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Abstract: In a spontaneous process, laser-polarized dressings produce characteristic triphoton

waveforms regarding the oscillation period and coherence time. Correspondingly, circularly

polarized dressings make it have longer oscillation periods compared to the effect of linearly

polarized dressings attributed to dispersion relation changes, and shorter coherence times owing

to the larger dressing field. Given that the optical response of the polarization state of incident

light is the dressing field, we can control the averaged three-photon coincidence count rate by

adjusting the polarization of the incident light. By performing quantum tomography, we can

obtain W and W-like polarization entanglement states. Accordingly, strong and weak visibilities

can be evoked for circularly and linearly polarized dressings.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Entanglement plays a central role in the field of quantum information as justified by the ongoing

efforts for its quantitative and qualitative characterizations [1]. The nonclassical multiphoton is

one of the most important parts of entanglement that can be applied in quantum computing [2],

communication, imaging technology [3], and in many other fields.

It is known that the most common method used to generate entangled photon pairs is SPDC

[4]. The SPDC process occurs in the nonlinear crystal and should meet the phase-matching

condition, but the bandwidth of the generated photon pairs can be as high as several of THz with

short coherent time.

Biphotons generated from spontaneous parametric down conversion (SPDC) in nonlinear

crystals have considerably broad bandwidths (> THz) and ultrashort coherence time (< ps).

Using spontaneous four-wave mixing (SFWM) in cold atoms, we can produce narrowband (∼
MHz) biphotons with long coherence time (0.1–1.0 µs). This long coherence time allows us

to access directly and manipulate the biphoton quantum waveform in the time domain. Du et

al. used on-resonance spontaneous four-wave mixing in a hot paraffin-coated 87Rb vapor cell

at 63 °C to produce biphotons with controllable bandwidth (1.9–3.2 MHz) and coherence time

(47–94 ns) [5].

While entanglement of bipartite systems is well understood [6], the characterization of

entanglement for multipartite systems is still intensely investigated. Hübel et al. obtained photon

triplets with the use of two cascaded SPDCs [7,8]. Wen [9] theoretically obtained photon triplets

via two cascaded, spontaneous four-wave mixing (SFWM) schemes. Ding and his group adopted
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a method based on which a spontaneous Raman scattering process in a hot Rb atomic cell

cascaded by a SPDC process allowed the realization of the hybrid-cascaded photon triplets [10].

Enhanced four-wave mixing and six-wave mixing [11–13] channels via dual electromagnetically

induced transparency windows can be controlled by three nested, parallel, and sequentially

cascaded schemes for double dressing [14] in an open, five-level atomic system. The nature of

multiphoton correlation comes from the higher order of optical nonlinearity. Our work shows

the advantage of the use of polarization dressing [15] to control the three-photon polarization

entanglement [16].

In this study, we generate polarization-entangled multiphoton states using spontaneous,

parametric, six-wave mixing (SP–SWM), in hot rubidium atomic vapors, which can preserve

the entanglement in a longer time than solid media or cascaded process. Then, we control the

properties of entangled optics by changing polarized dressing fields. Specifically, we present

the three-photon polarization entangled W-like state. The fifth-order nonlinear susceptibility

predicted six types of spontaneous six-wave mixings (SSWMs) that occur in this process following

the introduction of the polarized dressing field. To further explore the properties of the generated

photons, we calculate the triphoton coincidence counting rate using linear and circularly polarized

dressing of the employed fields, respectively. We also present the influence of the polarization

dressing on the density matrix and interference.

The paper is organized as follows. In Section II, we derive the third-order intensity correlation

function with polarization dressings and dressing perturbation chains. In Section III, we discuss

the optically polarized entanglement, and present the mechanism of triphoton generation via a

nonlinear response in the presence of a polarized dressing field. In Section IV, we apply the

polarized dressing in quantum state tomography. In Section V, we discuss the theoretical basis of

three-photon interference with polarization entanglement. Finally, in Section VI, we outline the

summary and conclusions of this study.

