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1 Introduction

For some time now lattice QCD calculations have been addressing hadron physics problems

which involve the dynamics of three or more hadrons. As an example, we quote the calcu-

lation of the parameters of the Roper resonance [1–10], which decays — at a substantial

rate — into a nucleon and two pions. The finite-volume effects in such few-body systems

are expected to be rather pronounced. Hence, understanding these effects is a necessary

precondition for investigating intriguing puzzles such as the level ordering of the N∗(1440)

and the N∗(1535). Another reason for studying the three-body dynamics in a finite volume

– 1 –



J
H
E
P
0
9
(
2
0
1
7
)
1
0
9

now is the recent advent of lattice QCD calculations of light nuclei [11–13] and correspond-

ing calculations in nuclear effective field theory on the lattice [14–17]. In order to fully

exploit these advances, a formalism is needed to translate the “raw” lattice results into

physical observables like cross sections into various two- and three-body channels, etc. It

is also important that the proposed formalism is not overly complicated and can be used

even when only a few data points are available.

The quantization of the energy levels of a three-particle system in a finite volume has

been considered first in ref. [18]. In a series of subsequent papers by different groups [19–28]

further important aspects of the problem have been addressed. We would like to stress,

however, that despite the substantial progress made, the formalism is still very complicated

and, in our opinion, not quite ready to be used straightforwardly by lattice practitioners (in

contrast to, e.g., the Lüscher equation for two-particle elastic scattering [29]). In addition,

the relation between the different approaches is not obvious and has not been discussed

in the literature so far. At the same time, in refs. [30–33], the volume dependence of

the discrete three-body spectrum has been investigated for bosons as well as nucleons by

solving the bound state equations in a finite volume numerically. An effective field theory

in the dimer formalism has been used to derive the finite volume bound state equations and

relate the bound state properties to scattering parameters in the infinite volume, which

greatly simplifies the handling of the three-body problem. These studies also suggest a

strategy for formal investigations of three-body dynamics in a finite volume.

The aim of our work is to provide a simple formalism for the analysis of the present and

forthcoming lattice data in a straightforward and transparent manner, and to understand

the link with the earlier approaches. To this end, we use the particle-dimer approach,

which is very convenient and allows one to achieve this goal with a surprising ease. We

also found it justified to split the material in two parts. In the first paper, we consider a

very simple system — a shallow three-body bound state in a finite volume — which has

been already studied in the literature [19, 27]. A leading-order analytic expression for the

finite-volume energy shift of this system in the unitary limit is available, and we shall see

how this result can easily be obtained in the particle-dimer picture. In addition, we address

the following issues which were not considered in previous work:

(i) The role of the three-body force is studied explicitly — namely, it is shown how it

enters in the asymptotic normalization coefficient of the wave function. We further

verify that this short-range force does not affect the analytic form of the leading-

order volume dependence of the shallow bound state energy. Note that omitting

the three-body force altogether renders the three-body problem ill-defined in the

infinite volume, since the whole renormalization program fails (see, e.g., refs. [34,

35]).1 Hence, its inclusion is a matter of principle and does not simply amount to

evaluating corrections to the leading-order result.

(ii) The leading-order result for the finite volume dependence of a shallow three-body

bound state is derived for finite scattering length. From the previous derivation in

1The case of a covariant formulation was recently investigated in ref. [36].
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the unitary limit, it is not immediately clear how one can move beyond this approx-

imation, as well as how to build in effective range corrections, mixing with higher

partial waves, etc.

(iii) The formalism developed in refs. [22, 23] explicitly excludes poles in the (non-

standard) two-body K matrix. Therefore, it is not obvious how to proceed in the

physical situation if deeply-bound dimers exist.2 We address this issue and show how

the leading-order result for a shallow three-body state goes over into the well-known

result for the particle-dimer bound state that can be obtained with the use of the

Lüscher equation.

In the present paper, we elaborate on the above issues for a system of three identical

bosons. The study of this particularly simple model lays the foundation for the treatment

of the general three-body quantization condition in the dimer picture, which is considered

in our forthcoming publication [37].

The layout of the paper is follows. In section 2, we consider the role of short-range

interactions in the finite-volume behavior of the two-body binding energy. This simple

example illustrates the pattern, along which the inclusion of the short-range three-particle

force is considered. In section 3, we collect all the information about the particle-dimer for-

malism in the infinite volume, including the analytic solution of the problem in the unitary

limit. The leading order formula for the shallow bound-state energy shift in the unitary

limit [19] is rederived in section 4. In addition, we discuss the relation of the asymptotic

normalization coefficient in this formula to the short-range three-body force. Section 5

deals with the calculation of the energy shift beyond the unitary limit and the relation to

the particle-dimer bound state picture. Finally, section 6 contains our conclusions.

