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Abstract

Three-point functions as well as two-point functions in conformal field theo-
ries hold a simple structure that depends only on the scaling dimension and
the structure constants. While the two-point functions in maximally super-
symmetric conformal Yang-Mills theory are well understood, much less is
known about three-point functions.

We gather the information about the general structure of these three-
point functions and state a way of diagrammatically calculating the struc-
ture constants at one-loop level. The structure constants for short scalar
single-trace operators are computed numerically. We also calculate some
structure constants for BMN operators. Three-point functions containing
at least one Konishi operator take a very simple form at one-loop level that
is proven explicitly.

Zusammenfassung in deutscher Sprache

Zwei- und Dreipunktfunktionen in konformen Feldtheorien haben eine ein-
fache Struktur, die alleine durch die Skalendimension und die Struktur-
konstanten bestimmt ist. Wahrend Zweipunktfunktionen in der maximal
supersymmetrischen konformen Yang-Mills-Theorie bereits gut verstanden
sind, ist iiber die Dreipunktfunktionen sehr viel weniger bekannt.

Es wird ein Uberblick dariiber gegeben, was iiber die allgemeine Form
dieser Dreipunktfunktionen bekannt ist, und eine Methode der diagramma-
tischen Berechnung der Einschleifen-Strukturkonstanten beschrieben. Die
Strukturkonstanten kurzer skalarer Spuroperatoren werden numerisch be-
stimmt. Es werden aufierdem einige Strukturkonstanten fiir BMN Operato-
ren berechnet. Dreipunktfunktionen mit mindestens einem Konishi-Opera-
tor nehmen auf Einschleifen-Ebene eine sehr einfache Form an, fiir welche
ein detaillierter Beweis gegeben wird.
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Chapter 1

Preliminaries

1.1 The Unfinished Revolution

At the beginning of the twentieth century our view of the world was radi-
cally changed by the advent of two fundamentally new theories. On the one
hand, there was the discovery of quantum mechanics, whose foundations
were established in 1900 with Max Planck’s work about the spectrum of
heat radiation. Its further developments finally resulted in quantum field
theory and the standard model of elementary-particle physics, which de-
scribe the to date smallest and most fundamental parts of nature we know:
the constituents of matter, namely the fermions as well as the gauge bosons,
which carry the fundamental forces.

On the other hand, in 1916 there was Albert Einstein’s discovery of gen-
eral relativity. While quantum mechanics forced us to completely modify
our conception of causality, matter and measurement, general relativity
deeply changed our picture of space, time and the gravitational field. Both
quantum mechanics and general relativity led to predictions that are in
greater accordance with experiment than any physical theory had been be-
fore. In fact, there has not been a single experimental result that yields
certain evidence that either quantum mechanics or general relativity might
be WrongE

With the completion of the standard model in the 1970s there were two
efficient theories, but while the standard model was formulated in “old”
(that means special relativistic) terms of time and space, general relativ-
ity was still a classical theory that did not account for quantum mechanics.
Therefore attempts were made to unify them to a quantum theory of gravity.
Such unifications have led to some of the most striking advances in physics.
For example, the combination of Newtonian mechanics with Maxwell’s the-
ory led to special relativity, combining special relativity with Newtonian
gravity led to general relativity, combining special relativity with nonrela-

L Although there is no certain evidence, there are some observations that seem to be
inexplicable by contemporary physics, such as the Pioneer anomaly or the anisotropy
of the cosmic microwave background, but these are not sufficiently backed by experi-
mental data yet.
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tivistic quantum mechanics led to the discovery of antiparticles, and so on.
Hence we should have a great interest in also unifying quantum field theory
and general relativity. But our interest is more than just a philosophical
one. When our thoughts reach regimes where we have both small distances
and huge masses, as in the case of a black hole or the early universe, we
can neglect neither quantum mechanics nor relativity. So we cannot confi-
dently tell anything about these regimes unless we find a quantum theory
of gravity.

As general relativity is a classical field theory, we can try to quantise it
in the canonical way. But when we do so, we are faced with a problem:
The resulting quantum theory turns out to be non-renormalisable. A lot of
attempts were made during the last decades to find a quantum theory of
gravity but so far none of them was successful. In addition to the problem
of quantum gravity the standard model suffers from the large number of
eighteenﬂ free parameters which can be arbitrarily chosen and have to be
determined by experimental data.

String theory, which arose in the early 1970s as a theory for the strong
interaction and was developed further to a candidate for a unified theory
around 1984, solves these problems in an elegant way. In string theory ele-
mentary point particles are replaced by extended one-dimensional objects.
This leads to a unified theory containing a large amount of phenomenology,
including fermions and gauge fields. In particular it automatically includes
gravity in the form of the graviton, a vibrational mode of closed strings.
Unfortunately this comes at a high price. String theory is laden with a gi-
gantic baggage of additional physics, particularly supersymmetry and extra
dimensions, of which nothing has shown up in experiments so far. As well
as all other candidates for a quantum theory of gravity, string theory does
not make any falsifiable predictions so far which are accessible for current
experiments.

1.2 The AdS/CFT Correspondence

One of the most interesting active areas of research in string theory is the
AdS/CFT (Anti-de Sitter/Conformal Field Theory) correspondence which
was first proposed in Maldacena’s 1997 paper [34]. The correspondence
states that a type IIB superstring theory in ten dimensions, namely in the
product space of a five dimensional anti-de Sitter space with a five sphere
(AdS5xS®), is equivalent to the four-dimensional maximally supersymmet-

2or even more, if we take neutrino masses into account
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ric Yang-Mills gauge theory (N = 4 super Yang-Mills or SYM in short)
which is a conformal field theory. Therefore it endows us with a very help-
ful instrument to perform calculations either on the string theory side or on
the field theory side and simultaneously learn something about the other
side.

While the free parameters of the string theory are the string coupling gg
and the effective string tension R?/a/, the parameters on the gauge theory
side are the rank N of the gauge group SU(N), whose physical meaning is
the number of colours, and the coupling constant gyn which are combined
to the ’t Hooft coupling A = g%MN . The correspondence relates these
parameters by the identifications

T A

R2
N = 9s and VA= " (1.1)

The energy eigenstates of the strings are identified with operators in the
gauge theory and the energy eigenvalues E correspond to the so-called scal-
ing dimensions A of the gauge theory operators that describe the behaviour
of these operators under dilatations.

It is both fascinating and disadvantageous, that the domain best under-
stood on the string theory side is the weakly curved limit, i.e. VA > 1,
because it can be considered an effective supergravity theory, while on the
gauge theory side only the weakly coupled regime where A < 1 is perturba-
tively accessible. This, on one hand, makes sophisticated string calculations
a lot easier when performed on the gauge theory side and vice versa, and
thus it endows us with a tool to access so far inaccessible regimes of both
gauge and string theory. On the other hand it complicates checking the
proposition of the correspondence for which there is no rigorous proof yet.

Obviously AdS/CFT can teach us a lot about string theory and might
be of great use if string theory turned out to describe physics rightly. But
even if string theory would not be the correct quantum theory of gravity
the correspondence could still be a useful tool for calculations in quantum
field theory.