2. Experimental setup

The schematic of the simplified experimental setup in theory is illustrated in Fig. 1(a) in which

the SWM process is demonstrated by employing the incident fields on 85Rb atomic vapors. We

assume that atoms equally distribute in the basic(|a> 5S1/2 F= 3) Zeeman states. To make

the process approximately a steady state, continuous lasers are only used in this theory. We

use a strong optical-pumping laser EOP in Fig. 1(a) to optically pump the atoms from the level

|5S1/2, F= 2 to |5P1/2, F= 2, to suppress the on-resonance Raman scattering of the coupling

beam. So, re-distribution caused by the optical pumping effect may not be obvious enough to

influence the calculation. The triphoton generation achieved by a four-level “tri-2” atomic system

is presented in Fig. 1(f). The four-level atoms are prepared in the base level |a> . The medium

is confined in a long and narrow cylindrical volumetric shape with length L. In Fig. 1(f), with

a detuning of ∆1, the weak pump beam E1 (wave vector k1, frequency ω1, Rabi frequency G1,

and a wavelength of 795 nm) is applied to the transition |a>→|c> . Accordingly, ∆i=Ωi-ωi

denotes the detuning, which is defined as the difference between the laser resonant frequency

ωi and the transitional frequency Ωi of Ei. The strong coupling beam E2 (k2, ω2, G2, 780 nm)

is close to the atomic transitional resonant frequency during the transition |b>→|d>with the

detuning ∆2, and counter-propagates to E1. The other coupling beam E3 (k3, ω3, G3, 780 nm)

propagates in the direction of E1, and is utilized in the atomic transition |a>→|d>with the

detuning ∆3. All of the beams are coupled and focused into the center of the Rb vapor by optical

lenses. Subsequently, with the phase-match condition k1+k2+k3=kS1+kS2+kS3 and given the

low-gain limitation, the SWM process occurs spontaneously. The SWM generate the correlated

tripartite ES1, ES2, and ES3, with conserved energy ω1 + ω2 + ω3 = ωs1 + ωs2 + ωs3. From

another perspective, polarization directions are also conserved, while the Zeeman energy level

matters in circular polarization cases.
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Fig. 1. (a) Schematic diagrams of the experimental arrangement in the 85Rb atomic vapor.

EOP is omitted in (c)–(f). (b)–(f) Zeeman energy level diagrams and transition paths at

different laser polarized configurations in four-level systems along with (b)–(e) schematic

diagrams of single processes and (f) the schematic diagram of the entire set of processes.

Herein, the employed pump beam is much weaker compared to the coupling beam, far from

resonance, and with a large detuning, which leads to reduced quantum atomic noise and retains

the atomic population is in the ground state. In addition, the strong coupling beams E2 and E3 in

near-resonant relationships form a 2 electromagnetically induced transparency (EIT) scheme.

Herein, the coupling beams produce a transparent window for the photons ES2 and ES3 with a

slow-light effect and also assist the SSWM nonlinear process. The generated triphoton could be

gauged by three single-photon counting modules (SPCM). Because our theory is based upon the

cool atomic ensemble, we do not take the quantum Langevin noise and Doppler broadening into

account. We concentrate instead on the interference of the multimode SSWM and the triphoton

temporal correlation that is controlled by polarization.

In the description of the interaction, if the reflections from the systematic surfaces are ignored,

and the rotating-wave approximation is used, the effective interaction Hamiltonian of the SWM

process could be expressed as,

HI = ε0

∫
V

d3zχ(5)E(+)
1

E
(+)
2

E
(+)
3

E
(−)
S3

E
(−)
S2

E
(−)
S1
+ H.c. (1)

where χ(5) is the fifth-order nonlinear susceptibility of the generated photon field delineated by

the nonlinear polarization, V is the interaction volume enlightened by all of the input fields, H.c

is the Hermitian conjugate, and E
(+)
1

, E
(+)
2

, and E
(+)
3

, are the positive frequency parts of the input

beams which are respectively denoted by the strong classical fields,

E
(+)
1
= E1ei(k1z−ω1t), E(+)

2
= E2ei(k2z−ω2t), E(+)

3
= E3ei(k3z−ω3t), (2)
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where Ei = i

