NNLO analysis of the 3N sys-
tem based upon the NN interaction at NNLO and without
inclusion of the 3NF @76#. In this work we present the com-
plete NNLO analysis of the low-energy nd scattering includ-
ing the chiral 3NF. We also predict the a-particle binding
energy. This is the first time that the complete chiral 3NF has
been included in few-body calculations. Some pioneering
steps in that direction based upon the hybrid approach have
been done in Ref. @17#.

Our paper is organized as follows. In Sec. II we discuss
the structure of the chiral 3NF and demonstrate that it de-
pends on two parameters. The partial-wave decomposition of
the new terms in the 3NF is given in the Appendix. In Sec.
III we discuss how these unknown parameters can be fixed
from low-energy 3N data. Then we show our results for vari-
ous elastic and break-up nd scattering observables as well as
for triton and a-particle BEs in Sec. IV. Conclusions and an
outlook are given in Sec. V.

II. THE CHIRAL THREE-NUCLEON FORCE AT

NEXT-TO-NEXT-TO-LEADING ORDER

The chiral 3NF at NNLO is given by the two-pion ex-
change ~TPE!, one-pion exchange ~OPE! with the pion emit-
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ted ~or absorbed! by 2N contact interactions and 3N contact
interactions, see Fig. 1. All diagrams include apart from the
leading vertices with D i50 one insertion of interactions with
D i51, where the chiral dimension is defined as

D i5d i1
1
2 n i22. ~1!

Here d i and n i denote the number of derivatives ~or pion
mass insertions! and nucleon fields for a vertex of type i.
This quantity has been first introduced by Weinberg and is
especially useful in the few-nucleon sector. In the pion and
pion-nucleon sectors one usually uses a different definition.

The contribution from the first graph in Fig. 1 is given ~in
the 3N cms! by @12# ~here and in what follows we use the
usual notation for expressing the nuclear force: the quantity

VTPE
3NF is an operator with respect to spin and isospin quantum

numbers and a matrix element with respect to momentum
quantum numbers!:

VTPE
3NF

5 (
i5” j5” k

1

2
S gA

2Fp
D 2 ~sW i•qW i!~sW j•qW j!

~qW i
2
1M p

2 !~qW j
2
1M p

2 !
F i jk

abt i
at j

b ,

~2!

where qW i[pW i82pW i ; pW i (pW i8) are initial ~final! momenta of the

nucleon i and

F i jk
ab

5dabF2

4c1M p
2

Fp
2

1

2c3

Fp
2

qW i•qW jG
1(

g

c4

Fp
2

eabgtk
gsW k•@qW i3qW j# .

Here, gA51.26 is the axial-vector coupling constant, Fp

592.4 MeV the weak pion decay constant and the c1,3,4 are
the LECs from the chiral Lagrangian of the order D51 @18#,
which also enter the corresponding expressions for the sub-
leading two-pion exchange in the 2N potential. The form ~2!
can be shown to match with the low-momentum expansion
of various existing phenomenological 3NFs provided they
respect chiral symmetry. This issue is extensively discussed
in @19#.

We will now derive the expressions for the OPE and con-
tact parts of the 3NF, see also @12#, and show that due to the
Pauli principle only one independent OPE term and one in-
dependent pure contact term appear in the 3NF @77,20#.

Let us start with the OPE contribution and discuss first the
structure of the corresponding pNNNN-vertex of dimension
D51. After performing the nonrelativistic reduction for the
nucleon field ~or, equivalently, after integrating out the lower
components in the heavy-baryon formalism! one encounters
three different structures in the effective Lagrangian ~in the
rest-frame system of the nucleons!:

L
(1)

5a1~N†N !~N†sW tN !•¹W p1a2~N†sW N !~N†
tN !•¹W p

1a3~N†sW tN !3~N†sW tN !•¹W p, ~3!

where p and N denote the pion and nonrelativistic nucleon
fields, s i and t i are Pauli spin and isospin matrices. The
symbol • (3) denotes the simultaneous scalar ~vector! prod-
uct in the ordinary and isospin-space. Note that the terms
with derivatives acting on the nucleon fields are eliminated
by partial integration. The corresponding 3N force at NNLO
is of the form

VOPE
3NF} (

i5” j5” k

~qW k•sW k!
qW ktk

qW k
2
1M p

2
$a1sW iti1a2sW itj

1a3~sW i3sW j!~ti3tj!%. ~4!

Since we treat nucleons as identical particles, the few-
nucleon states uC& are antisymmetric. For these antisymmet-

ric states the operators VOPE
3NF can be further simplified. Be-

cause the force is symmetric with respect to an interchange
of particles i and j, the relation

VOPE
3NFuC&5Ai jVOPE

3NFuC&5VOPE
3NF

Ai juC& ~5!

holds and therefore one can work equally well with an anti-
symmetrized force. Here Ai j is the antisymmetrization op-
erator in the space of two nucleons i and j, which reads

Ai j5

12P i j

2
, ~6!

where P i j is the corresponding permutation operator,
P i jui j&5u j i& , given by

P i j5

11sW i•sW j

2

11ti•tj

2
. ~7!

In addition, one has to interchange the corresponding
nucleon momenta. It is an easy exercise to apply the anti-
symmetrization operator Ai j to that pair i j of the 3NF in Eq.
~4! which interacts via the contact terms and to see that all
three different structures lead to the same expression.

In the case of the purely contact 3NF without derivatives
we proceed in an analogous way. The most general structure
of such 3NF which satisfies the usual symmetry require-
ments ~rotational and isospin invariance, parity invariance
and invariance under time reversal transformation! is given
by

FIG. 1. Three-nucleon force at NNLO: TPE, OPE and contact

interaction. Solid and dashed lines are nucleons and pions, respec-

tively. Heavy dots denote leading vertices with D i50 and solid

rectangles correspond to vertices of dimension D i51.
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Vcont
3NF

5 (
i5” j5” k

$b11b2sW i•sW j1b3ti•tj

1b4~sW i•sW j!~ti•tj!1b5~sW i•sW j!~tj•tk!