2 Two-body bound state

The energy shift of a shallow two-body bound state of identical bosons of mass m in a

finite volume is given by the Lüscher formula [38]

∆EB = −12κ2|A2|2
exp(−κ2L)

mL
+ · · · , (2.1)

where L is the size of the cubic box, κ2 =
√
mEB is the two-body binding momentum

and A2 denotes the two-body asymptotic normalization coefficient (note that we choose a

different definition for A2 from that in ref. [38]). The latter is defined through the behavior

of the radial bound-state wave function at large distances:

Ψ(r) ∼
√
κ2

2π
A2

exp(−κ2r)

r
, as r →∞ . (2.2)

2Strictly speaking, the existence of a bound dimer, which is equivalent to the presence of a pole in the

K-matrix, does not necessarily require the presence of a pole in the non-standard K matrices introduced

in refs. [22, 23], and vice versa. The answer to this question may even depend on details of the cutoff used,

etc. In our opinion, this situation is not satisfactory and a viable solution requires a formalism that is able

to accomodate the presence of a pole in either of these matrices.
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Let us derive the relation of the quantity A2 to the parameters characterizing the short-

range interactions. We shall do this using the non-relativistic effective Lagrangians with

a method that closely resembles the one used in the three-particle case. Dimensional

regularization with minimal subtraction is the most convenient choice, albeit the final

results do not depend on the regularization used. This is explicitly demonstrated in ap-

pendix A, where we demonstrate that exactly the same results are obtained by using the

dimensional regularization with power divergence subtraction. The same applies for the

cutoff regularization.

In momentum space, the non-relativistic interaction Hamiltonian consists of an infinite

tower of operators with increasing mass dimension. Limiting ourselves to O(p2) and to

S-waves only, in momentum space we may write

Hint(p,q)
.
= 〈p|V |q〉 = 2C0 + C2 (p2 + q2) +O(p4) , (2.3)

where the couplings C0 and C2 specifying the effective potential V are related to the

scattering length a and the effective range re through

C0 =
2πa

m
, C2 =

πa2re
m

. (2.4)

The bound-state wave function obeys the Schrödinger equation

(p2 + κ2
2)Ψ(p) = −m

∫
ddq

(2π)d
Hint(p,q)Ψ(q) , (2.5)

where d is the dimension of space.

The wave function Ψ(p) consists of a long-range tail and the short-range part, which

can be approximated by a polynomial. Consequently, one may try to solve the eq. (2.5)

with the following ansatz:

Ψ(p) =
√

8πκ2
A2

p2 + κ2
2

+ p0 + p2p
2 + · · · . (2.6)

Substituting this ansatz into the Schödinger equation and performing the integrals in di-

mensional regularization with minimal subtraction, it is easy to see that p2 = p4 = . . . = 0,

while A2 and p0 obey the system of linear equations

√
8πκ2A2 + κ2

2p0 =
√

8πκ2A2
κ2

4π

(
2mC0 −mC2 κ

2
2

)
,

p0 = mC2

√
8πκ2A2

κ2

4π
. (2.7)

Substituting the second equation into the first one, an equation to determine the bound

state momentum κ2 emerges

1− κ2m

2π
(C0 − C2κ

2
2) = 0 . (2.8)

The system of the homogeneous linear equations, eq. (2.7) determines only the ratio p0/A2.

In order to determine A2, one uses the normalization condition for the wave function∫
ddq

(2π)d
|Ψ(q)|2 =

∫
ddq

(2π)d

(√
8πκ2

A2

p2 + κ2
2

+ p0

)2

= 1 . (2.9)

– 4 –



J
H
E
P
0
9
(
2
0
1
7
)
1
0
9

Evaluating the integrals and expressing p0 through A2, we finally get3

A2
2 =

(
1− mC2κ

3
2

π

)−1

=
1

1− κ2re
, (2.10)

where at the final stage we have expressed the non-relativistic couplings through the phys-

ical observables.

Below, we briefly summarize the lessons learned:

(i) The energy level shift in a finite volume is determined by the asymptotic part of the

bound state wave function, which is parameterized by two constants κ2 and A2.

(ii) If the higher-order short-range interactions are absent (re = 0 together with all

higher-order terms), then A2 = 1. This condition is equivalent to Weinberg’s com-

positeness condition [40], which distinguishes a hadronic molecule from a tightly

bound compound.

(iii) The asymptotic normalization coefficient is determined from the normalization of the

whole wave function to unity. For example, A2 ' 0 would mean that the short-range

component prevails over the long-range one, so that the system is predominately a

tight compound. In accordance with this, the energy level has very little dependence

on the volume, and vice versa.

In the next section, we demonstrate, how the above derivation can be extended to the

particle-dimer bound state.

3 Dimer formalism in the infinite volume

3.1 The Lagrangian

In order to simplify things as much as possible, we shall consider the case of three identical

non-relativistic bosons in the CM frame. The inclusion of relativistic kinematics, spin,

moving frames, etc., proceeds along the standard path and will be addressed in our future

publications.