1.3 Correlation Functions in Superconformal
Yang-Mills Theory

If we want to get quantum field theoretical results that are actually measur-
able we need to consider cross sections and thus have to calculate S-matrix
elements. But, although not experimentally accessible, all the information
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about interactions of the theory is already encoded in the n-point correlation
functions

<Q | T¢(x1) o ¢($n) | Q) ) (1'2)

where T denotes time ordering, ¢(z) is a (for the sake of simplicity scalar)
field and €2 is the ground state of the interacting theory.E| So, if we want to
explore the physical content of a quantum field theory and compare it with
others’ the somewhat abstract correlation functions endow us with an easy
way to approach this goal.

The invariance under conformal transformations is a beautiful property
that appears in many classical field theories such as the massless Yang-
Mills theory. One of the most striking features of conformal invariance is
that the form of two- and three-point functions of operators in the theory
is highly restricted. The two-point functions are completely fixed by the
scaling dimension A. The three-point functions take the form

_ Capy
<Oa($1)oﬁ($2)ov($3)> = |x12‘Aa+Aﬂ_A"/ |x23|AB+Aw—Aa |$13|AQ+AW—A5 (1-3)

and therefore depend only on the scaling dimensions and the scalar factor
Capy called structure constant.

In NV = 4 super Yang-Mills theory, due to supersymmetry, conformal
invariance survives the quantisation process. The simple structure (|1.3))
then applies to the three-point functions of the quantum operators and we
can expand both the scaling dimensions and the structure constants in the
't Hooft coupling A

A=A0 4y +0(0?), (1.4)
Capy = COL +ACL +0(N?), (1.5)

The anomalous dimensions v are known or can be calculated with the help
of a powerful mechanism developed by Beisert, Kristjansen, Plefka and
Staudacher in [5] and [6] that makes use of the dilatation operator instead
of explicitly calculating the two-point functions. As the tree-level struc-
ture constants C'°)

afy
of the structure constants remain the unknown entities in the three-point

are not hard to determine, the quantum corrections

functions. Gathering information about the structure of the one-loop cor-
rections C'Sﬂ),y will be the main subject of this thesis.

3In the following we will omit the time ordering and the states and just write the fields
in angle brackets to denote correlation functions.
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1.4 An Outline of this Thesis

Starting with the derivation of the structure of two- and three-point func-
tions in conformal field theories in chapter 2] we continue with a short review
of the N' = 4 super Yang-Mills theory including a description of the spin
chain picture and the dilatation operator in chapter[3] In chapter [ we apply
the results from chapter [2] to the quantum field theory and thus obtain the
one-loop corrections to the scaling dimensions and structure constants. We
state the diagrammatic dressing formulae that we use to calculate structure
constants at one-loop level.

First results from the application of the dressing formulae are given in
chapter [5] Beside some short operators we calculate three-point functions
for a class of twisted operators. In chapter [6] we regard the transforma-
tion between non-diagonal and diagonal bases and apply this to calculate
structure constants computationally. The very simple general structure of
three-point functions containing a Konishi operator is proven and both re-
sults obtained for SO(6) operators by numerical calculations and results for
structure constants of BMN operators are listed.

We conclude with summarising the results and stating prospects for fur-
ther considerations on the topic.






Chapter 2

Conformal Invariance and Correlation
Functions

2.1 The Conformal Group

A conformal transformation is an invertible mapping x — 2’ of the coordi-
nates which leaves the metric tensor invariant up to a scale factor:

G () = G (&) = A(x) g (). (2.1)

For the special case A(z) = 1 we get the Poincaré group as a subgroup of
the conformal group.

These transformations form the conformal group consisting of the follow-
ing types of transformations:

Translation: ot — 't =k + at
Dilatation: ot — 't = \zH
Rotation: zHh — 't = MP, ¥
. s 1 o oh bt g2
Special Conformal Transformation: z# — 2 = 75" s
where MH, = —M",, X\ is a constant and a*, b* are arbitrary constant

vectors.

By definition spinless quasi-primary fields transform under general con-
formal transformations as

_A
d

0% () (2.2)

o(a) > &) = | 5

where d is the space-time dimension, A the scaling dimension of the field
and |0z /x| the Jacobian. For dilatations the Jacobian is A? and thus ¢
transforms as ¢’ (Az) = A\™2p(z).

Note that when speaking of fields we do not necessarily mean objects
that are integrated over in the functional integral. We also mean composite
objects such as for example derivatives of physical fields.
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2.2 The Structure of Correlation Functions in
Conformal Field Theories

In quantum field theory the n-point correlation function for a number of
fields is the vacuum expectation value of the time ordered product of these
fields. In the path integral formalism it is given by

(P1(x1)d2(x2) -~ Pnlzn)) = ([ T(d1(21)P2(22) - - P(n)) | )

_ I D® p1(21)pa(w2) - - - ()5 (2(@)]
= lim -
e—0 f D e15:[®(2)]

(2.3)

where the ¢; are arbitrary fields (not necessarily distinct), ® denotes the
set of all fields in the theory including the ¢;, |€2) is the ground state of
the interacting theory and S is the action with complex time obtained by
replacing ¢ by ¢(1 — ie).

2.2.1 Transformation of Correlation Functions under
Arbitrary Transformations

Let us consider a coordinate transformation

oxt
Swqg’

ot — 2P =2t + w, (2.4)

where w, is infinitesimal. Let F be a function defined by F(¢(z)) = ¢'(2').
Then the fields transform like

0F

OWwg

$(x) = ¢'(2) = ¢(x) + wa

(). (2.5)

If we have an action S[®] that is invariant under the given transformation
then we can easily derive the transformation of the correlation functions:

(1(a1) -+ 0n(al)) "2 [ DO bn(ah) - () S
—¢ 1 AV r 0N, —S[®
2 [P i) g e

s [ D8 For(wn) - Fon(oa)) e S

= (Flor(x1)) - F(dn(n))) - (2.6)
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2.2.2 Two-Point Functions

Let ¢;(z) be spinless quasi-primary fields. With (2.6) and (2.2]) we get

A Ag
d 8:[;/ d

9z’ 9’
ox

(or(an)enan)) = | 5 (@@, (2)

T=x9

r=x]

Due to rotational and translational invariance, the two-point function has
to be a function of the absolute value of the distance 1 — 9

(¢1(x1)¢2(22)) = f(lz1 — x2|). (2.8)
The invariance under scaling transformations x — Az requires
F(lar = ma]) = A2F22 F(X |2y — wal). (2.9)
This means
1
f(Az) = mf(l‘)
= FN = 3m75 /W) =575
C
= (91(21)a(w2)) = A (2.10)
|:L,1 _ $2| 1 2

In addition to scaling, translational and rotational invariance, we have to
demand invariance under special conformal transformations. In a lengthy
but straightforward calculation we get the Jacobian for those transforma-

tions o/ .
T
—| = . 2.11
oz (1—2b-x+ b2x2)d (2.11)
We define v, :=1—2b-x; + b%?, then the distance transforms as
|z — ] 5t |} — :1:;| = Jzi — )] (2.12)

NazoT il

Applying this to the correlation function we get

A1 Ao
= oL

o
1

or'

g (¢1(a)pa(25))

T=x2

(p1(21)P2(22)) =

r=x
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—d% —d% C1s
- V2 / 1 |[A1+Az
) — 5|
INEDY
1 Cia(me) 2

71A1’72A2 ‘«Tl _ x2|A1+A2

=02 2 (@) nlea) (213)