1b6~@sW i3sW j#•sW k!~@ti3tj#•tk!%. ~8!

The antisymmetrization operator Ai jk in the space of three
nucleons can be expressed as

Ai jk5

~11P i jP jk1P ikP jk!

3

~12P jk!

2
. ~9!

Acting with the operator Ai jk on the 3NF in Eq. ~8! and
performing a straightforward, but somewhat tedious simpli-
fication one ends up with a single structure just as in the
previously considered case. We thus have shown that it is
sufficient to consider only one OPE and one pure contact
term in the chiral 3NF at NNLO, since all other terms have
due to the Pauli principle precisely the same effect on the S

matrix. In what follows, we will use the following form for
these 3NF contributions:

VOPE
3NF

52 (
i5” j5” k

gA

8Fp
2

D
sW j•qW j

qW j
2
1M p

2
~ti•tj!~sW i•qW j!,

Vcont
3NF

5

1

2 (
j5” k

E~tj•tk!, ~10!

where D and E are the corresponding LECs from the La-
grangian of dimension D51:

L
(1)

52

D

4Fp
~N†N !~N†sW tN !•¹W p

2

1

2
E~N†N !~N†

tN !•~N†
tN !. ~11!

Note that dimensional scaling arguments allow one to ex-
press the LECs D and E as @21#

D5

cD

Fp
2 Lx

, E5

cE

Fp
4 Lx

, ~12!

where cD and cE should be numbers of order one and Lx is
the chiral symmetry breaking scale of the order of the r
meson mass. Here and in what follows we use Lx

5700 MeV. It has been demonstrated in @22# that all corre-
sponding numbers for 2N contact interactions at NLO and
NNLO are natural for the cutoff values considered. It should
also be understood that a more precise analysis of the
naturalness would require also taking into account symmetry
factors in the Lagrangian as well as additional factors result-
ing from insertions of spin and isospin matrices @78#.

III. FIXING THE PARAMETERS OF THE

THREE-NUCLEON FORCE

We now proceed to fix the unknown LECs cD and cE

from 3N low-energy observables. To that aim we solve the
3N Faddeev equations for the bound state and for nd scat-
tering. They have the well known form @23,24#

c5G0tPc1~11G0t !G0V3NF
(1) ~11P !c , ~13!

in case of the bound state. Here V3NF
(1) is that part of the

three-nucleon force which singles out one particle ~here par-
ticle 1! and which is symmetrical under the exchange of the
other two particles. The complete 3NF is decomposed as

V3NF5V3NF
(1)

1V 3NF
(2)

1V3NF
(3) . ~14!

Further, c denotes the corresponding Faddeev component, t

is the two-body t-operator, G051/(E2H0) is the free propa-
gator of three nucleons and P is a sum of a cyclical and
anticyclical permutation of the three particles. In case of nd

scattering we follow our by now standard path @25,26# and
first calculate a quantity T related to the 3N break-up process
via the Faddeev-type equation:

T5tPf1~11tG0!V3NF
(1) ~11P !f1tPG0T

1~11tG0!V3NF
(1) ~11P !G0T , ~15!

where the initial state f is composed of a deuteron and a
momentum eigenstate of the projectile nucleon. The elastic
nd scattering operator is then obtained as

U5PG0
21

1PT1V3NF
(1) ~11P !~11G0T !, ~16!

and the break-up operator via

U05~11P !T . ~17!

These equations are accurately solved in momentum space
using a partial wave decomposition. For details see
@23,27,28#. The corresponding partial wave decomposition of
the chiral 3NF is given in the Appendix. Equations ~13! and
~15! have to be regularized, since the expressions for the
3NF ~2! and ~10! are only meaningful for momenta below a
certain scale. We regularize the V3NF in the way analogous to
the one adopted in the analysis of the two-nucleon system
@9#:

V3NF~pW ,qW ;pW 8,qW 8!→ f R~pW ,qW !V3NF~pW ,qW ;pW 8,qW 8! f R~pW 8,qW 8!,
~18!

where pW and qW (pW 8 and qW 8) are Jacobi momenta of the two-
body subsystem and spectator nucleon before ~after! the in-

teraction. The regulator function f R(pW ,qW ) is chosen in the
form

f R~pW ,qW !5expF2S 4p2
13q2

4L2 D 2G , ~19!
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so that it coincides with the exponential function f R
expon(pW ) of

Ref. @9# for qW 50. Clearly, this is not the only possible choice
for that function. The final results for low-energy observables
are insensitive to the choice of the regulator function pro-
vided that it does not violate the appropriate symmetries.
Note that the values of the LECs cD and cE ‘‘run’’ with the
cutoff L to compensate the changes in the observables,
which are cutoff independent ~up to the accuracy at the order
in the chiral expansion!. The dependence of the LECs on the
cutoff L is governed by renormalization group equations, as
is always the case in quantum field theory. We choose L in
the 3NF equal to L in the NN interaction. The following
study has been carried through with the minimal and maxi-
mal momentum cutoffs, L5500 and 600 MeV, for which
our NN force has been defined in @10#. In choosing the range
of L we follow closely the strategy suggested by Lepage
@29#, according to which L should be large enough to ac-
count for relevant long-range physics ~in our case one- and
two-pion exchanges!. Further, one should still stay below the
mass scale associated with the states not included in the EFT
explicitly. To be more specific, the upper bound L
5600 MeV results if we require that no unphysical deeply

bound states appear in low NN partial waves. Although we
could, in principle, further reduce the cutoff range below L
5500 MeV, we refrain from doing that since with our
choice of the regulator function this would significantly af-
fect observables at moderate energies we are interested in.
For example, the NN potential V(p ,p) is reduced by ;25%
for p5306 MeV, which corresponds to E lab;200 MeV due
to multiplication with the regulator function with L
5500 MeV. Notice that such a reduction shows up, e.g., in
high partial waves, where the T matrix is essentially given by
V(p ,p). Obviously, for smaller values of L the effects of the
momentum cutoff become even more dramatic, so that one is
restricted to smaller energies. It would be interesting in the
future to implement a different regulator function which
would allow for a larger variation of L without such restric-
tions on the range of applicability of the EFT.