√
~ωi/2ε0n2

i
Vq, ki is the field wavenumber, and Vq is the quantization volume. The

generated photons are determined by the quantized fields,

E
(+)
S1

(z, t) = 1
√

2π

∫
dω

√
2~̟S1

cε0A
âS1(ω)ei[kS1z−ωt],

E
(+)
S2

(z, t) = 1
√

2π

∫
dω

√
2~̟S2

cε0A
âS2(ω)e−i[kS2z+ωt],

E
(+)
S3

(z, t) = 1
√

2π

∫
dω

√
2~̟S3

cε0A
âS3(ω)ei[kS3z−ωt], (3)

where A is the single-mode cross-sectional area, âS1, âS2, and âS3, are the respective photon

annihilation operators in the output modes S1, S2, and S3, ε0 is the vacuum permittivity, c is the

speed of light in vacuum, and ̟si is the central frequency of the generated photon. Substituting

the values of the electric fields from Eqs. (2) and (3) in the variables of Eq. (1), Eq. (1) can be

rewritten as,

∧
HI = W1

∫
dωS1dωS2dωS3κ sin c(∆kL

2
)â†

S1
â
†
S2

â
†
S3

e−i∆ωt
+ H.c., (4)

where W1 = i

√
~3/π3ε3

0
A3 is defined as a constant, κ = −i

√
̟S1̟S2̟S3/c3 χ(5)(ωS1,ωS2,ωS3)E1E2E3

is the nonlinear parametric coupling coefficient, ∆k = −k1 − k2 − k3 + kS1 + kS2 + kS3 is the

phase mismatching down the z–axis, and ∆ω = ω1 + ω2 + ω3 − ωS1 − ωS2 − ωS3. When ∆k = 0,

conformance with the phase-matching condition is achieved.

On the basis of the first-order perturbation in the interaction plot, we deduce the photon state

on the output surface, which is approximately a linear superposition of |Ψ> and |0>, where

|0> is the state of vacuum. If there is no influence from the vacuum, we can ignore |0> . The

photon triplet state |Ψ> could be indicated as,

|ψ〉 = −i

~

∫
+∞

−∞
dt

∧
HI |0〉. (5)

Considering Eqs. (4) and (5), e−i∆ωt turns to 2πδ(∆ω), which ensures that i) the energy is

conserved during the SSWM process, and ii) frequency entanglement occurs in the triphoton

state. Furthermore, Eq. (5) can be changed to,

|ψ〉 =
∫

dωS1dωS2dωS3κ sin c(∆kL
2
)â†

S1
â
†
S2

â
†
S3
δ(∆ω)|0〉

=

∫
dωS1dωS2dωS3κ(ωi) sin c(∆kL

2
)â†

S1
â
†
S2

â
†
S3
|0〉

. (6)

From Eq. (6), we can predict that the triphoton state is entangled both in terms of the wave number

and frequency, and κ(ωi) = κ(ωS1,∆ω + ωS2,ωS3) exhibits entanglement in the frequency space,

which is the outcome of the energy conservation condition. sinc(∆kL/2) is the wave number

entanglement, and cannot be factorized into three free-running functions which respectively

contain kS1, kS2, and kS3

To discuss the optical characteristics of generated photons in a four-level system, we need to

consider the triphoton coincidence counting rate. We arrange the detected photons at the SPCM

1–3 according to the frequencies ωS1, ωS2, and ωS3. Postulating perfect detection efficacy, the
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mean triphoton coincidence counting rate can be defined by

Rcc = lim
T→∞

1

T

∫ T

0

dtS1

∫ T

0

dtS2

∫ T

0

dtS3G(3)M1(tS2 − tS1)M2(tS3 − tS1), (7)

where M1(tS1 − tS2) and M2(tS3 − tS2) are the coincidence window functions. We reckon that

M1(tS1 − tS2) |tS1 − tS2 |<tcc for Mi = 1, and M2(tS3 − tS2) |tS3 − tS2 |<tcc, for Mi = 0.