A
M Ve

This has to be true for arbitrary b* and thus for arbitrary ;2 which can
be achieved only if A1 = Ay =: A. Our final result is

Ci2
\1’1 _ .T2|2A

(@1(1)P2(22)) = 01,0, (2.14)

2.2.3 Three-Point Functions

The structure of the three-point functions can be obtained in the same way.
From now on we write x;; = x; — x; for the distance.
First, by demanding rotational and translational invariance, we obtain

(01(21)d2(x2)@3(x3)) = f(|w12], |213], [w23]) (2.15)
and because of the scaling invariance we get
flx,y, z) = A3+ 82083 £(\p Ay, Az). (2.16)
This is true if and only if
2’20 f (2, y, 2) = (M) (Ay)* (A2)° f(Az, Ay, Az) (2.17)

for some a,b,c with a +b+ ¢ = Ay + As + Az. Thus the left hand side has
to be a constant with respect to x, y and z and we end up with

abc
(61 (1) 2 (w2) p3(23)) = 125

— . (2.18)
|212]* |213]" |23 ¢

If we now consider special conformal transformations we get

(61(21) P2 (2) B3 (w3)) = 71 215 225 22
Cbs

X
_a _b b _c ’
(Y1792) " |12 (11793) 7 |213]° (7293) 7% ||
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—A okt A, pate A bte
=M e V2 e V3 e <¢1($1)¢2($2)¢3($3)>-
(2.19)

As for the two-point functions this has to be true for arbitrary i 23. This
means

2A1:a+b, 2A2=Q+C, 2A3:b+c (2.20)
which can be uniquely solved and leaves us with

a=A1+ Ay — A
b=A1+ Asg— Ao
c= Ay + Az — Ay. (221)

The final result is

Cia3
|A1+A27A3 ‘x23|A2+A37A1 |w13|A1+A3*A2 :

(f1(w1)Pa(w2)P3(23)) =

= (2.22)
|CU12

2.3 The Operator Product Expansion

A common method in quantum field theory is to replace complex interac-
tions by single effective vertices. The operator product expansion (OPE)
endows us with a formalism to describe this procedure. Consider two opera-
tors O, and Opg at separate but close points z1 and x2 and suppose that any
other field is located much farther away. Then the product On(21)Og(z2)
can be described by a local operator at xo that can be expanded in a basis
of operators. In conformal field theories the operator product expansion
takes the form

Ca
Ou(21)Op(w2) ~ > ng‘_A O, (x2) (2.23)
vy

where “~” denotes that both sides of the equation show the same divergent
behaviour in the limit 1 — x2 but may differ by finite terms. The coeffi-
cients C,g+ are the structure constants that also appear in the three-point
functions.






Chapter 3

N = 4 Super Yang-Mills as a
Superconformal Field Theory

3.1 The N = 4 Super Yang-Mills Action

The maximally supersymmetric Yang-Mills theory contains a gluon field
A, (zx), six scalar fields ¢;(x) (i = 1,...,6) and four gluinos that can be
written as a ten-dimensional Majorana-Weyl spinor with sixteen compo-
nents xo(z) (. =1,...,16). The fields are in the adjoint representation of
the gauge group.

If we define the covariant derivative to be D, = 9, —1i [A,, ], the ten-
dimensional Dirac matrices to be (I',,I;) (# =0,...,3,4=1,...,6) and
the conjugate spinor to be ¥ = x'T, according to [42| the action of N = 4
super Yang-Mills takes the form

2 1 1 1

1 i
+ ixFuD“x —5 XL [%X]) (3.1)

and is uniquely determined by the coupling constant gyyr and the rank N of
the gauge group SU(N). The S-function of the theory is believed to vanish
to all ordersE] This is equivalent to the statement that conformal invariance
is maintained even after renormalisation.

3.2 Operators in N/ = 4 Super Yang-Mills

Let us introduce some common classifications for operators in the super-
conformal theory. We conclude with the local single-trace operators made
up of scalar fields whose three-point functions will be the subject of our
research.

!This was shown up to three-loop order in [3,/10,|23] and there are several arguments
that it should hold to all loop orders |9,26H2835].
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3.2.1 The Superconformal Algebra

The superconformal algebra is a graded algebra. It is generated by the fif-
teen generators of the four-dimensional conformal algebra, which are the
four generators of space-time translations P, and the six generators of
Lorentz transformations M, obeying the Poincaré algebra, as well as the
generator of scaling transformations D and the four generators of special
conformal transformations K, obeying the algebraﬂ

[D,P,) = —iP, (K, K,]=0
D, K] =iK, [P, K,] = 2i (M, — 0, D)
(D, M,,] =0 (M, K] = 1 (0 Ky — 0up KoL), (3.2)

together with the eight supercharges Q% and their conjugates @g that satisfy
the anti-commutation relations

{qu@g} = PYZa 6(15 PN and {qu Q%} = {éga @Z)} = 0. (33>

a=1,2and & = 1,2 index the two SU(2) algebras making up the Lorentz
algebra and a = 1,...,4 and a = 1,...,4 are indices for the internal R-
symmetry.

Both algebras are combined by the commutators

[Png] =0 [Pwég] =0
[D.Qs] = 5@ [D.Q] = —5 QL
(M, Q2] = 1052 B Q" (M, ég] _ igg; B @g
(K", Q4] = os e 52 (K", Qvg] = e € S- (3.4)

S% and §g, called special conformal supercharges, obey anti-commutation
relations similar to those of the supercharges:

{92, 85} = by 0™ K, and {83, S5} = {54, 84} =0. (3.5)

The anti-commutation relations still missing are those of the supercharges

2See |38] for any of the relations stated in this section.
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with the special conformal supercharges. These are given by
b b b ; ij
{QZ, SB} = JZZ 0 My, — €03 0" D —ienp JZ]E R;;

{ég,gg} :JZE(SEZ)MW—6d35abD+iedBa%Rij (3.6)
where R;; (1,7 =1,...,6) denote the generators of the SO(6) R-symmetry.
The JZjB are the SO(6) generators in the fundamental representation. Ob-
viously the supercharges are spinors under the R-symmetry. All other gen-
erators commute with R;;.

SU(4) ~ SO(6) has three commuting generators with corresponding
charges Ji 2 3. Fields can then be classified by sextuplets of charges

(AO) Sy, Sy Ty, o, J3)

with the bare scaling dimension A©) and the two charges S1,2 of the Lorentz
group.

3.2.2 Primaries and Chiral Primaries

Let O(x) denote a local operator of the theory. By definition of the scaling
dimension A of O(x), under a dilatatiorﬂ T — Ax the operator scales as
O(z) — A"2O0(\z). These dilatations are generated by D, also called the
dilatation operator, acting on O(z) by

[D,0(x)] = i <—A + :v(i) O(z). (3.7)

The action of D on the commutator of K, and O(0) can be found using the
Jacobi identity and is

[D, [K,,, O0)]] = i(=A + 1) [K,, 0(0)] - (3.8)

The scaling dimension is therefore lowered by one.

Since unitarity requires the scaling dimensions of local operators to be
positive, there must be operators that cannot be lowered any further by
action of K, i.e.

[K,,0(0)] = 0. (3.9)

These are the primary operators. The operators that follow by acting on
the primaries with the generators of the superconformal algebra are called

3Note that dilatation and scaling transformation are just two words for the same thing.
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descendants.