In the following, we shall mainly follow the refs. [34, 35]. The most general effective

Lagrangian that describes the two- and three-particle sectors is given by

L = ψ†
(
i∂0 +

∇2

2m

)
ψ − C0

2
(ψ†ψ)2 − D0

6
(ψ†ψ)3 + · · · , (3.1)

where ψ denotes the non-relativistic field operator for a boson with a mass m, and ellipses

stand for the terms with derivatives. We further introduce a dummy field T (called dimer)

with the quantum number of two bosons and consider the Lagrangian

L = ψ†
(
i∂0 +

∇2

2m

)
ψ + ∆T †T − g√

2
(T †ψψ + h.c.) + hT †Tψ†ψ + · · · . (3.2)

3A general formula, valid to all orders in the momentum expansion, can be found, e.g., in ref. [39]:

A2
2 = (1 + 2κ2D)−1, where D = d

dk2
(k cot δ)

∣∣∣
k=iκ2

.
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Note that the field T is not dynamical — the corresponding Lagrangian does not contain

the time derivative. Integrating out this field by using the equations of motion, we arrive

at the Lagrangian

L = ψ†
(
i∂0 +

∇2

2m

)
ψ − g2(ψ†ψ)2

2(∆ + hψ†ψ)
+ · · · . (3.3)

Expanding this Lagrangian in the power of fields, one sees that it describes exactly the

same physics as the Lagrangian from eq. (3.1) in the two- and three-particle sectors, if the

couplings are fixed in the following manner:

C0 =
g2

∆
, D0 = −3g2h

∆2
. (3.4)

The following remarks are in order:

(i) The particle-dimer picture is not an approximation, in fact, being restricted to the two

and three particle sectors, it is mathematically equivalent to the original treatment

without a dimer field (for more discussion, see ref. [37]). Hence, the treatment of the

finite-volume effects with the use of the particle-dimer approach is as general as the

one based on a three-particle Lagrangian without a dimer field.

(ii) Using the dimer formalism does not imply the neglect of the higher partial waves.

The two-particle Lagrangian containing derivative terms, which describe P-, D-, . . .

wave interactions, can be replaced by a tower of Lagrangians containing dimers with

angular momentum 1, 2, etc. . . The truncation of the partial-wave expansion is then

equivalent to including the dimers with angular momentum below some fixed value

(the details of the formalism can be found in ref. [37]).

One additional remark concerns the inclusion of the kinetic energy term for the dimer. In

principle, T is a dummy field, so, instead of eq. (3.2), one could consider the Lagrangian

with a dynamical dimer field as well

L = ψ†
(
i∂0 +

∇2

2m

)
ψ+σT †

(
i∂0 +

∇2

4m
−∆

)
T − g√

2
(T †ψψ+h.c.)+hT †Tψ†ψ+ · · · , (3.5)

where σ = ±1 is sign that depends on the sign of the effective range. The variable T can

again be integrated out, leading to an equivalent theory in terms of a field ψ only.4

In the following, we shall use the formulation based on the Lagrangian, eq. (3.2),

neglecting all higher-order terms. The inclusion of the derivative couplings, higher partial

waves, etc. will be discussed in our forthcoming paper.

4We note, as argued, e.g., in ref. [41], that when a shallow two-particle bound state is present, the

convergence radius of the perturbation expansion in the theory with a dynamical dimer should be larger

because this theory contains the small scale ∆ explicitly (i.e., not hidden in the couplings of the effective

theory).
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3.2 The bound-state equation and the normalization condition

As is well known, the particle-dimer bound state wave function in the theory described by

the Lagrangian, eq. (3.2), obeys the homogeneous Faddeev equation (see, e.g., refs. [34, 35])

Ψ(p) = 8π

∫ Λ d3q

(2π)3
Z(p,q;E)τ(q;E)Ψ(q) , (3.6)

where Λ denotes an explicit UV cutoff, and

Z(p,q;E) =
1

−mE + p2 + q2 + pq
+

h

2mg2
,

τ(q;E) =
1

−a−1 +
√

3
4 q2 −mE

. (3.7)

Projecting to the S-wave and defining h = 2mg2H(Λ)/Λ2, κ2 = −mE, we arrive at the

equation

Ψ(p) =
4

π

∫ Λ

0
q2dq

{
1

2pq
ln
p2 + pq + q2 + κ2

p2 − pq + q2 + κ2
+
H(Λ)

Λ2

}
τ(q;E)Ψ(q) , (3.8)

where Ψ(p) stands for the S-wave wave function (note that τ(q;E) = τ(q;E) depends only

on q = |q|). It is well known that the particle-dimer coupling constant H(Λ) should be

a log-periodic function of the cutoff parameter Λ for the limit Λ → ∞ to exist in this

equation [34, 35].

Next, we shall derive the normalization condition for the wave function Ψ(p), which

has a non-trivial form because the kernel of the integral equation depends on the energy

E. The derivation follows the standard pattern (see, e.g., [42]). Namely, we consider the

inhomogeneous equation for the scattering amplitude

M(p,k;E) = Z(p,k;E) + 8π

∫ Λ d3q

(2π)3
Z(p,q;E)τ(q;E)M(q,k;E) . (3.9)

In a compact notation, we have M = Z + Z(8πτ)M. Defining the Green function as

G = (8πτ) + (8πτ)M(8πτ), we obtain G = (8πτ) + (8πτ)ZG, and G−1 = (8πτ)−1 − Z.