G(3)
=

���〈Ψ| E(−)
S1

E
(−)
S2

E
(−)
S3

E
(+)
S3

E
(+)
S2

E
(+)
S1

|Ψ〉
��� = ���〈0| E(+)

S3
E
(+)
S2

E
(+)
S1

|Ψ〉
���2 = |B(τS1, τS2, τS3)|2, (8)

where rSi and τSi = tSi − rSi/c are the photon’s optical path from the output surface from the

medium to the detector. For simplicity, we consider that rS1 = rS2 = rS3 and B(τs1, τs2, τs3) is the

triphoton amplitude. Combining Eqs. (3) and (6), we obtain,

B(τS1, τS2, τS3) = W2

∫
dωS1dωS2dωS3κ(ωi)Φ(∆kL)e−i(ωS1τS1+ωS2τS2+ωS3τS3), (9)

where W2 is a constant which absorbs all of the constants and slow changing terms, and

Φ(∆kL) = sinc(∆kL/2)eiL(kS1+kS2+kS3)/2 is the lengthwise detuning function which determines the

natural spectral width. Based on Eq. (9), the mode of the triphoton amplitude is determined by

both the lengthwise detuning function Φ and the nonlinear parametric coupling coefficient k.

Based on the process depicted in Fig. 1, and according to the theory of odd-ordered nonlinear

susceptibilities [17] defined Eq. (10), we can express all the perturbation chains of linearly

polarized incident light, which describe the process. Specifically,

3xxxxxx =
©­«

xxxxyy + xxxyyx + xxyyxx + xyyxxx + yyxxxx + yxyxxx + yxxyxx + yxxxyx

+ yxxxxy + xyxyxx + xyxxyx + xyxxxy + xxyxyx + xxyxxy + xxxyxy

ª®¬
,

(10)
where x is horizontal polarization and y is vertical polarization.

3. Triphoton response and counting with polarization dressing

Based on the prediction of Eq. (9), the mode of the triphoton amplitude is determined by the

lengthwise detuning function and the fifth-order nonlinear susceptibility. Therefore, in this

section we pay attention to the nonlinear and linear optical responses of the generated fields.

On the basis of the theory of dressing perturbation chains according to the enhancement of

the power of E3, we use a dressing field to change χ. From Table 1, the fifth-order nonlinear

susceptibility of the generated fields can be written as

χ
(5)
S3

=
N0

d′
31

d′d
21

d′′
41

d′d
11

d′′′
41

=
N0

ε0~(Γ20 + i∆2)P3(δ2, δ3)
, (11)

where N0 = 2Nµ13µ24µ14µ32µ41µ41/ε0~
5 is a constant, µij is the electric dipole matrix element,

d′′
41
= Γ41−iδ1−iδ3+i∆1, d′

31
= Γ31+i∆2, d′

21
= Γ21−iδ1−iδ3, d′

11
= Γ11−iδ3, d′′′

41
= Γ41−iδ3+i∆3,

Γij are the dephasing rates of coherence |j>→|i>, ∆i=Ωi-ωi is the detuning defined as the

difference of laser frequency ωi of Ei, and Ωi is the resonant transitional frequency.

The linear susceptibility of the generated photons is

χs3 =
N1µ

2
14

Üd41

, (12)

where Üd41 = Γ41 + i(∆3 + δ1 + δ2), and N1 = 2N/ε0~ is a constant.



Research Article Vol. 2, No. 11 / 15 November 2019 / OSA Continuum 3158

The wave function of the triphoton is a convolution of nonlinear and linear optical responses,

and the properties of the triphoton amplitude are determined by both. When the effective coupling

Rabi frequency Ωe and linewidths γe are smaller than the phase-matching bandwidth ∆ωg, the

longitudinal detuning function Φ, which can be approximated to unity represents the linear

optical response to the generated fields. Under this circumstance, the nonlinear susceptibility has

a major role in the determination of the spectral width. Considering the practical issues, we only

concentrate on the nonlinear susceptibility. In such an instance, the coincidence counts of triplets

are used to represent a damped Rabi oscillation. Therefore, the effective coupling Rabi frequency

Ωe causes multimode SWM channel occurrence, which generates multimode triphotons.