Only primary operators can commute with all the special conformal su-
percharges. If, additionally, they commute with at least one of the super-
charges they are called chiral primaries. A special class are the operators
with one R-charge J and the other R-charges equal to zero. These are
chiral primaries if A = J and are then known as BPS opemtorsﬂ Chi-
ral primaries are protected, meaning that their scaling dimension gets no
quantum corrections, i.e. A = A,

3.2.3 Gauge Invariant Operators

Gauge invariant operators can be constructed by taking traces over products
of the fields. If 94, denotes one of the fields A,, ¢;, xo or any derivative of
these we can have single-trace operators Tr (1112 - - - ¢r) (z), double-trace
operators Ir (?/)1¢2 T ¢L1) Tr (¢L1+1¢L1+2 to ¢L1+L2) (I‘) and so on.

From now on we consider only operators of the scalar fields. These are
usually referred to as the SO(6) sector. The six scalar fields can be combined
to three complex fields

Z = ¢1+1i¢a, W=¢3+i¢s and X =¢5+1i¢s (3.10)

together with their complex conjugates. If we restrict the operators to such
made up only of traces of Z and W we get what is known as the SU(2)
sector. This sector is closed under operator mixing to all orders. Although
this does not hold for the SO(6) sector, this sector is at least closed at
one-loop order.

In the large N limit that will be explained in the next section, multi-
trace operators are suppressed and it is therefore possible to restrict our
considerations at one-loop order to scalar single-trace operators.

3.3 Large N Expansion and Planar Limit

It was first proposed by 't Hooft [25], originally as a method for the strong
interaction, to treat the rank N of the gauge group as a parameter of the
theory and expand the theory with respect to it. In quantum chromodynam-
ics (QCD) confinement defines a fundamental scale in the theory, namely
the confinement scale Aqcp, associated with physical effects. Therefore it
is natural to keep this scale fixed in an expansion. This can be achieved by

“The notion of chiral primary operators (CPO) is often used as a synonym for BPS
operators, too.
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keeping the product A := g%MN , called the ’t Hooft coupling, fixed while
taking the limit N — oo.

If we work in the adjoint representation we can use 't Hooft’s double line
notation. Each field holds two indices both of which can be connected with
a line. The propagators may then be depicted by double lines

Q& ——

~ g% (3.11)

p —-——

and are proportional to g%M = A/N while the vertices

\_, 1 \/ 1
N% and /\ N% (3.12)

are proportional to 1/ g%,M = N/\. We wrote down only the propagator and
the vertices for scalar fields here but those for gluons and fermions could in
principle be depicted the same way.

Each index loop appearing in a Feynman diagram gives rise to an extra
factor of NV that comes from summing over the group indices. The number
of index loops equals the number of faces F' of the diagram which is one
more than the number of loops of the Feynman diagram, because we take
the trace over all fields or, diagrammatically speaking, we also have to count
the outer face which is no genuine loop of the Feynman diagram. A typical
diagram with P propagators, V vertices and F' faces is then associated with

a factor
NPV NVPEE, (3.13)

The exponent can be substituted by the topological invariant
x=V-P+F=2-2h (3.14)

of a simplicial complex with V vertices, P edges and F' faces called Fuler
characteristic. h denotes the genus of the complex that corresponds to
the number of handles. We can then decompose physical quantities of the
theory in a double expansion in the 't Hooft coupling A and 1/N?

o0 o0
D ONTEEN e A (3.15)
h=0 n=0

It is easy to see that when taking the limit N — oo the dominant contribu-
tions come from the diagrams of lowest genus. These are the diagrams that
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(a) Planar diagram (b) Non-planar diagram

Figure 3.1: Examples of a planar and a non-planar diagram.

can be drawn in a plane without crossing lines, referred to as planar for
obvious reasons. An example for both a planar and a non-planar diagram
is shown in figure [3.1

As it is a conformal theory there is no natural scale for N' = 4 super
Yang-Mills. In particular, there is no confinement because the S-function
vanishes for all values of gyy. Thus there is no value that has to remain
fixed and other limits than the ’t Hooft limit can also be taken. Among
these the BMN limiﬂ is worth mentioning where we take N — oo and
the R-charge J — oo while keeping J2/N fixed. This limit corresponds to
the plane wave limit of string theory. The corresponding BMN operators
constitute long strings of Z-fields with a small number of other fields called
impurities. For an introduction to this topic see for example [43] or [45].

3.4 The Integrable Spin Chain Picture

Let us at first restrict our considerations to the SU(2) sector, more precisely
to single-trace operators that are built only from the complex scalars Z and
W. The trace is invariant under cyclic permutations. If we regard Z as a
spin “down” ||) and W as spin “up” |1) we can therefore depict such an
operator as a ring of up- and down-spins.

This picture can be generalised to the SO(6) sector as well. Instead
of two-dimensional SU(2) spins we must then endow the spin chain with
six-dimensional vectors transforming under SO(6).

If we now want to calculate for example the tree-level contribution to
the two-point correlation function of two such operators we have to con-
tract each field of the first with a field of the second operator. This is
pictured in figure 3.2l In principle we could have any possible contraction,

Snamed after Berenstein, Maldacena and Nastase, introduced in [8]



3.4 The Integrable Spin Chain Picture 19

<A

Figure 3.2: Tree-level two-point function in the spin chain picture.

but as we consider operators in the large N limit we need to regard only
planar contractions. Thus, by choosing the first contraction, all others are
uniquely determined. We just have to sum over all cyclic permutations for
one operator. As the tree-level scaling dimension A(® equals the length of
the operator, i.e. the number of fields in the operator, operators of dif-
ferent dimensions cannot be fully contracted and therefore do not mix on
tree-level.

The operators of equal length hold a high degeneracy that is broken
for the full quantum operators. The scaling dimension then gets quantum
corrections

A=A 4y + 002 (3.16)

where «y ist called the anomalous dimension of the operator. For an arbi-
trary basis of bare operators with equal tree-level dimension A©) there is
an operator mixing at one-loop level. The anomalous dimension for these
operators is then ill-defined.

What we want to have is a basis of operators for which the two-point
functions are also diagonal at higher loop orders. The anomalous dimensions
could then be read off directly. This diagonalisation may be done loop order
by loop order, and we will carry this out in detail for one-loop order in the
next chapter, but there is a far more elegant way introduced in [5,6] that
makes use of the dilatation operator.

3.4.1 The Dilatation Operator

The dilatation operator was already introduced when we first met the super-
conformal algebra. It is the generator D of scaling transformations. Its fea-
ture is that the gauge invariant local trace operators O, (x) are eigenstates
of the dilatation operator and its eigenvalues are the scaling dimensions

DOy(z) = Ay Op(2). (3.17)
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The operator can be expanded in powers of the coupling constant

00 2 k
IyMm
D= E D 1
— (1671'2> 2k (3.18)

and according to [6] the first two orders of D for the scalar SO(6) sector
are

Do = Tr (¢mPm) (3.19)

- - 1 . -
Dy=—:Tr ([¢m7¢n] [¢m:¢n]) : D) T ([¢m7¢n] [¢ma¢n]) Do (3.20)
The colon denotes normal ordering, meaning that derivatives do not act on

the enclosed fields, and we use the notation

. 5 5
= =T° 21

where T denote the generators of the SU(N) gauge group.