Further, using the identity GG−1G = G and the behavior of the Green function in the

vicinity of the bound-state pole

G(p,k;E) =
8πτ(p;En)Ψn(p)Ψn(k)8πτ(k;En)

E − En
+ terms regular as E → En , (3.10)

we arrive at the following normalization condition for the wave function:

1 = −8π

∫ Λ d3p

(2π)3
(Ψn(p))2∂τ(p;E)

∂E

∣∣∣∣
E=En

−(8π)2

∫ Λ d3p

(2π)3

d3k

(2π)3
Ψn(p)τ(p;E)

∂Z(p,k;E)

∂E
τ(k;E)Ψn(k)

∣∣∣∣
E=En

. (3.11)
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3.3 Minlos-Faddeev solution

Assuming Λ→∞ and H(Λ) = 0, we obtain the Skornyakov-Ter-Martirosian (STM) equa-

tion [43]. Unlike the equation (3.6), the STM equation is known not to possess a unique

solution [44]. Minlos and Faddeev [45] have found an exact solution to the integral equation

in the unitary limit a→∞:

Ψ0

(
p

κ

)
= iN0

κ sin(s0u)

p
, u = ln

(√
3

2

p

κ
+

√
3p2

4κ2
+ 1

)
, (3.12)

where κ =
√
−mE is the three-body bound state momentum and s0 ' 1.00624 is a numer-

ical constant, which is a solution of the transcendental equation

s0 cosh
πs0

2
=

8√
3

sinh
πs0

6
. (3.13)

We hereafter refer to eq. (3.12) as to the Minlos-Faddeev (MF) wave function. Note that the

function in eq. (3.12) is a solution for any value of κ — the spectrum is not quantized. The

overall normalization factor in this equation should be determined from the normalization

condition. The substitution of eq. (3.12) into (3.11) gives

π

2mN2
0

= I0 , (3.14)

where (see appendix B)

I0 =

∫ ∞
0

dx
sin2(s0u)(√

3x2

4 + 1

)3 +
8

π

∫ ∞
0

xdx√
3x2

4 + 1

∫ ∞
0

ydy√
3y2

4 + 1

sin(s0u) sin(s0v)

(x2 + y2 + 1)2 − x2y2

=
1√
3

(
1− πs0

sinhπs0

)
+

8π

9 sinhπs0

(
sinh

2πs0

3
− 2 sinh

πs0

3

)
, (3.15)

and

u = ln

(√
3

2
x+

√
3

4
x2 + 1

)
, v = ln

(√
3

2
y +

√
3

4
y2 + 1

)
. (3.16)

3.4 Asymptotic normalization coefficient

As mentioned above, the STM equation does not have unique solutions. First, imposing

a cutoff, one arrives at the discrete three-particle spectrum. In order to ensure that the

limit Λ → ∞ exists, one has to introduce a short-range interaction parameterized by a

constant H(Λ), where the dependence on the cutoff Λ is log-periodic. Furthermore, for a

fixed Λ and H(Λ), the low-energy spectrum is discrete, condensing towards zero. For two

neighboring levels from this tower of so-called Efimov states [46–48], whose energy is much

smaller than the cutoff Λ, the following relation holds in the unitary limit:

κn+1

κn
= exp(−π/s0) ' 1

22.69
. (3.17)
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n κn κn+1/κn

1 1779.3756 22.93

2 77.5971 22.69

3 3.4192 22.69

4 0.1507 22.69

5 0.006639

. . .

Table 1. Some energy levels obtained eq. (3.8) for the choice Λ = 104 and H(Λ) = 0.

Consequently, fixing a single energy level for a given Λ is equivalent to the fixing of the

parameter H(Λ).

The Faddeev equation with a finite cutoff and H(Λ) can not be solved analytically.

However, the numerical solution is straightforward. In table 1, for illustration, we give

several energy eigenvalues for the choice Λ = 104 and H(Λ) = 0.

It is clear that, for the momenta much smaller than the cutoff Λ, the wave function

will be given by the MF solution Ψ0. The difference can arise only at momenta p ' Λ. The

overall normalization, however, is a subtler issue since the normalization integral includes

all momenta. To summarize, the solution of the Faddeev equation with cutoff at a given

bound-state momentum κ should be given by

Ψ

(
p

κ

)
= A

(
p

κ

)
Ψ0

(
p

κ

)
, (3.18)

where the function A(x) should have a very flat plateau for x� Λ/κ. Then, in analogy to

the two-body case, we define the particle-dimer asymptotic normalization coefficient as

A = A(0) . (3.19)

Further, the dimensionless quantity A must be a function of the only dimensionless com-

bination κ/Λ that can be composed from the parameters of the theory. If κ/Λ→ 0, then,

obviously, A → 1. Consequently, the asymptotic normalization coefficient is very close to

one for the shallow three-particle bound states. The explicit demonstration of the above

statements is given in figure 1.

The situation changes, when derivative particle-dimer interactions are added. Con-

sider, for example, adding the term H1(Λ)(p2+q2) to the particle-dimer interaction Hamil-

tonian (this is an analog of the effective range term in the two-particle case). The ratio

will be still flat for p � Λ. However, the statement A → 1, as κ/Λ → 0 does not hold

any more — in other words, the asymptotic normalization coefficient encodes the effect of

the short-range physics, as in the two-particle case. In the particle-dimer case, however, A
and H1(Λ) can not be related algebraically, and A should be extracted from the numerical

solution of the equation with a given value of H1(Λ) 6= 0.