According to Section II we obtain χSi
(5) andΦ=1. After some mathematical calculations from

χS3
(5), the triphoton coincidence counts can be written as,

Rcc3 = W2



Ω
2
e1

e−2(−Γ10−Γe1)τ12 +
Ω

2
e1

2
e−2Γe1τ12 (1 − cos(Ωe1τ12))

−Ωe1(−Γ10 − Γe1) sin(Ωe1τ12)

+Ωe1(−Γ10 − Γe1) sin
((
Ωe1

2
+
∆1

2

)
τ12

)
−
(
Ω

2
e1

2
+

(
∆1

2

)
e−(−Γ10−Γe1)τ12

)
cos

((
Ωe1

2
+
∆1

2

)
τ12

)
+Ωe1(−Γ10 − Γe1) sin

((
Ωe1

2
− ∆1

2

)
τ12

)
−
(
Ω

2
e1

2
−
(
∆1

2

)
e−(−Γ10−Γe1)τ12

)
cos

((
Ωe1

2
− ∆1

2

)
τ12

)



∗ e−2(Γe1τ12+Γe2τ13),

∗



Ω
2
e2

e−2(Γ30−Γe2)τ13 +
Ω

2
e2

2
e−2Γe2τ13 (1 − cos(Ωe2τ13))

−Ωe2(Γ30 − Γe2) sin(Ωe2τ13)

+Ωe2(Γ30 − Γe2) sin
((
Ωe2

2
− ∆1

2
− ∆3

)
τ13

)
−
(
Ω

2
e2

2
+

(
−∆1

2
− ∆3

)
e−(Γ30−Γe2)τ13

)
cos

((
Ωe2

2
− ∆1

2
− ∆3

)
τ13

)
+Ωe2(Γ30 − Γe2) sin

((
Ωe2

2
+
∆1

2
+ ∆3

)
τ13

)
−
(
Ω

2
e2

2
−
(
−∆1

2
− ∆3

)
e−(Γ30−Γe2)τ13

)
cos

((
Ωe2

2
+
∆1

2
+ ∆3

)
τ13

)



(13)

where τ23=τS2-τS3 and τ12=τS1-τS2. Clearly, the Rabi oscillation has an oscillation period that

results from 2π/∆1 in the direction of τ12 and multiple oscillation periods resulting from several

sine functions in the direction of τ23.

From the dressing perturbation chains presented in Table 1, we can write down the specific

susceptibility of the generated photons.

Regarding the linear polarization, θ = 0,

χ
(5)
S3M
=

∑
M=±1,±2,±3

2Nµ6

ε0~

× 1

(Γ20M + i∆2)(Γ10M − iδ1 − iδ3 +
CG2G2

1M
(cos4

θ+sin4
θ)

Γ30M−iδ1−iδ3−i∆1
)

(Γ30M − iδ1 − iδ3 + i∆1)(Γ00M − iδ3 +
CG2G2

1
(cos4

θ+sin4
θ)

Γ11M−iδ3−i∆1
)(Γ30M − iδ3 + i∆3)

(14)

Ωe3 and Ωe2 in Rcc3 need to be rewritten as,

Ωe1 =

√
[∆2

1
+ 4((cos4θ + sin4θ)(CGlinG1)2 + Γ10Γ30)],

Ωe2 =

√
[∆2

1
+ 4((cos4θ + sin4θ)(CGlinG1)2 + Γ00Γ11)]. (15)
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Table 1. Dressing Perturbation chains of the four-level system for linear and circular polarization
configurations for the laser

In addition, for circular polarization, θ = ± 450,

χ
(5)
S3M
=

∑
M=±1,±2,±3

2Nµ6

ε0~

× 1

(Γ20M + i∆2)(Γ10M − iδ1 − iδ3 +
CG2G2

1M
(2cos2

θ∗sin2
θ)

Γ30M−iδ1−iδ3−i∆1
)(Γ30M − iδ3 + i∆3)

(Γ30M − iδ1 − iδ3 + i∆1)(Γ00M − iδ3 +
CG2G2

1
(2cos2

θ∗sin2
θ)

Γ11M−iδ3−i∆1
)

(16)

Similarly, Ωe3 and Ωe2 in Rcc3 can be rewritten as,

Ωe1 =

√
[∆2

1
+ 4((2cos2θ ∗ sin2θ)(CGcirG1)2 + Γ10Γ30)]

Ωe2 =

√
[∆2

1
+ 4((2cos2θ ∗ sin2θ)(CGcirG1)2 + Γ00Γ11)].