The low-energy constants cD and cE enter the expressions
for the chiral 3NF at NNLO. The constant cE can only be
obtained from 3N data, while cD can be best determined in
the 3N system or, for larger momentum transfer, in pion
production in NN collisions @30#. One important part of this
work is to outline a feasible way to fix these parameters. We
will now show that the LECs cD and cE can be determined

TABLE I. 3H and 4He BE at NLO and NNLO of the chiral expansion ~for the cutoff range considered

throughout! compared to ‘‘experimental’’ pseudo-BE ~see text!. Apart from the BEs E ~in MeV!, we also give

the kinetic energies T ~in MeV! as well as expectation values of 2N and 3N forces VNN and V3N , respec-

tively ~in MeV!.

3H 4He

L E T VNN V3N E T VNN V3N

NLO 500 28.54 30.76 239.30 229.57 61.42 291.00

600 27.53 39.24 246.77 223.87 77.61 2101.47

NNLO 500 28.68 31.07 239.43 20.318 229.51 61.83 289.59 21.753

600 28.68 34.44 242.41 20.712 229.98 71.49 297.44 24.025

Expt. 28.68 229.860.1

FIG. 2. Correlation between the LECs cE and cD after adjust-

ment to the triton pseudo-BE.

FIG. 3. nd doublet scattering length 2and as function of the

constant cD .
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using the 3H BE and the nd doublet scattering length 2and ,
which are bona fide low-energy observables. Notice that the
choice of low-energy observables used to fix the constants in
the 3NF is by no means unique. The contact force in the
second line of Eq. ~10! only contributes to the spin-doublet S

wave. Therefore, ideally one would like to fix cE from the
corresponding phase shift. Equivalently, one can require to
reproduce the scattering length in that channel, analogously
to what is usually done in the two-nucleon sector. It is more
difficult to determine the LEC cD , which contributes to all
partial waves. One possible way to proceed would be to per-
form a x2 analysis of the low-energy scattering observables.
Alternatively, one might chose a different low-energy ob-
servable which is sensitive to the unknown LEC as a second
constraint. We follow here this second path and take the tri-

ton binding energy as such an observable. Note that one
could equally well use, e.g., the a-particle binding energy or
the differential cross section as the second constraint. We
will demonstrate below that our way of fixing the LECs is
consistent with the above mentioned observables.

Since for the time being we have no nn and pp forces at
our disposal ~these have been calculated in chiral EFT to
NLO so far @31#! and both observables we are interested in
are known to depend on the difference between np and nn

forces, we decided to use np/nn corrected data as input to
our fitting procedure. To this aim, we compare results using
phenomenological forces with the proper np and nn forces
and with a np force only. Several combinations of NN and
3N forces have been adjusted to describe the triton BE ~see
@32#!. We used AV18 @33# augmented by the Urbana-IX 3NF

TABLE II. Contribution of the different terms of the 3NF to the complete 3NF expectation value for 3H

and 4He. All energies are given in MeV.

3H 4He

L c terms D term E term All c terms D term E term All

NNLO 500 20.39 0.81 20.74 20.32 22.00 3.93 23.69 21.75

600 20.73 20.12 0.13 20.71 23.81 20.84 0.63 24.03

FIG. 4. nd elastic scattering observables at 3 MeV at NLO ~left

column! and NNLO ~right column!. The filled circles are nd

pseudodata based on @63,64# while the triangles are true nd data

@65#. The bands correspond to the cutoff variation between 500 and

600 MeV. The unit of the cross section is mb/sr.

FIG. 5. nd elastic scattering observables at 10 MeV at NLO ~left

column! and NNLO ~right column!. The filled circles are nd

pseudodata based on @64,66,67# while the triangles are true nd data

@68#. The bands correspond to the cutoff variation between 500 and

600 MeV. The unit of the cross section is mb/sr.
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@34# and CD-Bonn 2000 @35# augmented by the TM99’ 3NF
@36#. These models come along with nn forces, which are
adjusted to the nn scattering length. Replacing these nn

forces by the np ones, we find an increased binding energy
of 8.65 and 8.72 MeV, respectively. From those we estimate
a np corrected ‘‘experimental’’ pseudo-BE of 8.68 MeV
@79#.

The ‘‘experimental’’ pseudovalue for 2and has been deter-
mined using the NN force CD-Bonn alone. The correspond-
ing shift of 2and is 20.19 fm. This together with the experi-
mental value 2and50.6460.04 fm leads to the
‘‘experimental’’ pseudovalue 2and50.4560.04. It should be
understood that the uncertainty in the estimated pseudovalue
of the scattering length is even larger due to the error in the
shift resulting from replacement of the nn force by the np

one. We however refrain from further discussion of that is-
sue.

For the chiral interactions at NNLO two unknown LECs
enter into the 3N bound state Faddeev equation: cD and cE .
Both affect the BE strongly. Imposing the condition that the
Hamiltonian describes the pseudo-BE, we find a correlation
between both LECs, which is displayed in Fig. 2. The un-
symmetric interval shown in this figure is a consequence of
the fact that the doublet scattering length favors positive val-
ues for cD . The correlations have a very different behavior

for both cutoff values. For L5500 MeV the functional form
turns out to be nearly linear. This is not the case for L
5600 MeV. Later on we will demonstrate that this different
behavior of the correlations for both cutoff values does not
show up in observables.