– 9 –
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Exact w.f.

MF w.f.

ratio

Figure 1. The numerical solution of the Faddeev equation vs. the Minlos-Faddeev wave function.

The parameters are taken as Λ = 104 and κ = 1779.3756, corresponding to H(Λ) = 0. We namely

plot the functions |p/κΨ(p/κ)|, |p/κΨ0(p/κ)| and A(p/κ) from eq. (3.18) vs. the dimensionless

variable u, which is defined in eq. (3.12). The ratio of two functions, A, is very flat and approaches

the value A = 1.0105863 at the origin.

4 Particle-dimer bound state in a finite volume

4.1 Expression of the first order finite-volume energy shift

Our derivation — in the particle-dimer context — will be partly similar to that of ref. [27].

Consider the Faddeev equation in a finite volume

ML(p,k;E) = Z(p,k;E) +
8π

L3

∑
q

Z(p,q;E)τL(q;E)ML(q,k;E) . (4.1)

where q = 2π
L n , n ∈ Z3 and

τ−1
L (q;E) = −a−1 +

√
3

4
q2 + κ2

L + ∆L(q;E) ,

∆L(q;E) = − 1

πL

∫
d3s

∑
n 6=0

e2πins−iπq̂n

κ̂2
L + 3

4 q̂2 + s2
, q̂ =

Lq

2π
, κ̂L =

LκL
2π

. (4.2)

Here, κ2
L = −mE. Moreover, we have assumed that we are below the particle-dimer

breakup threshold, where all denominators are non-singular, and have used Poisson’s sum-

mation formula. Note that exactly this equation was considered earlier in refs. [30–33].

The finite-volume effects in the particle-dimer bound state equation emerge at two

different places. First, the integration over q is changed to a sum over discrete values in

eq. (4.1). Second, there is an additional term ∆L(q;E) in eq. (4.2). Using again Poisson’s
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summation formula, we may rewrite the eq. (4.1) as

ML(p,k;E) = Z(p,k;E) + 8π

∫ Λ d3q

(2π)3
Z(p,q;E)τ̂L(q;E)ML(q,k;E) ,

τ̂L(q;E) =
1 +

∑
n 6=0 e

2iπnq̂

τ−1(q;E) + ∆L(q;E)
. (4.3)

Eliminating now the quantity Z using eq. (3.9), we obtain

ML(p,k;E) = M(p,k;E) + 8π

∫ Λ d3q

(2π)3
M(p,k;E)δτL(q;E)ML(q,k;E) , (4.4)

where

δτL(q;E) = τ̂L(q;E)− τ(q;E) =
∑
n 6=0

e2iπnq̂τ(q;E)

−
(

1 +
∑
n 6=0

e2iπnq̂

)
(τ(q;E))2∆L(q;E) + · · · . (4.5)

The infinite-volume amplitudeM has a pole at the bound-state energy (cf. with Eq, (3.10)):

M(p,k;E) =
Ψ(p)Ψ(k)

E − EL
+ terms regular as E → EL , (4.6)

where Ψ(p) is the infinite-volume wave function. Substituting this ansatz in eq. (4.4), we

finally obtain the expression for the first-order energy shift of the three-body bound state

∆EL = 8π

∫ Λ d3p

(2π)3
(Ψ(p))2δτL(p;E) . (4.7)

4.2 Evaluation of the first-order energy shift

The energy shift can be written as

∆EL = ∆E1 + ∆E2 + · · · ,

∆E1 = 8π

∫ Λ d3p

(2π)3

(Ψ(p))2
∑
n 6=0

e2iπnp̂

−a−1 +
√

3
4 p2 + κ2

,

∆E2 = −8π

∫ Λ d3p

(2π)3

(Ψ(p))2
(

1 +
∑
n 6=0

e2iπnp̂
)

(−a−1 +
√

3
4 p2 + κ2)2

∆L(p, E) . (4.8)

The evaluation of these integrals in the unitary limit proceeds mainly along the lines

described in ref. [27]. In this limit, one has Λ → ∞, a → ∞ and Ψ(p) is the MF wave

function Ψ0(p). Using eq. (3.12) and performing angular integration, we get

∆E1 = −2N2
0κ

2

π

∫ ∞
0

dp sin2

(
s0 ln

(√
3

2

p

κ
+

√
3p2

4κ2
+ 1

))∑
n 6=0

eiLnp − e−iLnp

iLnp

1√
3p2

4 + κ2

,

(4.9)

– 11 –



J
H
E
P
0
9
(
2
0
1
7
)
1
0
9

where n = |n|. It is clear that the leading exponential contribution emerges from the term

with n = 1. Introducing the variable u defined in eq. (3.12), one gets

m∆E1

κ2
= − 6

κLI0

∫ ∞
0

du

sinhu
(1− cos 2s0u) sin

(
2κL√

3
sinhu

)
. (4.10)

in κL � 1, the integral in the r.h.s. of the above equation has the following asymptotic

expansion∫ ∞
0

du

sinhu
(1−cos 2s0u) sin

(
2κL√

3
sinhu

)
=−31/4π1/2

2
√
κL

(1− coshπs0) exp

(
−2κL√

3

)
+ · · · .