Instead of calculating all two-point functions and diagonalising them loop
order by loop order, we can now directly diagonalise the dilatation operator
to get the basis that is diagonal to a given order.

This gets even more interesting if we consider the SU(2) sector in the
planar limit. The one-loop dilatation operator acting on a trace operator
of length L then takes the form

L
Dglanar _ Z (ﬂi,iJrl _ Pi,i+1) (3.22)

=1

where F; ; is the permutation of the fields at position 7 and j and P is cycli-
cally periodic (L + 1 = 1). This is exactly the Hamiltonian of a ferromag-
netic XXX, Heisenberg spin chain. The powerful tool of the Bethe ansatz
which in condensed matter physics is well-known to solve the Heisenberg
spin chain, can therefore be used to diagonalise the dilatation operator.

3.4.2 Computation of Anomalous Dimensions with the
Coordinate Bethe Ansatz

Let us roughly outline the general idea of the Bethe ansatz. One of the
crucial ingredients is the notion of integrability. We can define an R-Matrix,
an operator that acts in the product of two auxiliar spaces V, ® V;, which
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for the XXX, Heisenberg spin chain takes the form
Rab(u) =uly +1Py. (3.23)
The criterion for integrability is then stated by the Yang-Bazter equation

Ris (U) ng(u + U) R23(v) = R23(U) ng(u + U) ng(u). (324)

The ground state for the spin-chain is |} --- ]]). We call a state with M

up-spins a M-magnon state and write |z1,x9,...,z) for a length L state
with up-spins at positions z1,zs,...,27, €. g.
11,3,4,T)ms = [T, (3.25)

The dilatation operator (or Hamiltonian) Do does not change the magnon
number. We can thus diagonalise the M-magnon states for each M sepa-
rately. This is trivial for the one-magnon states |z). The diagonal states
are just the Fourier transformations

L

ey = €M fz)  with Dy [p(pr) = dsin? 2L (1))

r=1

2
and p; = %k (keZ). (3.26)

For the two-magnon states we use Bethe’s ansatz
Y(x1,x0) = elProntreez) S(p1,p2) ¢llpemitpize) (3.27)

i.e. a superposition of an incoming and an outgoing plane wave. S(p1,p2)
denotes the S-matrix. The Schrodinger equation for the two-magnon state

By [¢(p1,p2)) = D2 [4(p1,p2)) (3.28)

leads to an expression for the total energy

By = 4sin’ %1 + 4sin? % (3.29)

and determines the form of the S-matrix

cot B — cot B2 + 2i

p1_ P2 _ 9i°
cot 5 cot 5 21

S(p1,p2) = (3.30)
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Using the periodicity of the spin chain we get the two-magnon Bethe equa-
tions
el = S(py,p2) and ePl = S(po,py). (3.31)

Integrability is special in that the general M-magnon states factorise into
sequences of two-magnon states. This yields a set of M Bethe equations

M
Pl =TT S(oe. pi) (3.32)
ik

together with the S-matrix (3.30)) and the total energy
M ’;
E=) 4sin®7. 3.33
2 sin” < (3.33)

We can further take account of cyclic invariance of the trace by constraining
the total momentum to zero

Zpi =0. (3.34)

For a general introduction to the Bethe ansatz and a precise definition of
the somewhat difficult to manage notion of the R-matrix see [22], for its
application to A/ = 4 super Yang-Mills see [37,42|.



Chapter 4

Three-Point Functions at One-Loop

4.1 General Form of Two- and Three-Point
Functions at One-Loop

4.1.1 Two-Point Functions

We will derive the general form of the two- and three-point functions in
N = 4 super Yang-Mills following [40]. We start with a set of bare primary
operators OF whose two-point functions to first order in A take the form

5A£§”,A§’>

2A®
L19

(08 (21) O (22)) = (tas = Maplnfor2AP), (41)

with the ultraviolet momentum cutoff A and the free scaling dimensions
(0) :
Ay’. tog may contain terms of order A.

We can simultaneously diagonalise both t,3 and ~v,3. Let M be the
change-of-basis matrix from the bare operators (’)g to the diagonal operators

Oa = MogOf. (4.2)

The two-point functions of these operators take the form

(Oalw1) Op(w2)) = MayMps (OF (21)05 (w2))

= Tg)) (Mavt'yéMaﬁ — )\Mavfy'yéMéﬂ In |x12A\ ) .
12
(4.3)

We want these two-point functions to become diagonal, which means

Sap Na

220
Zig®

(Oa(21)05(x2)) = (1 ~ Maln ]x12A|2> (4.4)

with a normalisation constant N, that may contain terms of order A. Com-
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paring and we obtain the following matrix equations:
(MtM™) o5 = SupNa (4.5)
(MyM")ap = GapNaVa- (4.6)
We normalise the two-point functions in such a way that
No =1+ Aga + O(N?). (4.7)

The two-point functions for the diagonal operators are then

da
(Oal@1) Op(@2)) = =275 (14 Aga = MalnfaizA?) . (48)
12

If we now define the renormalised operators as

A
Oo = O, (1 - 590( + Mo ln

2‘ + O(A2)> (4.9)

with renormalisation scale p, we obtain two-point functions that show the

correct structure as demanded by conformal invariance, with respect to the

one-loop scaling dimensions A, = A((XO) + Mo

_ _ 5,
(Oalwr) Os(r2) ) = HfA(O) (1= Ml fz1ouf® +0(?))
ZTi2|7®

_ 5aﬁ e—)\“/aln\x12u|2_|_0(>\2)
1o
Z12

= Sap (4.10)

- (0) :
\3612\%“ |9612M\2/\7a

4.1.2 Three-Point Functions

As derived in chapter [2, by conformal invariance the three-point functions
for the renormalised operators take the general form (2.22))

(Oalar) Opaz) O, (x3))

Ca67

= - — — . (4.11)
| 10| BRI TAY |gog |AFATT A gy o |Rat By Rs | Aty +77)
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We expand the structure constant as

Cagy = CL) +ACL) +O(N?) (4.12)

! aBy

and substitute the renormalised operators (4.9) into (4.11)). Thus, we obtain

for the three-point functions of the unrenormalised operators
(Oa(w1) Op(x2) Oy (3))

0 1
CO) (143 (9o + 95 + 7)) + ACLY,

- |x12|Aa+Aﬁ*Aﬂf |x23‘A3+A77Aa |$13|AQ+AW*A[1 |A|>\(’Ya+’ws+%)
. 1
- A(()(O) A(O)—A(O) A(O) A(O)—A&O) A«('XO) A(U)_A(O)

|.”L'12| T2 7 ‘3723| 8 Ty |$13| Thy B

T19213A T1oT23A T13%23A
X ngﬂ{ (1)\7(1 In | 12713 ‘)\’yﬁ In |=22232 — AvyIn c1vEs D
T23 I13 T12
1 1 o0
+A (C(% + 5 Oy (90 + 95 + gﬁ) 1 : (4.13)
—.50

TaBy

The finite part of the one-loop correction to the three-point functions is
given by

_ 1
Cagy = Ciy + 5 O3y (90 + 95 +92). (4.14)

While C’(()[lﬁ)7 is renormalisation scheme independent, 56(3627 is not.