One needs a second condition to fix both LECs uniquely.
The nd doublet scattering length 2and is known to be corre-
lated with the 3H BE. This correlation is known as the Phil-
lips line @37#. We investigated it in the context of chiral
nuclear forces. It turns out that the scattering length depends
on cD even if cE is chosen according to the correlation in
Fig. 2 with the fixed value for the triton BE. This indicates
that the correlation between the doublet scattering length
2and and the 3H BE is not exact. In fact, already for con-
ventional NN and 3N forces, there was a slight scatter
around an average line correlating the 3H and 2and values
for different nuclear forces @80,38#. The Phillips line has re-
cently been rediscovered within pion-less EFT @39–41#. At

FIG. 6. nd elastic scattering observables at 65 MeV at NLO ~left

column! and NNLO ~right column!. The filled circles are pd data

@63,69#. The bands correspond to the cutoff variation between 500

and 600 MeV. The unit of the cross section is mb/sr.

FIG. 7. Minima of the cross section ~in mb/sr! of elastic nd

scattering at 3 MeV ~upper panel!, 10 MeV ~panel in the middle!,

and 65 MeV ~lower panel! at NLO and NNLO. The filled circles are

nd pseudodata at 3 and 10 MeV and true pd data at 65 MeV. The

bands correspond to the cutoff variation between 500 and 600 MeV.

The dotted line at 65 MeV shows the NNLO result with cD

523.0 and L5500 MeV.
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LO and NLO in the pion-less EFT the 3NF is given by a
single contact term without derivatives and thus depends on
just one free parameter. The Phillips line results from varia-
tion of this parameter and is in agreement with results based
upon phenomenological interactions. Going to higher orders
in the low-momentum expansion one encounters contribu-
tions to the 3NF with more derivatives and the exact corre-
lation between 2and and 3H BE observed at LO and NLO is
broken, see @40# for more details. As discussed above, in the
EFT with explicit pions the first nonvanishing 3NF at NNLO
already depends on two free parameters and thus the Phillips
line is already broken at this order in the chiral expansion.
This allows to determine cD ~and at the same time cE) by a
fit to the ‘‘experimental’’ pseudodatum for the doublet scat-
tering length. In Fig. 3 the gray horizontal band indicates the
scattering length range in agreement with the experimental
error bar. Our theoretical predictions for L5500 and
600 MeV are shown against cD . We read off from Figs. 2
and 3 the following values:

cD53.6, cE50.37, L5500 MeV,

cD51.8, cE520.11, L5600 MeV. ~20!

Notice that the sign of the determined LEC cD agrees with

the one found in @30# from P-wave pion production in the

proton-proton collisions. Note that for comparing our results

with the ones of @30# one should take into account different

conventions with respect to gA . Also it should be understood

that only a qualitative comparison ~if at all! for the value of

cD can be performed due to different regularization schemes

used in our work and in @30#. We are aware of the fact that

we can only obtain a first estimate of cD and cE . The most

important uncertainties are the errors due to the np force

corrections and the experimental error bar of 2and . In prin-

ciple the errors due to these uncertainties with respect to

observables could be estimated performing calculations with

several cD and cE combinations consistent with these error

bars. In view of upcoming new data for 2and @42,43# and

work on the isospin breaking in our formalism, we postpone

such an analysis. In summary we emphasize that the break-

down of the Phillips line correlation enables us to determine
the LECs from the 3N BE and the nd doublet scattering
length. The result is a parameter free 3N Hamiltonian. In the
next sections we will investigate the results for the 4N bound
state and 3N scattering based on this Hamiltonian.

FIG. 8. nd break-up cross section in (mb MeV21 sr22) along

the kinematical locus S ~in MeV! at 13 MeV in comparison to

predictions at NLO ~light shaded band! and NNLO ~dark shaded

band! in chiral effective field theory. In the upper row a final state

interaction configuration is shown, in the middle one a quasifree

scattering configuration ~both in comparison to pd data! and in the

lower one a space-star configuration ~upper data nd , lower data

pd). The precise kinematical description can be found in Ref. @25#.

pd data are from Ref. @70#, nd data from Refs. @71,72#.

FIG. 9. nd break-up cross section in (mb MeV21 sr22) and

nucleon analyzing power along the kinematical locus S ~in MeV! at

65 MeV in comparison to predictions at NLO ~light shaded band!

and NNLO ~dark shaded band! in chiral effective field theory. Sym-

metric space-star configuration is shown. pd data are from Ref.

@73#.
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IV. PREDICTIONS FOR THREE- AND FOUR-NUCLEON

SYSTEMS

We start with the prediction for the a-particle BE. This is
based on the solution of Yakubovsky equations @44# as de-
scribed in @32,45#. The results are fully converged and accu-
rate to 2 keV for the 3N and 20 keV for the 4N system. The
convergence with respect to partial waves is much faster for
the chiral interactions than for the conventional ones. This is
a consequence of the momentum cutoffs, which suppress the
high momentum components exponentially. The calculations
of the binding energy for the chiral interactions are truncated
at a two-body total angular momentum in the subsystem of
jmax56 for the 3N system. For the 4N system we truncate
the partial wave decomposition by the restriction that the
sum of all three angular momentum quantum numbers is

below lsum
max

510. Calculations for conventional forces require

lsum
max

514 ~for details see @32#!.
Before we comment on our results for the BEs, we need

to define a Coulomb and np corrected a-particle BE. Again,
based on AV181Urbana-IX and CD-Bonn1TM99’, we cal-
culated BEs for the a-particle of 28.5 MeV and 28.4 MeV.
Replacing the pp and nn forces by np forces and omitting
the Coulomb force, the BEs change to 29.9 MeV and 30.0

MeV. From these results we estimate an average change of
the BE of 1.560.1 MeV. The experimental a-particle BE is
28.3 MeV. Thus we compare our results for the chiral inter-
action to an ‘‘experimental’’ pseudo-BE of 29.860.1 MeV.