(4.11)

Using this expansion, one reproduces the result first derived in ref. [19] and re-derived

in ref. [27] (note that in ref. [27], an algebraic error contained in the original derivation

was corrected):

∆E1

|E|
= c(κL)−3/2 exp

(
−2κL√

3

)
+ · · · , (4.12)

where

c = −2π1/235/4

I0
sinh2 πs0

2
. (4.13)

Taking into account the relation

I0 =
C−1

0

6
√

3π3
, (4.14)

where C−1
0 is defined in eq. (16) of ref. [19], it is straightforward to verify that eq. (4.12)

is identical to the final result of ref. [19].5 However, eq. (4.12) contains more information

than the original formula from ref. [19]. It corresponds to the unit asymptotic normaliza-

tion coefficient A = 1. Now, it is clear, where the non-trivial three-particle force, encoded

in the derivative particle-dimer couplings, will reveal itself: the L-dependence in the for-

mula (4.12) remains the same, only the overall factor will be multiplied by A2 6= 1, where

A can be determined from the infinite-volume solution through the procedure described

above. The reason for this is that, at small momenta p � Λ, the ratio A defined in

eq. (3.18) is close to constant and does not affect the large-L behavior of the energy level.

Further, as shown in ref. [27], the correction ∆E2 is subleading and behaves as

∆E2 ∝ (κL)−5/2 exp

(
−2κL√

3

)
(4.15)

for a large L. The subsequent terms are even more suppressed.

To summarize, we have reproduced the result of ref. [19] for the leading finite-volume

energy shift of the three-body bound state in the unitary limit in the particle-dimer picture.

Moreover, we have shown that in the unitary limit, the asymptotic normalization coefficient

emerges from three-particle derivative forces, and this coefficient is equal to one if such

forces are absent.

At the next step, we investigate the system beyond the unitary limit.

5Note that the C−1
0 defined in eq. (16) of ref. [19] is not related to the C0 defined in eq. (2.3).
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5 Beyond the unitary limit

As seen, the correction ∆E1 given by eq. (4.8), gives the leading contribution to the finite-

volume energy level in the unitary limit. We expect that this statement stays valid for

finite values of a (see the discussion below). Singling out the contribution with |n| = 1,

one may rewrite the leading contribution to ∆E in the following form

∆E ∝
∫ Λ d3p

(2π)3

(Ψ(p))2e2iπnp̂

−a−1 +
√

3
4 p2 + κ2

+ · · · , |n| = 1 . (5.1)

As we demonstrate in appendix C, the wave function Ψ(p) is regular near the origin

(more precisely, the singularities of Ψ(p) are located much farther from the origin than

the singularities of the denominator). This means that the singularities of Ψ(p) do not

contribute to the large-L behavior of the energy shift at leading order and hence, at this

order, Ψ(p) can be replaced by a constant. Performing the angular integration, we arrive

at the following result

∆E ∝ 1

L

∫ ∞
−∞

pdp

2πi

eipL
(
a−1 +

√
3
4 p2 + κ2

)
3
4 p2 + κ2 − a−2

. (5.2)

Note that the quantity κ2 − a−2 is always positive, if a bound state of a particle and a

bound dimer is considered (recall that κ2 = a−1 is the binding momentum of the dimer in

the unitary limit). One has to distinguish two limiting cases:

5.1 A shallow bound state of a particle and a deeply bound dimer

In this case, we have κ2−a−2 � κ2. The singularity at p = ±i
√

4
3 (κ2 − a−2) is dominant,

and the singularity arising from the square root (cut) can be neglected. Performing the

Cauchy integration, we get

∆E ∝ 1

L
exp

(
− 2√

3

√
κ2 − a−2L

)
. (5.3)

In other words, we reproduce Lüscher’s original result for a two particle (particle-dimer)

bound state [38]. Note also that this is in a complete agreement with the result of the

recent paper [49].

5.2 A shallow bound state of three particles

This corresponds to the opposite limit κ2 � a−2. Then, the first term in eq. (5.2) is very

small and the energy shift is dominated by the second term. It is straightforward to see

that, in this case,

∆E ∝ 1

L3/2
exp

(
− 2√

3
κL

)
. (5.4)

In other words, the result of ref. [19] is reproduced in this limit. To be more precise, for

any small but finite value of a−2 the asymptotic behavior of the energy shift is still given by
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eq. (5.3). However, the coefficient of the leading term is very small, whereas the coefficient

in front of the subleading term given by eq. (5.4) is of order of unity. So, for large (but not

asymptotically large) values of L the behavior is given by eq. (5.4), whereas eq. (5.3) sets

in asymptotically.