4.2 Derivation of the One-Loop Dressing Formulae

4.2.1 Handling of the SO(6)-Indices

We consider operators that are linear combinations of the single-trace op-
erators

Tr (¢ -+ ¢™) (2) (4.15)
built of scalar fields ¢!. We will handle the SO(6) indices by attaching
six-dimensional vectors uy to each ¢!, leaving us with operators

ON(uy,...,un)(z) = Tr(uy - ¢ -un - @) (x). (4.16)

As is described in [20] we can obtain operators that are protected, i.e. have
anomalous dimension yo~y = 0, by attaching complex null vectors with
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uruy = 0 and uyuy = 1.
Most of the time we will be faced with linear combinations of various
operators taking the form (4.16)). For example the Konishi operator is

6

K(z)=Tr (¢"¢") (x) =) O (es, e5) () (4.17)

i=1

where ¢; is the R® unity vector in i-th direction.

The operators can be depicted in the spin chain picture with a ring
of SO(6) vectors. We choose a more compact and clear form and draw the
ring as a line

keeping in mind that the ends of the line have to be identified.

4.2.2 Point-Splitting Regularisation

We make use of the point-splitting regularisation scheme. The general idea
underlying this method is simple. We consider composite operators which
are built from elementary fields, originally located at the same space-time
point, and let those space-time points differ by a little distance . We
can then expand our regularised expressions in € and isolate the ultraviolet

divergences. This corresponds to an ultraviolet momentum cutoff A = e~ 1.

In this thesis we omit the details of this procedure because they are
not important for the ensuing discussion. Anyway, the interested reader is
refered to [39].

We can switch to another renormalisation scheme by a rescaling € — Ae
with a scaling factor of A. This is used in the further discussion because the
choice of a suitable renormalisation scheme simplifies the calculation of the
one-loop structure constants.

4.2.3 Propagator and Fundamental Tree Functions

According to appendix A.2 of [4] we use the following short hand notations:

1

Lo = ———,
(ZW)QCU%Q

(4.18)
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Yiog = /d4w L IowI3w, (4.19)
X234 = /d4w T Iow I3wlaw, (4.20)
Hiz 34 :/d4vd47~UI1vI2vvaI3wI4w- (4.21)

While the function H occurs only in the combination

(01 — 02) - (03 — 04)H12,34
VDYEN

Fi934 =
_ Xuzsa Xisa Vi Yiza You n Y234
Iislos  Talaz D Dz loa 123

Y; Y; Y; Y;
+ 123 1123 1124 + 124’
113 123 Il4 I24

(4.22)

X and Y can be evaluated explicitly. Therefore we define

2 .2 2 .2
_ T1a%34 5 — Lo3L14
=72 .2 =72 .2

L13To4 Li3Lo4

and use the function

d(r,s) = % Im [Lig <ei@£> - 1n£ 1nW (4.23)

where €% and A are defined by

i \/ 1—r—s—4iA
e =1/— —
1—r—s+4iA

1
A= Z\/4rs— (1—7r—s)2
The properties of the function ®(r,s) are described in appendix B of [1].

With these notations X and Y take the form

2®(r, 5)
X =71 4.24
1234 (27-‘-)8:1;%3134 ( )
Y123 = zlll)noo [,U?l X1234. (425)

In point-splitting regularisation, where we take 1 — z2 and define € := x19,
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r and s can be expanded as

2 2
r= 25 1 03, (4.26)
33125'313
— 623y + 2273 — 8
s=14 2T T8, DT IV 2O 2 () (4.27)
L12213 L127713

and we can use the expansion for ®(r, s) given in [1]:

S (1)
(1—5)'Inr+2
SR I el R e

~—Inr+2+0(¢e)

3}2 62
= - <ln 2 2) : (4.28)

L1273

This yields the following limits in point-splitting regularisation:

X Il < Ty 2) (4.29)
1123 — 12413 - ) :
16 2 w12t
62
Yiig = ———I1p [ In = — 2] = Y99, 4.30
112 16 2412 ( n x%2 > 122 ( )
1 g2 1 1 2
Fioiz=——5(In—5 —2) +Yios | — +— — — 4.31
12,13 1672 < z3, > 123 <112 T Iz3> (431)
52
X =——=I% (In— -1, 4.32
1122 g2 12 (ﬂx%Q ) ( )
1 2
Figio=—— [In— —3]). 4.33
2 = gz (0 —3) (1.33)

4.2.4 Basic Interactions at One-Loop Level

We introduce a graphical symbol for the propagator and normalise the scalar
propagators such that

Ui

(" (1) (22)), 00 iy = I = (u1 - ug) 1, (4.34)

U2
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where we handle the SO(6)-indices with vectors u; and wus as described
above.

The one-loop corrections are then built of the following three components:

Y; Y;
u o-Q-e uz = —\(uq - uz) I1o y (self-energy),  (4.35)
12
Ul u
:E A
= 5( 1 UQ)(Ug . U4) 112 Ig4 F12734 (gluon), (436)
us Ug
Ul u
A
=3 [2(u2 cug)(ug - ug) — (ug - uq)(ug - ug)
us U4
—(u1 . ’U,Q)(u?, . U4)] X1234 (Vertex). (4.37)

With these basic interactions we can diagrammatically state the essential
parts in which the two- and three-point correlation functions factorise: the
2-gon and the 3-gon.

4.2.5 The Dressing for the 2-Gon

By combining the basic interactions (4.35)—(4.37) using the limits (4.29)-
in point-splitting regularisation we can easily derive the one-loop
dressing formula for the 2-gon graph. For this purpose we calculate the
sum of the three possible corrections, regarding that the self-energy term
has to be shared between neighbouring lines. We obtain

A
= §X1122 (2u1 U1 U2 - V2 —UL-V2U2 V] — UL - U2V, 'U2)

2
+ 5 U1 v2Uz -y Ii5 Fi212

— Aug - vaug - v L2 (Yiie + Yi22)

A g2
2
2112W!<1n2—1> (—U]_"U]_UQ"UQ

L12
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1
Ul - VU9 - V1 +§u1 < U9 V1 -v2>

2

€

In —-—3 | u-vauz-v;
T12

82
+ <1n2—2> Uy -V U+ VY
T
12

)\ 62 ..
=712 (ln— —1 —
1287T2<n1‘%2 ><

The diagrams in the last line just stand for the index contractions, not for
propagators.

(4.38)

4.2.6 The Dressing for the 3-Gon

We consider the three contributions to the one-loop correction of the 3-gon
separately.

Self-Energy Correction Like for the 2-gon, the self-energy term has to
be shared between neighbouring lines. Thus we get

wWiwWw2 wiw2

-\ (Y Y, Y Y Y Y
:V><< 112 + 122 13 + 133 223 + 233)

2 Io I3 I3
A 2 2 2
:VX2<ID62+1H82+111€2—2—2—2> (4.39)
167 19 13 T5

where we write V as an abbreviation for the tree-level 3-gon.

Gluon Exchange For the gluon exchange terms we get

wiwz wiws2 wiwz2
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A
=V X 5 (F12,13 + Fi2,23 + F1323)

)\ 2 2 2
— v x 2<1r1€2+1n€2+1n€2—2—2—2), (4.40)
32 12 13 T33

utilising that the Y723 terms in Fj;;; add up to zero contribution.