In Table I this value is shown together with the ‘‘experi-
mental’’ pseudo-BE for 3H in comparison to the NLO and
NNLO results for 3H and 4He. The BE is in general very
sensitive to small changes of the interaction, as it comes out
as the difference of the large kinetic and potential energies.
As a consequence, we found a rather large dependence of the
BEs on the cutoff at NLO @16# (;19% for the a-particle!.
At NNLO the 3H BE agrees with the ‘‘experimental’’ value
by construction. Because of the strong correlation of 3N and
4N BEs, known as Tjon-line @46#, one can expect a rather
small cutoff dependence of the a-particle BE, too. This is
indeed the case. However, we would like to mention that
3NFs break this correlation @32# and we observe a cD depen-
dence of the a-particle BE ~1 MeV change in the range cD

521.511.5 for L5500 MeV). We are also very encour-
aged by the fact that the a-particle BE for both cutoffs
comes out close to the ‘‘experimental’’ value. Note also that
no 4NF contributes at NNLO. Therefore all predictions for
A.3 at NNLO are parameter free.

Additionally, we list the expectation values of the differ-

FIG. 10. nd break-up cross section in (mb MeV21 sr22) and

nucleon analyzing power along the kinematical locus S ~in MeV! at

65 MeV in comparison to predictions at NLO ~light shaded band!

and NNLO ~dark shaded band! in chiral effective field theory. Sym-

metric forward star configuration is shown. pd data are from Ref.

@73#.

FIG. 11. nd break-up cross section in (mb MeV21 sr22) and

nucleon analyzing power along the kinematical locus S ~in MeV! at

65 MeV in comparison to predictions at NLO ~light shaded band!

and NNLO ~dark shaded band! in chiral effective field theory. Qua-

sifree scattering configuration is shown. pd data are from Ref. @73#.
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ent parts of the Hamiltonian in Table I. It is important to

realize that those quantities are not observable. We see that
the relative contributions of the NN and 3NF parts are com-
parable in the 3N and 4N system. We also observe that the
ratio of NN and 3NFs strongly depends on the cutoff chosen.
This is elaborated in more detail in Table II, where the 3NF
expectation value is split in the contribution from the 2p
exchange (c terms!, 1p exchange (D term! and contact term
(E term!. The contributions of D and E term cancel to a large
extent in both nuclei and for both cutoffs. The change in sign
of the E term changing from L5500 MeV to L
5600 MeV has to be expected, since cE changes its sign,
too. More surprising is the change in sign for the D term.
This has to be caused by a qualitatively different action of
the D term operator on the wave functions for L
5500 MeV and L5600 MeV.

We now switch to scattering observables. Most of the 3N

scattering data have been obtained for the pd system. In the
case of scattering the isospin breaking effects in the nuclear
force are believed to be of minor importance. We have
checked this assumption explicitly for elastic scattering ob-
servables using the CD Bonn potential with np and nn and
with only np forces to evaluate corresponding effects. Only
in two cases at 3 MeV, namely, for T20 ~at forward angles

data are shifted upwards! and for T21 ~data are shifted down-

wards at angles below 120°), significant effects were found.
The np-force corrections are small for all considered elastic
scattering observables at 10 MeV and nearly invisible at 65
MeV. Therefore we refrain from correcting data for this ef-
fect. In contrast, there are visible Coulomb corrections nec-
essary at these energies. We are not able to take the Coulomb
force into account in the 3N continuum. For the Coulomb
corrections we rely on the work of the Pisa collaboration,
who can calculate low energy scattering observables based
on the full AV18 interaction including the Coulomb force
@47,48#. The difference of these full calculations and calcu-
lations without Coulomb force serves as our estimate of the
Coulomb corrections. In the following, all pd elastic scatter-
ing data at 3 MeV and 10 MeV have been corrected by this
amount. For 65 MeV we did not correct the data assuming
that Coulomb corrections are small except in forward direc-
tion. For the break-up we refrained from any corrections be-
cause of the lack of reliable theoretical calculations taking
the Coulomb force into account.

The nd scattering observables have been studied very in-
tensively using the modern phenomenological interactions
@25,48#. In general, the description of the data by these mod-
els is very good at low energies with a few prominent excep-
tions. The most famous one entered the literature as Ay

FIG. 12. nd break-up cross section in (mb MeV21 sr22) and

nucleon analyzing power along the kinematical locus S ~in MeV! at

65 MeV in comparison to predictions at NLO ~light shaded band!

and NNLO ~dark shaded band! in chiral effective field theory. Qua-

sifree scattering configuration is shown. pd data are from Ref. @73#.

FIG. 13. nd break-up cross section in (mb MeV21 sr22) and

nucleon analyzing power along the kinematical locus S ~in MeV! at

65 MeV in comparison to predictions at NLO ~light shaded band!

and NNLO ~dark shaded band! in chiral effective field theory. Col-

linear configuration is shown. pd data are from Ref. @74#.
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puzzle @49,50#, which is related to the fact that this observ-
able is underpredicted in the maximum by realistic high-
precision models of the nucleon interactions. In this paper
we do not compare the new results to traditional ones. That
has been done in @10# for the NLO and NNLO interactions
without 3NF part. In this case, the NNLO interaction com-
pares quite well to the results @51# based on the highly accu-
rate phenomenological forces. In the following we would
like to concentrate on the complete analysis at NNLO.

In Figs. 4, 5, and 6 we show a comparison for few se-
lected elastic scattering observables at 3, 10, and 65 MeV,
respectively. The left column shows our results for NLO @52#
in comparison to the data and the right column the new
NNLO results compared to the same data. The bands are
given by the cutoff variation in the range from L5500 and
L5600 MeV. They may serve as an estimation of the ef-
fects due to neglected higher order terms in the chiral expan-
sion. Since we are not able to vary the cutoff in a much
larger range for the reasons explained above, a better estima-
tion of the theoretical uncertainty would be to incorporate the
N3LO terms and to see effects in observables by varying the
corresponding coupling constants in the natural range. We
however refrain from doing such a study here.