5.3 Subleading contributions

Finally, let us give the arguments in favor of the statement that ∆E1 stays the leading cor-

rection beyond the unitary limit. To this end, one has to consider the finite-volume correc-

tion, coming from the self-energy of the dimer. To the leading order, this correction is given

by the quantity ∆E2 in eq. (4.8). In the unitary limit, it is O(L−1) suppressed as compared

to ∆E1, see ref. [27]. This can be seen, e.g., from eq. (A.11) of that paper after using the

method of the steepest descent. Beyond the unitary limit, the denominator 1 + 3`2/3κ2 in

that equation gets replaced by
(
a−1 −

√
1 + 3`2/3κ2

)2
(cf. with eq. (4.8) from the present

paper, where the wave function can be replaced by a constant). It is straightforward to see

that this contribution still vanishes as L−5/2, multiplied by an exponential.

6 Conclusions

Our conclusions are as follows:

(i) In this paper, we have rederived the well-known result [19] for the leading-order finite

volume energy shift of a shallow three-particle bound state in the unitary limit using

the dimer formalism. While this result was not unexpected, since the particle-dimer

picture is algebraically equivalent to the three-particle description, it provides a useful

check on the particle-dimer formalism in a finite volume.

(ii) Our treatment goes beyond refs. [19, 27]. Namely, we explicitly concentrate on the

role of the three-particle force, which is necessary to carry out the renormalization

program in the infinite volume. We have verified that the algebraic form of the

leading-order formula does not change in the presence of the three-particle force, and

only the numerical value of the particle-dimer asymptotic normalization constant

is altered (in ref. [27], the three-particle force is included from the beginning, but

its contribution to the asymptotic normalization coefficient is not studied). This

constant is equal to one for the STM equation and differs from unity in the presence

of derivative three-particle interactions — similar to the two-body case.

(iii) Finally, we go beyond the unitary limit and derive the leading-order formula in this

case. This formula smoothly interpolates between two extremes: the well-known

three-particle bound state in the unitary limit and the bound state of a particle and

a deeply bound dimer, for which the usual Lüscher formula applies. The study of

these limits enables us to explore the region of applicability of the energy shift formula

from ref. [19].

(iv) A host of additional effects awaits to be included, namely, the effective range expan-

sion in the two particle sector, higher partial waves and partial wave mixing, non-rest
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frames, relativistic kinematics, etc. Moreover, a general and tractable quantization

condition, which could be used by lattice practitioners to analyze the data in the

three-particle sector, remains to be worked out. The particle-dimer language allow

one to achieve most of the above goals with an impressive ease. However, we relegate

the proof of this statement to our forthcoming publication [37].
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A Two-body problem using power divergence subtraction

In section 2, we have discussed the energy level shift of a shallow two-body bound state

and showed that the whole effect of the short-range interactions is concentrated in the two-

body asymptotic normalization coefficient A2. Dimensional regularization with minimal

subtraction was used in the derivation.

In this appendix, we demonstrate that the same result is obtained in dimensional

regularization with power divergence subtraction [50], where poles in 1/(d − 3) and in

1/(d − 2) are subtracted from the integrals (d is the number of spatial dimensions). This

generates a non-trivial dependence of the couplings C0 and C2 on the renormalization scale

µ which must cancel in physical observables.6

The Schrödinger equation for the wave function in the S-wave is rewritten as

(p2 + κ2
2)Ψ(p) = −m

∫
ddq

(2π)d
Hint(p, q)Ψ(q) , H(p, q) = 2C0(µ)+C2(µ) (p2 + q2) + . . . .

(A.1)

Here, µ denotes the renormalization scale. The coupling constants C0(µ) and C2(µ) can

be determined from matching to the effective range expansion for the two-body scattering

amplitude. We obtain

C0(µ) =
2π

m

(
1

a
− µ

)−1

, C2(µ) =
m

2π
C0(µ)2 re

2
, (A.2)

where |a| � re was assumed.

6We have also checked that the same result is obtained when divergent integrals are regularized with

a momentum cutoff Λ but we refrain from showing explicit expressions here. In this case, divergences up

to fifth order in the cutoff Λ appear. Moreover, lower-order couplings are renormalized by higher orders,

which leads to more complicated equations.
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Using again the ansatz from eq. (2.6) with p2 = . . . = 0, we get

p0 =
mC2(µ)

4π

√
8πκ2A2 [κ2 − µ] . (A.3)

The equation for the bound-state momentum κ2 takes the form

1 =
mC0(µ)

2π
[κ2 − µ]− mC2(µ)

2π
κ2

2 [κ2 − µ] . (A.4)

Inserting eqs. (A.2), we can rewrite this expression as

κ2 =
1

a
+
re
2
κ2

2 +O(κ4
2) . (A.5)

The normalization condition,∫
ddq

(2π)d

(√
8πκ2A2

q2 + κ2
2

+ p0

)2

= 1 , (A.6)

yields the following expression for the asymptotic normalization coefficient:

A−2
2 = 1− κ2re

[κ2 − µ]2

[1/a− µ]2
. (A.7)

Using the equation aκ2 = 1 +O(κ3
2), one may rewrite the above equation as

A−2
2 = 1− κ2re +O(κ3

2) . (A.8)

As we see, the final result for A2 does not depend on the regularization used.