Vertex Correction The contribution of scalar vertices to the one-loop
correction of the 3-gon is

wiws2 wiw2

A
= I12l13123 % 5

X1123
X (2u1-w1uQ-v2—u1-v2uQ-w1—ul-u2v2-w1)v1-w2

Liolhs
X1223
(21)1 cUL V2 Wy — V1 - W2V2 - UL —v1-02w2~u1)u2-w1
Lolo3
X1233
(2w1-Ulwg-uQ—wl-ugwg-vl—w1~wqu-Ul)u1~v2
L3153

A
= Iol13123 X ——

2,.2
ETT
3271'2 <1n B} 223 — 2) (u1 s V2 U9 - W1

L1273

2.2
ETT
—2u1'wluz-v2+u1'u2v2'w1)vl'w2+(m 2 12?’ _2)

X(Ul'U]Q’L)Q-U1*21}1'U11}2-wg+’01'Ugwg'ul)UQ'wl

e2q?
+(In 5 122 -2 (wl-Ung-'Ul—le-vle-UQ
L13223

“+w1 - wo U2 - 7)1) ui - 1)2] . (4.41)
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=0 (5

Figure 4.1: Correction inside and outside the 2-gon for length two operators.

The Sum of All Corrections Now, taking into account that

2 2 2 2,.2 2.2 2,.2

€ € € e e e°x
In - +In— +In— =In—; 122 +1In — 123 +In — 223, (4.42)

x x x Ti3x Tio Tio

12 13 23 13723 12723 127713

we can add all three contributions.

(SE) and (GL) are both proportional to the tree-level contraction terms
of (VX) only. Therefore by adding (SE) and (GL) to (VX) these terms are
just doubled. The final result is

1672

> = I1ol13123 %

1-loop

wiws2

2.2
e“x

X (ln 3 223 —2)
L1273
2,2
e“x

+(ln 5 123 —2)
T12%23

2.2
e“x
+<ln 5 122 —2)
2.7
13223

As above, the graphs just depict the index contractions and not the propa-

] . (4.43)

gators.

4.2.7 Operators of Length Two

For length two operators we have to take into account corrections inside
and outside of both the 2-gon and the 3-gon. In figure this is pictured
for the 2-gon. This yields a factor of two for such operators.

Additionally, the calculation of one-loop corrections simplifies a lot for



4.3 The Renormalisation Scheme Independent Structure Constants 33
66666666%
99999

Figure 4.2: Additional Feynman-Graphs for extremal three-point functions

length two operators. By taking the sum over all permutations the permu-
tated straightly contracted graph cancels out the non-permutated crossed
graph of the one-loop correction. This holds for both the 2-gon and 3-gon
calculation, and leaves us with just the third term of the one-loop dressing,
namely the self-contraction term whose prefactor of one half cancels with
the factor of two coming from the inner and outer corrections.

4.2.8 Extremal Three-Point Functions

Three-point functions of operators with lengths Ago), A;O) and Ago) where
Ago) + Ago) = Ago) are called extremal. For these extremal functions the
formulae above do not hold any longer for two reasons: First of all, there
appear additional diagrams with a gluon exchange or a vertex between non-
nearest neighbours as the one in figure These non-nearest neighbour
interactions lead to additional terms in the dressing formulae. Second of all,
unlike non-extremal ones, extremal three-point functions with double-trace
operators contain the same factor of IV, the number of colours, than those
with single-trace operators. This results in an operator mixing with such
double-trace operators at tree level. This is described in detail in [15,40].

We therefore regard only non-extremal correlators during the further dis-
cussion. Fortunately the structure constants of extremal three-point func-
tions take a very simple form that will be established in section [£.3.1]

4.3 The Renormalisation Scheme Independent
Structure Constants

As discussed in [40|, supersymmetry endows us with non-renormalisation
theorems for the two- and three-point functions. The point-splitting regu-
lated fundamental functions Fjj z;, X and Y given in (4.29)—(4.33) are
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in an arbitrary renormalisation scheme related by

0= Iy Fi212 + X1122 — 212 (Y112 + Yi22) (4.44)
0 = Lial13123(F12,13 + Fi2,23 + F13.23) + I23 X 1123 + [13X 1203 + 112 X1233

—I3123(Yi12 + Yi22) — Li2113(Ya23 + Yasz) — T12123(Y113 + Yiss).
(4.45)

It can be shown that the two- and three-point functions are independent of
Fij i and Yjj, and depend only on X for which, still following [40], we
make the ansatz

X1122 1 g2
= — ——In— 4.46
1%, 0 872 . z?, ( )
X1123 1 62.%%3
=by— —=1 . 4.47
Iohz 1672 nfv%ﬂ%s (447

The constants ag and by are determined by the renormalisation scheme. We
can thus choose either ag or by to be zero.

Because the two-point functions can only depend on X192 they take the
form

1 X1122
(Onlar) Ouaa)) = s (1420122 )
x12°‘ 12
_ ! Y Ao | e 4.4
_W 1+ aaaﬂ_ﬁn% . (8)
12

Comparing this to equation (4.8)), regarding that A = e~! we obtain

Ja = Qa0 (4.49)
a
Yo = _877:12 (4.50)
g
=2 (1.51)

For the three-point functions we start with

(Oal1) Op(22) O4(23))

1
(0) , A (0) (0)
8 +A'y _Acx |

0, A0 _A© 0, A0 _A©
D+af) -l AR +AT A

|23

|z12]° 13
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X1133 X9933
2
Iy

a12 + ai3

(0)
<Ca R
12

X1123 ;9 X1223 | ,3 X1233
+bl +b + b
o ]13 Y 11903 12[13123])

1
(0) 4 A(0) _ A(0) (0) L A(0) _ A (0)
|AB +A’Y Ay ’1_13’Aa -‘,—A.y A/B

©)_A©)_A(0)
AP +AY A |

|$12| Z23

(Cg)ﬁ)w + A [(a12 + a3 + az3)ag + (b33 + bis + 5?2)50]

A 2 2 2
———12a191n — c + 2a131n — c + 2a93In —— c
1672 x12 x13 x23
20 2, 2.9
€ ex
+bd5In 23 + b5 1n 13 +blyIn 21 ). (4.52)
55129513 9512%3 x13f’723
Note that ) 5 -
1
In-— == (m S R M > (4.53)
L2 L1273 L1223

and the same applies to the other logarithms accordingly. Then in compar-
ison to equation (4.13]) we see that

c© c® .
(0) _ 1 1y _ afy o _ afy "o
Copy Yo = —ﬁ(au + a3+ by3) = ey — a2 (4.54)
c© c® .
o . __1 o\ _ _“Zapy98 _ “apy 9B
Copy 18 = —w(am + a3 + bi3) = — e (4.55)
c© c®
o . _ 1 5y _ _Zapy9r _ Yapy M
Cogy 1y = —W(aw + ags +by) = — 3?ag s (4.56)
and from this follows
byg = Cé?g)y ao — A12 — 013 (4.57)
bis = Céog)v ag — aj2 — az3 (4.58)
0
bis = CC(XB)’Y Ay — 13 — a23. (4.59)
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The finite contribution to the three-point function takes the form

C((llﬁ)7 = (a12 + a13 + agz)ao + (bys + bis + bia)bo. (4.60)

Using relations (4.49)) and (4.57)—(4.59) we get the renormalisation scheme

independent structure constants

1 ~@1 1 0
Cgc,é?v - Ctgﬁ)’y D) Ctiﬁ?v(ga +95+95)
2b0 — Qg

With the help of formulae (4.46)) and (4.47)) we can check that this expression
is indeed independent of the renormalisation scheme by calculating