(17)

CGlin is the coefficient in line polarization which is equal to
√

5/6 when θ = 0 and CGcir is the

coefficient in circular polarization which is equal to 5
√

5/6 when θ = ± π/4 in the protocol.

As it is shown in Fig. 2, not only the peak values are changed, but also the positions are

transformed. Transparently, the peaks are clustered in a linear polarization configuration in

Fig. 2(a), whereas they scatter in a circular polarization scheme in Fig. 2(c). From Eq. (14), we

know that the roots of χ=0 are clustered around one stable peak. This is caused by the effect of

the linearly polarized dressing field which makes the denominator smaller. The peaks appear to

be narrower because of the same reason, while the outcomes attributed to Eq. (16) are opposite.

Thus, we deliberate the circumstance to achieve the mixture of phase matchings and the

fifth-order nonlinear susceptibility. As shown in Fig. 2(a1), an incisive peak arises close to the

origin of the coordinates. When the counting time is increased, the slow lights begin to adjust

the wave packet of the triphoton counting rates. The circumstances are the same in Figs. 2(a1)
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Fig. 2. Resonances in the fifth-order nonlinear susceptibility |χS3
(5) | (a) with a linear

polarization dressing field, (b) with dressing field |G1 |2 (without polarization dressing), and

(c) with a circular polarization dressing field. (a2), (b2), and (c2), are resonances in the

dimension of δ3 from (a1), (b1), and (c1), respectively. Similarly, (a3), (b3), and (c3), are

resonances in the dimension of δ1 from (a1), (b1), and (c1), respectively.

and 2(b1). Since the CG coefficients may be different for different transitions between Zeeman

sublevels, the Rabi frequency can vary with polarization even the frequency and power of the

laser field keep unchanged. For example, the CG coefficients, CGcir (circular polarization) and

CGlin (linear polarization) are 5
√

5/6 and
√

5/6, respectively with M= 1/2. So, the dressing terms

in Eq. (17) are CG2
2,lin

(cos4θ + sin4θ)|G2 |2 and CG2
2,cir

(2cos2θsin2θ)|G2 |2, respectively. Thus,

the ratio between dressing term of circular and linear case is expressed as CG2
2,cir

/CG2
2,lin
= 25,

with θ=45° and M=+1/2, which indicates that the dressing effects in the circularly polarized

subsystems are far greater than that in the linearly polarized.

As shown in Fig. 3(a–c), we can demonstrate the theoretical curves of the triphoton coincidence

counting rate in a damped Rabi oscillation regime by applying different trigger photons at

different polarization states. The periods are obviously changed, and are shorter in the circular

polarization case and longer in the linear polarization case. It can be observed that when we apply

Es3 to trigger the photons, the Rabi oscillation only has one oscillation period in the direction

τ13 because of the monotonic attenuation in Fig. 3, while multiple oscillation periods exist in the

direction τ23 because of the up and down waves in Fig. 3. If we observe the functions in Eqs.

Fig. 3. Multimode triphoton coincidence counting rate in the τ12=t1-t2 and τ13=t1-t3
directions for the damped Rabi oscillation regime. (a) Without polarized dressing, (b) with

linearly polarized dressing, and (c) with circularly polarized dressing fields.
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(13–17), we can arrive at these conclusions earlier. Accordingly, the value of Ω in the circularly

dressed polarization scheme is larger, while it is smaller in the linearly dressed polarization

scheme. Based on these equations, the more distant the peaks are in Fig. 2(a1, b1, c1), the shorter

are the periods in coincidence counting in Fig. 3. Moreover, the wider the peaks are, the faster

are their attenuations in Fig. 3.