The differential cross section is presented in the first row
of Figs. 4, 5, and 6. Additionally, we give a more detailed

look at the cross section minima in Fig. 7. At 3 MeV and 10
MeV we see that NLO and NNLO predictions overlap. The
cutoff dependence is already small at NLO and nearly van-
ishes at NNLO. This strong reduction of the cutoff depen-
dence of this observable at NNLO is expected and can easily
be understood. Indeed, at least at low energy the differential
cross section is dominated by the 2N S waves. The situation
is more interesting at 65 MeV. In the minimum of the cross
section one observes large differences between the NLO and
NNLO results ~also to the incomplete NNLO calculation, see
@10#!. The cutoff dependence of the NLO results is more
visible than at lower energies, and is again strongly reduced
at NNLO. The NNLO results are in agreement with the data
except for forward directions, which are sensitive to the Cou-
lomb force. Note that the improvement at NNLO is not only
due to the fact that the NNLO 2N potential leads to a much
more accurate description of the data especially at moderate
energies @10#, but also due to the chiral 3NF. This is demon-
strated by the dotted line in the lower panel of Fig. 7, which
corresponds to cD523.0 at L5500 MeV ~and a cE chosen
appropriately to reproduce the 3N binding energy! @81#. For
this value of cD the prediction in the minimum is in disagree-
ment with the data. It is gratifying to see that fixing the LEC
cD from the scattering data at zero energy we are able to
describe the cross section minimum at 65 MeV. We consider

FIG. 14. nd break-up cross section in (mb MeV21 sr22) and

nucleon analyzing power along the kinematical locus S ~in MeV! at

65 MeV in comparison to predictions at NLO ~light shaded band!

and NNLO ~dark shaded band! in chiral effective field theory. Col-

linear configuration is shown. pd data are from Ref. @74#.

FIG. 15. nd break-up cross section in (mb MeV21 sr22) and

nucleon analyzing power along the kinematical locus S ~in MeV! at

65 MeV in comparison to predictions at NLO ~light shaded band!

and NNLO ~dark shaded band! in chiral effective field theory. Col-

linear configuration is shown. pd data are from Ref. @74#.
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this to be an important indication of consistency in the de-
termination of the LECs cD and cE .

As already pointed out before, the most problematic ob-
servable of nd elastic scattering is Ay , which is shown in the
second row of Figs. 4, 5, and 6. First of all we would like to
stress that vector and tensor analyzing powers are defined as
differences of polarized cross sections and are rather small at
low energies, so that larger theoretical errors for these ob-
servables have to be expected. At energies 3 and 10 MeV we
see visible deviations of our predictions for Ay from the data
for both NLO and NNLO. It is well known @53# that this
observable is extremely sensitive to the 3P-wave phase
shifts in the NN system. Although at NLO chiral predictions
at 3 MeV seem to be in agreement with the data, this cannot
be considered as a final result in chiral EFT. Indeed, the
3P-wave phase shifts in the NN system are only described at
low energies with an accuracy of about 5% @10#, which in-
dicates that large corrections to nd Ay at higher orders in the
chiral expansion are possible. At NNLO the 3P-wave phase
shifts come out with a significantly smaller error of about 2%
~at T lab510 MeV) and we found in @10# that Ay is underpre-
dicted if one only uses the 2N forces, just as in the case of
high-precision potential models. As one sees from Figs. 4
and 5, we do not solve the Ay puzzle performing the com-
plete NNLO analysis and including the 3NF. It is important

to stress that in principle, one could try to solve this puzzle
by the NNLO chiral 3NF. Indeed, instead of fixing the un-
known LECs cD and cE to the triton binding energy and the
doublet scattering length, one could think about requiring a
good description of Ay at, say, 3 MeV as being one of the
two conditions needed. We found, however, that Ay is not
very sensitive to the choice of the LECs cD and cE , if the
two are adjusted to reproduce the triton binding energy. We
were not able to find values of these coefficients in the natu-
ral range, which would simultaneously describe Ay at 3 MeV
and the triton BE @82#. In particular, it turns out that negative
values of cD (cE being fixed according to Fig. 2! lead to a
slight improvement for Ay . For example, at E lab53 MeV
one observes a shift in the maximum in Ay by 12.6% for
cD523 and L5500 MeV compared to the result obtained
without 3NF of the D and E types, and which still deviates
from the data by more than 10%. Taking larger negative
values of cD does not lead to further significant improve-
ment. Note also that such negative values of the LEC cD are
inconsistent with the data for the nd doublet scattering
length, a-particle binding energy as well as for the differen-
tial cross section at moderate energies. This significant dis-
agreement with the data for Ay at low energies may be an
indication that higher order effects are still important for this
observable. On the other hand, it can be also a hint that the

FIG. 16. nd break-up cross section in (mb MeV21 sr22) and

nucleon analyzing power along the kinematical locus S ~in MeV! at

65 MeV in comparison to predictions at NLO ~light shaded band!

and NNLO ~dark shaded band! in chiral effective field theory. Col-

linear configuration is shown. pd data are from Ref. @74#.

FIG. 17. nd break-up cross section in (mb MeV21 sr22) and

nucleon analyzing power along the kinematical locus S ~in MeV! at

65 MeV in comparison to predictions at NLO ~light shaded band!

and NNLO ~dark shaded band! in chiral effective field theory. Un-

specific configuration is shown. pd data are from Ref. @75#.
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Ay puzzle is related to an insufficient knowledge of the low-
energy 3P j NN phases @54#. It will be interesting, as a next
step, to include 1/mN corrections to the interactions and to
study their effect especially on Ay . At 65 MeV the decription
of Ay is much better, which is in agreement with results
based upon the phenomenological nuclear forces.