B Calculation of the integrals

In order to calculate the integrals in eq. (3.15), it is convenient to change the integration

variables
√

3

2
x = sinhu ,

√
3

2
y = sinh v . (B.1)

Then, I0 = I1 + I2, where

I1 =
2√
3

∫ ∞
0

du
sin2(s0u)

cosh2 u
=

1√
3

(
1− πs0

sinh(πs0)

)
, (B.2)

where the last equality was obtained by using the equality given in ref. [51]

∫ ∞
0

sin ax
sinhβx

cosh2 γx
dx =

π
(
a sin βπ

2γ cosh aπ
2γ − β cos βπ2γ sinh aπ

2γ

)
γ2
(

cosh aπ
γ − cos βπγ

) (B.3)

with a = s0, β = is0, γ = 1.
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Using the same substitution, we obtain

I2 =
2

π

∫ ∞
−∞

∫ ∞
−∞

dudv
sin(s0u) sin(s0v)

sinh2 u+ sinh2 v − sinhu sinh v + 3
4

. (B.4)

It is convenient to define w = u+ v and z = u− v. Then,

I2 =
2

π

∫ ∞
−∞

dz cos(2s0z)J(z) , (B.5)

where

J(z) =
4
√

3π

9

(
1

cosh2 z + 3 sinh2 z
− 2

3 cosh2 z + sinh2 z

)
. (B.6)

The integral over the variable z can again be performed, using the formula from ref. [51]∫ ∞
0

cos axdx

coshβx+ cos γ
=
π

β

sinh aγ
β

sin γ sinh aπ
β

(B.7)

with a = 2s0, β = 2 and γ = 2π
3 or γ = π

3 (in the first and the second terms of eq. (B.6),

respectively). At the end, one gets

I2 =
8π

9

1

sinh(πs0)

(
sinh

2πs0

3
− 2 sinh

πs0

3

)
, (B.8)

and the eq. (3.15) is reproduced.

C Wave function

In this appendix we study the singularities of the wave function and show that, to the

leading order, it can be pulled out from the integrals that determine the energy shift of the

particle-dimer bound state. The wave function obeys eq. (3.8). The location of the singu-

larities of Ψ(p) in the complex-p plane is determined, as usual, by the Landau equations.

There are two types of singularities (note that the denominator −a−1 +
√

3q2

4 + κ2 does

not vanish in the integration region):

C.1 Endpoint singularities

The argument of the logarithm is a±(q) = p2 ± p · q + q2 + κ2. At q = 0, the equation

a±(q = 0) = 0 yields p = ±iκ. Examine now this potential singularity in detail. Let us

start, for instance, at p = 0 and approach the singular point p → iκ along some path in

the complex p-plane (for instance, along the path p = it + 0.05t(1 − t), 0 ≤ t ≤ 1). The

four singularities of the logarithm, which are determined by the solutions of the equations

a±(q) = 0, travel along the lines

q1,2(p) =
−p± i

√
3p2 + 4κ2

2
, q3,4(p) =

p± i
√

3p2 + 4κ2

2
, (C.1)
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Figure 2. Trajectories of the singularities of the kernel of eq. (3.8) in the complex q-plane, Left

panel: p→ iκ, right panel: p→ 2i√
3
κ.

whereas the singularity of the denominator given by the equation −a−1 +
√

3
4 q

2 + κ2 = 0

stays fixed in the in the complex q-plane. The trajectories q1,2,3,4 are shown schematically

in figure 2, left panel. Two singularities travel from q = ±iκ towards q = 0 and two others

return to q = ±iκ. The contour deformation is not needed. Substituting now p = ±iκ into

the kernel, we get

± 1

2iκq
ln
±iκ+ q

∓iκ+ q
=

1

κq
arctan

κ

q
. (C.2)

The logarithm is indeed singular at q = 0, but the integral over q exists, due to the presence

of an additional factor q2. Consequently, there is no singularity at p = ±iκ.

Further, at q = Λ, we get the equation p2 ± pΛ + Λ2 + κ2 = 0. The solution of this

equation gives p = ±1
2 (Λ±

√
Λ2 − 4(Λ2 + κ2)). These points are located very far from the

origin and should not be taken into account.
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C.2 Pinch singularities

In order to find the location of the pinch singularities, we have to solve the equation

d

dq
(p2 ± pq + q2 + κ2) = 0 , (C.3)

which gives p = ±2q. Substituting this back to the argument of the logarithm, we get

a±(q) =
(
q ± p

2

)2
+ 3

4 p
2 + κ2, i.e., the argument vanishes at p = ± 2i√

3
κ.

Consider again the trajectories of the singularities of the logarithm in the complex

q-plane, when p varies, according to, for instance, along the path p = 2/
√

3(it+ 0.05t(1−
t)), 0 ≤ t ≤ 1. These trajectories are shown in figure 2, right panel. In this case, it

is necessary to deform the integration contour, in order to avoid the singularities of the

logarithm. At p = ± 2i√
3
κ the contour gets pinched between two singularities. It is, however,

straightforward to check that the singularity of the integrand along the new integration

contour is of an integrable type: logarithmic for a−1 6= 0 and of square-root type for

a−1 = 0. Consequently, the function Ψ(p), defined by this integral, is non-singular there

(albeit the derivatives become, in general, singular).
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