As it can be observed, Rccs3 ∝ Gs3, and Bs3 ∝ κs3 ∝ χs3. Based on the use of Eq. (8), we

obtain Rccs3∝ |χs3|2. Accordingly, we conclude that Rcc =
∑

Rcci ∝
∑

|χi|
2. This is why the

Rcc3 equation which is based on a single χS3
(5) could present the whole properties.

In the next section, we discuss the W and W-like states of the polarization entanglement based

on a quantum tomography paradigm.

4. Triphoton quantum tomography

To achieve the full characterization of the gained state, quantum state tomography was conducted

[18]. Regarding the three-qubit tomography, 64 projective measurements were required. The

output mode was projected on the bases |V〉 (vertical linear polarization) and |H〉 (horizontal

linear polarization) for each measurement. Each measurement is conducted by embedding a

polarizer and a quarter-wave plate in each output mode, and by laying their axes appropriately.

The reconstructed density matrix is shown in Fig. 4. It can be obviously observed that within

the diagonal parts, |VVV〉abc 〈VVV |, |HVH〉abc 〈HVH |, |HHV〉abc 〈HHV |, and |VHH〉abc 〈VHH |,
are dominant. Within the off-diagonal parts, the cross terms of the dominant diagonal parts

are dominant. All the facts show that the four terms |VVV〉abc, |HVH〉abc, |HHV〉abc, and

|VHH〉abc, are well superimposed, while the other terms can be ignored. Quarter, half-wave plate

(h1,v, q1,v, h2,v, q2,v, h3,v, q3,v) and PBS determine the projection states of the three beams |ψv〉,
and they determine the coincidence counting nv = N 〈ψv | ρ̂|ψv〉.

|ψ(3)
proj

〉 = |ψ(1)
proj

(h1, q1)〉 ⊗ |ψ(1)
proj

(h2, q2)〉 ⊗ |ψ(1)
proj

(h3, q3)〉

= a(h1, q1)a(h2, q2)a(h3, q3)|HHH〉 + a(h1, q1)a(h2, q2)b(h3, q3)|HHV〉

+a(h1, q1)b(h2, q2)a(h3, q3)|HVH〉 + b(h1, q1)a(h2, q2)a(h3, q3)|VHH〉

+b(h1, q1)b(h2, q2)a(h3, q3)|VVH〉 + a(h1, q1)b(h2, q2)b(h3, q3)|HVV〉

+b(h1, q1)a(h2, q2)b(h3, q3)|VHV〉 + b(h1, q1)b(h2, q2)b(h3, q3)|VVV〉.

(18)

Based on the above, we can formulate the density matrix with linear and circular polarized

dressings.

For linear polarization,

nv,lin = Nlin 〈ψv | ρ̂|ψv〉 ∝ |χ(5)
S3M

|4
θ=0

. (19)

For circular polarization,

nv,cir = Ncir 〈ψv | ρ̂|ψv〉 ∝ |χ(5)
S3M

|4
θ=

π

4

. (20)

Because χ
(5)
S3M

is influenced by the polarization dressing, n is also influenced. Thus, nv,cir is larger

and nv,lin is smaller with respect to each other. In the next subsection, we focus on the direction

of polarization.

As shown in Fig. 4(a), in the first panel, when the input optics are HHH, the output is a W-like

state as predicted from Eq. (21). In Fig. 4(b), when we change the input optics into HHV, HVH,

or VHH, the output is a W-state, as predicted from Eq. (22).
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Fig. 4. Reduced density matrix. (a) Input of HHH (W-like state, heights= 1/4). (b) Input of

HHV, HVH, or VHH (W-states, heights= 1/3). (c) Input of VVV (W-like state, heights= 1/4).

(d) Input of VVH, VHV, or HVV (W-states, heights= 1/3).