The lower three rows of Figs. 4, 5, and 6 show the tensor
analyzing powers T20 , T21 , and T22 . At 3 MeV and 10 MeV,
we find in general that the NNLO predictions stay within the
NLO band. The cutoff dependence clearly shrinks, which is a
good indication of convergence of the chiral expansion. Al-
together the agreement with the data is good except for T20

and T21 at 10 MeV @83#. Notice that similar results have been
reported in @55# based upon the combination of the AV18 2N
and the Urbana IX 3N forces, where these observables have
been calculated in the pd system and the Coulomb force has
been taken into account. At 65 MeV, the situation is compa-
rable to the one for the cross section. While the NLO predic-
tions at this energy deviate significantly from the data, the
NNLO results are in a much better agreement. Unfortunately,
the quality of the data does not allow to draw more precise
conclusions and especially here new high-precision data are
needed.

Let us now switch to break-up observables. We performed
calculations at two energies, 13 and 65 MeV, where a lot of

pd data exist. As already pointed out above, there are no
reliable Coulomb corrections available for the break up.
Therefore we show the noncorrected pd data in comparison
to our nd calculations. Note that for the space star configu-
ration at 13 MeV presented in Fig. 8, it is shown that the nd

and pd cross section data strongly deviate indicating that
Coulomb effects can become important at least in some con-
figurations. Presumably, the Coulomb corrections are smaller
at 65 MeV.

At 13 MeV we demonstrate in Fig. 8 chiral predictions for
the cross section in the often investigated final-state interac-
tion peak, quasifree scattering and space-star configurations,
which have also been considered in the NLO analysis @16#.
For a general discussion on various break-up observables
and configurations the reader is referred to Ref. @25#. As
demonstrated in Fig. 8, the NLO and NNLO results essen-
tially agree at 13 MeV. They describe the configuration
dominated by FSI peaks quite well ~for a more detailed com-
parison the angular openings of the detectors have to be
taken into account, see @25#!. The present theory for the
break-up configuration including a QFS geometry fails in the
central maximum. This might be due to Coulomb force ef-
fects. The third configuration, the so-called space-star, is one
of the long standing puzzles of 3N scattering @56–60#. Simi-
lar to results with phenomenological interactions, we

FIG. 18. nd break-up cross section in (mb MeV21 sr22) and

nucleon analyzing power along the kinematical locus S ~in MeV! at

65 MeV in comparison to predictions at NLO ~light shaded band!

and NNLO ~dark shaded band! in chiral effective field theory. Un-

specific configuration is shown. pd data are from Ref. @75#.

FIG. 19. nd break-up cross section in (mb MeV21 sr22) and

nucleon analyzing power along the kinematical locus S ~in MeV! at

65 MeV in comparison to predictions at NLO ~light shaded band!

and NNLO ~dark shaded band! in chiral effective field theory. Un-

specific configuration is shown. pd data are from Ref. @75#.
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even fail to describe the nd data. pd and nd data are quite
different and it remains open whether Coulomb corrected
data would fall on the theory. We observe @25# the tendency
that with conventional NN forces theory is already rather
close to the pd data at 19 MeV and even closer at 65 MeV.
This suggests that presumably the discrepancy to pd data is
due to Coulomb force effects.

At 65 MeV we decided to present the results for the same
configurations as the ones studied recently in the context of
phenomenological nuclear forces @56,57# in order to enable a
direct comparison between these two different approaches.
We follow the lines of @56,57# and include, in addition to the
cross section, also Ay . The situation at 65 MeV seems in
general to be very promising as documented in Figs. 9–20.
The improvements in the description of the data in going
from NLO to NNLO are quite impressive. It is interesting
that sometimes in case of Ay the band width at NNLO is still
relatively large, which indicates that this observable might
get significant corrections at higher orders. In Figs. 11 and 16
we fail to describe the cross section in part of the S-range.
The reason is not known to us. These observables also
change visibly, when going from NLO to NNLO. Here we
cannot claim that convergence with respect to the chiral ex-
pansion is reached at NNLO. For one of the configurations
~see Fig. 14!, the step for Ay going from NLO to NNLO is
dramatic and better data would be very welcome. Finally we
point to two more cases in Figs. 13 and 14, where the band
width in the cross section shrinks nicely going to NNLO and
where the agreement with the data is quite good.

In view of the quite good description of the Nd elastic and
break up data at 65 MeV at NNLO and of the good descrip-
tion of the NN data up to 200 MeV, we are optimistic and
expect to be able to describe the data at NNLO in the energy
regime towards 100 MeV. From investigations based on phe-
nomenological interactions @51,56#, we expect that there 3NF
effects become clearly visible at these higher energies. In
addition, observables at these energies will probably be more
sensitive to the structure of the 3N interaction. For example,
the sensitivity of the cross section minimum to the value of
cD observed at 65 MeV is expected to be magnified at higher
energies. Therefore we call for more data at intermediate
energies, which could be compared to predictions of chiral
EFT. Notice also that the existence of such high-quality data
will be of a crucial importance for higher order calculations,
where more parameters in the 3NF will have to be fixed from
the data and a better accuracy in the theory will be reached.

V. SUMMARY AND CONCLUSIONS

In summary we applied for the first time the complete
chiral EFT interaction at NNLO to the 3N and 4N bound
states and to 3N scattering. We reexamined the 3NF of the
chiral interaction at NNLO and used antisymmetrization to
eliminate all parameters except two. We showed that these
two parameters can be determined from the 3H BE and the
2and scattering length. For the time being the accuracy of the
scattering length is not sufficient to perform a very precise
determination of these two parameters. However, the favor-
able description of nd scattering data indicates that the val-

ues chosen in this work are in a reasonable range.
We showed that the obtained parameter-free Hamiltonian

leads to a good description of the a-particle BE. The theory
thus seems to be applicable to this densely bound system. It
will be interesting to apply the 3N Hamiltonian to light nu-
clei, e.g., using the no-core shell model technique @61,62#.

Overall we observe a good description of the data at
NNLO. Most of the low energy elastic scattering data ~at 3
and 10 MeV! are described at both orders NLO and NNLO
showing convergence of the chiral expansion and agreement
with the data. Ay turns out to be a problematic observable as
there is still no agreement with the data and the predictions
for NLO and NNLO disagree. Whether this will be cured by
1/m corrections has to be studied in a forthcoming paper.

At 65 MeV the situation is also very promising. In gen-
eral, we observe that the NNLO predictions move towards or
onto the data, while the NLO results deviate significantly
from the data. In Ref. @10# we found that the NNLO interac-
tion can describe the NN phase shifts up to energies of 200
MeV neutron lab energy. Here we see that the extension of
the energy range going to NNLO for the two-body system is
continued in the few-body systems.

This study was based on the systematic expansion of the
nuclear force according to chiral perturbation theory applied
to the NN potential. We emphasize that the favorable agree-

FIG. 20. nd break-up cross section in (mb MeV21 sr22) and

nucleon analyzing power along the kinematical locus S ~in MeV! at

65 MeV in comparison to predictions at NLO ~light shaded band!

and NNLO ~dark shaded band! in chiral effective field theory. Un-

specific configuration is shown. pd data are from Ref. @75#.
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ment with the data, the stability of our predictions when
going from NLO to NNLO, observed in most cases, as well
as the decreased cutoff dependence of the NNLO results in-
dicate consistency of our calculations. New nd data in the
energy range between 65 MeV and 100 MeV are highly wel-
come and would allow to draw quantitative conclusions on
the range of validity of the NNLO approximation as well as
to probe the spin structure of the leading 3NF. Such data
would also be of a crucial importance for extending the
analysis to higher orders.

In the next steps, we have to take into account the isospin
breaking of the nuclear force. Together with upcoming new
data for the doublet nd scattering length a much more accu-
rate determination of the 3NF parameters will then be pos-
sible.
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APPENDIX: PARTIAL WAVE DECOMPOSITION

OF THE CHIRAL 3NF

Here, we give the explicit formula for the partial wave
decomposition of the chiral 3NF. Since the partial wave de-
composition of the TPE 3NF is already discussed, e.g., in
@28#, we only concentrate here on the remaining contribu-
tions to the NNLO 3NF due to the OPE and contact term in
Eq. ~10!. In @17# the corresponding partial wave decomposi-
tions were more involved than what is needed here since the
contact terms were expanded by heavy meson propagators.
For general details on the partial wave decomposition in the
3N system the reader is referred to Ref. @23#. As already
pointed out before, we usually decompose 3NFs into three
parts according to Eq. ~14!. In the following we give expres-

sions for one such part V3NF
(i) . For the OPE term we find

i^pqauV3NF, OPE
(i) up8q8a8& i52

9DgA

4Fp
2

~4p !2dJJ8
dM M8

dTT8
dMTM
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l I
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where

gkk1
5E

21

1

dx Pk~x !
Q2

Qk1~Q2
1M p

2 !
. ~A2!

Here Q[Aq2
1q8

2
22qq8x and Pk(x) is a Legendre poly-

nomial. Further, pW and qW (pW 8 and qW 8) are relative initial
~final! Jacobi momenta in the pair jk , j ,kÞi , and of the

nucleon i with respect to the pair jk , respectively. l and l (l8

and l8) denote the initial ~final! relative orbital angular mo-

menta within the pair jk , j ,kÞi , and between the nucleon i

with respect to the pair jk . The initial ~final! spin of the
subsystem jk , j ,kÞi , is denoted by s (s8). In addition, l and
s (l8 and s8) are coupled to the total subsystem angular mo-
mentum j ( j8), and l (l8) and s i5

1
2 to the total spectator

angular momentum I (I8), which finally combine to J (J8)
accompanied by M (M 8). The total isospin quantum num-
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bers TM T (T8M T8) are constructed analogously:

u(t
1
2 )TM T& (u(t8

1
2 )T8M T8&). We also introduced a conve-

nient abbreviation

l̂[2l11. ~A3!

For the contact term in the second line of Eq. ~10! we find

i^pqauV3NF, cont
(i) up8q8a8& i
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@23# W. Glöckle, The Quantum Mechanical Few-Body Problem

~Springer-Verlag, Berlin, 1983!.
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123 ~1988!.
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contributing at the same order. In @10# we followed however

the common trend in the field of few-nucleon physics and cal-

culated various 3N observables based on our NNLO 2N po-

tential for illustrative purposes. Such comparisons are helpful

to identify the observables and kinematics most sensitive to the

3NF once a particular 2NF is specified.

@77# Similar observation for the purely short-range part of the 3NF

has been made by Bedaque et al. @20#, while Stewart pointed

out that the two OPE terms in the expressions for the 3NF

published in @12# are not independent from each other. Since

these statements do not appear in the literature in a complete

form we decided to demonstrate this explicitly here.

@78# Such factors can be calculated from expressions of the 3NF.

For example, the antisymmetrized expression of the third term

in Eq. ~8! is 3 times smaller than the one of the fourth term,

which has two additional insertions of the Pauli spin matrices.

@79# In fact, it would also be sufficient to make an estimation of the

isospin breaking effects based upon purely 2N forces at the

level of precision of NNLO.

@80# One should be careful by looking at results which appear in the

literature and sometimes indicate quite a strong deviation from

the Phillips line. Especially earlier calculations have often

been performed using not phase-equivalent potentials and with

restricted accuracy.

@81# This value of cD is excluded by the observed value of the

doublet scattering length.

@82# Hüber et al. pointed out in @17# that Ay is sensitive to the
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cussion. We also observed a sensitivity to independent varia-
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soon as one requires that the triton BE be reproduced.

@83# Significant deviation from the data in the minimum of T21 can

be observed at 3 MeV as well, if np-force corrections are

taken into account.
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