As shown in Fig. 4(c), when the input optics are VVV in the second system, the output is in

W-like state, as indicated by Eq. (23). Similarly, as shown in Fig. 4(d), when we change the input

optics in VVH, VHV, or HVV, the output is in W-state, as indicated by Eq. (24).

|W11〉 =
1

2
(|HHH〉 + |VVH〉 + |HVV〉 + |VHV〉) (21)

|W12〉 =
1
√

3
(|HHV〉 + |HVH〉 + |VHH〉) (22)

|W21〉 =
1

2
(|VVV〉 + |HHV〉 + |VHH〉 + |HVH〉) (23)

|W22〉 =
1
√

3
(|VVH〉 + |VHV〉 + |HVV〉) (24)

Thus, the proportion of the basic states is changed by polarization, and the outcome state is

unique for the specific input. From the above discussion, we can infer that the circular polarized

dressing can improve the measurement by approximately 1/3 in the W-state and by 1/4 in the

W-like state.

In the next section, we discuss the interference visibility that is controlled by the polarization

dressing.

5. Interference with polarized dressing

By considering the influence from the coincidence counting rate, and by setting the strongest

(circular polarization) interference visibility as the standard, we can modify the interference

equation with polarized dressing according to Eq. (25–27) and θ is the degree of λ/4 wave plate.
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Without the polarized dressing,

P =
1

2
+

1

2

√√∫∫
Rcc1dτ12dτ13∫∫
Rcc3dτ12dτ13

cos(ϕ1 + ϕ2 + ϕ3) (25)

When θ = 0, in linear polarization,

Plin =
1

2
+

1

2

√√∫∫
Rcc2dτ12dτ13∫∫
Rcc3dτ12dτ13

cos(ϕ1 + ϕ2 + ϕ3) (26)

When θ= π/4, in circular polarization,

Pcir =
1

2
+

1

2
cos(ϕ1 + ϕ2 + ϕ3) (27)

In Fig. 5, we simulate the normal coincidence counts of the interference of the W-like states

(W11 and W21) by changing ϕ3, which is the degree of the halfwave plate in the Es3 tunnel.

Accordingly, ϕ1 and ϕ2 are the degrees of the wave plates in the Es1 and Es2 tunnel, respectively.

In the two simulation conditions we use ϕ1 = ϕ2 = 0 to detect |HHH〉 and ϕ1 = ϕ2 = π to detect

|VVV〉. As it can be observed, the circular interference has the strongest coincidence counts. On

the contrary, the linear interference is the weakest. According to (Pmax − Pmin)/(Pmax + Pmin),

the circular polarization dressing has a stronger interference visibility than the one without

polarization (0.581) which is entangled. Therefore, it should also violate the Bell inequality and

is an entangled state. Ideally it is almost equal to unity. However, regarding the linear polarization

dressing, the interference visibility is only 0.110. In summary, we changed the intensity of the

interference visibility with polarization dressing.

Fig. 5. Interference of normal coincidence counts. (a) With circular polarization, and (b)

without polarized dressing. (c) With linear polarization dressing. Dashed lines and solid

lines exhibit π phase differences.

Hence, by changing the input optics polarization, we can control the output optics to achieve

changes between the W-like and the W states. Furthermore, circular and linear polarizations can

each strengthen and weaken the amplitudes of vibration that satisfy the entanglement criteria,

|GHZ〉 = (|HHH〉 + |VVV〉)/
√

2. In comparison to the GHZ state, the W state exhibits perfect

correlations and violates the three-particle Mermin inequality, while two-particle entanglement

can be observed after the measurement on one of the particles, contrary to the GHZ state [1].

From this viewpoint, the W and W-like states are more entangled and robust.
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6. Conclusion

In conclusion, we discussed the optical responses of fifth-order nonlinear susceptibility (χ
(5)
Si

)

fields generated in the atomic ensemble of SSWM. The process produced seven types of SWM

following the introduction of polarized dressing fields. To further explore the entangled properties

of the generated photons, we calculated the triphoton coincidence counting rate using linearly

and circularly polarized dressings. We also showed the transformation between the W and

W-like states by changing the incident light field polarization. Finally, we optimized the density

matrix and interference visibility with such polarized dressings. These results could be of great

significance for performing fundamental tests of quantum mechanics and quantum information

technologies.
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