Xi1123 . X223 X1122 1
2bg — = — = —. 4.62
00 Iolh3 * I12153 1%, 82 (4.62)

Our final result for the structure constant is then

o 1

oy = 1672 (b33 + bT3 + bis) (4.63)

which only depends on the constants b;k Alternatively we could express
the structure constant by the constants a;; and the anomalous dimensions

1 1 1 0
C'ég)7 = —@(an + a1z + az3) — 3 C’C(YB)7 (Ya + 78 + V7)- (4.64)

4.3.1 Extremal Correlators

For extremal correlation functions with A&O) + Ag)) = A(WO) there are no

contractions between the operators O, and Og. Therefore we have

arg = byy = b33 = = by = ngﬂ/ ay — a13 — 23 (4.65)
a1z = C((IOB)V Ao (4.66)

azs = C\) ag (4.67)

= b =8TC (et =) (468)
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and the structure constants take the very simple form

1

4.3.2 Structure Constants as 3-Gon Dressing

As we saw, we can simplify the form of the correlators by choosing a conve-
nient renormalisation scheme. Let us now apply this to our diagrammatic
dressing formulae.

First we change the renormalisation by the transformation

e —  yee (4.70)
2 2
€ €
= ln—Q—l — ln—2
ij ij
2,2 2,2
S P’ M SO i’ M)
ik gk ik jk

In this scheme the 2-gon dressing (4.38) holds only logarithmic terms and
therefore the finite part of the one-loop correction for the two-point func-
tions vanishes

ga =0, (4.71)

and the finite contributions to the three-point functions equal the renor-
malisation scheme independent structure constants

ch) —cW (4.72)

afy T YaBfy

Only the 3-gon dressings contribute to the renormalisation scheme indepen-
dent structure constants that can then be schematically depicted as
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where we have to sum over all Ag)) X A(BO) X AS,O) cyclic permutations and
take into account a factor of two for length two operators.

4.3.3 Structure Constants as 2-Gon Dressing

By changing the renormalisation scheme as

e — e (4.74)
2 2
€ €
T3 T3
2,2 2,2
= In ] -2 — In 75
TikTik LTikTik

we can achieve that the 3-gons do not hold finite contributions and therefore
the finite contributions to the three-point functions take the form

~1 1 .. -
CO&/J”Y ) Z Z (
cyclic all o
perm. 2-gons

39¢) am

The scheme independent constants can then be calculated using equation

(4.14) with go = v4. They are

~ 1
Clg, = OB, = 5053, (a+ v +7)- (4.76)



Chapter 5

First Steps with the Dressing Formulae

5.1 A Class of Simple Short Operators

As a first example of how to apply the dressing formulae derived in the pre-
vious chapter we now want to calculate the two- and three-point functions
for the following set of operatorg}

Oa(x) = Tr (¢"¢") (x) = K(z), (5.1)
Op(z) = Tr (¢"¢"¢") (), (5-2)
Oc(z) = Tr (¢"9" [¢7, ¢7]) (z). (5:3)

These operators are part of a basis in which the two-point functions are
diagonal.

In order to perform the calculation of two- and three-point functions we
first derive an expression for general operators

ON(uy,...,un)(z) =Tr(us - ¢---un - @) (z). (5.4)

By inserting particular vectors we can specify the given operators. We
obtain

6
Op(z) = O%(en, en, ) (), (5.6)

6
Oc(z) = 204(en,en,e[p,eq])(x), (5.7)

where e; denote the R® unity vectors.

!See also [6] for definition of the operators and two-loop results for the scaling dimen-
sions.
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5.1.1 The Two-Point Functions

Generally, by conformal invariance two-point functions of operators of dif-
ferent length vanish. Therefore we only have to calculate the one-loop

corrections
Ul VN
(0N (u1,...,un)O™ (vy, ... 7UN)>1-loop = + cyclic perm.
V2 1
UN U1

N

\ 22 N N
_ TN )
=1y 372 <ln 2%, - 1) ; , ; | | UL - UN45—1

=1 =1 =1
mod N mod N 1#k, l#k+1

X (Uk "UN+4j—k Uk+1 " UN+4j—k—1 — Uk " UN4j—k—1 Uk4+1 - UN4j—k

1
+§ Uk - Ug+1 UN4j—k ° UN+jfk71>- (5.8)

Now we can straightforwardly obtain all three two-point functions by in-
serting the corresponding vectors. They are

9 3\ g2
<Oa($1)0a($2)> = 12.[12 1+ 477.[_2 In ?%2 -1 (59)
V4 r pr 13 A 52

(OF(21)O) (z2)) = 86" I}y [ 1+ 3.2 111:8—%2 -1 (5.10)

2
(O (1) 07 (22)) = 8(5776% — 5771y (14 22 (m S —1)).

472 Zq

(5.11)

Thus we get the following values for the associated anomalous dimensions:

3 1 3

Y= M= 33 %= 13 (5.12)
5.1.2 The Three-Point Functions
For the three-point functions

<(’)L(u1, oun)OM (v, o) ON (w, - L, WN)) (5.13)

we cannot derive a general relation like (5.8)) for operators of arbitrary length
because we have to sum over all permutations on every point and take into
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account all 2-gon and 3-gon corrections. Thus we calculate (5.13|) for every
combination (L, M, N) separately. This leaves us with lengthy expressions
in which we can insert the corresponding vectors. We get:

3 6
(OJmQOJxﬂOJmQ)—485ﬂﬁLB<1+8#2OnQiz2—6>>

L12%13L23
(5.14)
3\ e2a2
B 2 23
(Ou(21) O} (22) O (w3)) = 480" L1z 113155 <1 a2 M2,
by g2 19X

Zln - - —= 5.15
o M, 127r2> 19

(Oa(21)OPI(22) O3 (x3)) = —64(5P" 6% — §976P%) I19113155

2,2 2
" <1+3)\1n w5, 3N € 15)\>

PR n —_—
2 2 2 2
8 TioTy 4T T35 8T

(5.16)

All other three-point functions are zero. Comparing with the general form
(4.13) of the three-point function we get the one-loop structure constants

~ 27 ~ 19 ~ 15
1) _ 1) _ 1) _
Clon = = 1678’ abb = G4710° Cler == 128712 (5.17)
The tree-level structure constants are
3 3 1
0) _ 0) _ 0) _
Cc(aazz - m7 Cabb - 1673’ C(ch = 16710° (518)

Using equation (4.14)) the renormalisation scheme independent one-loop
structure constants can be obtained as

1 ~(1 1 0
Céﬁ)v = Cagy + 5 (Ya +78 + )CS,. (5.19)
They are
27 9
v __ =t __ 7 ~0 9
Caaa 327T8 87‘{'2 Caaa, (5 O)
1 17 17 (0
C’abb - 128710 — _2471’2 Cabb’ (5.21)
3 3
() — _ ___° 00
Cacc 64712 A2 Cacc‘ (5.22)
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5.2 Correlation Functions for Twisted Operators

Let us consider another example. We define the operators

B(x) := ®5(z) + 1Pg(x) (5.23)
C(z) := ®5(z) — i®g(x) + 22 - B(x) — 2 B(x) (5.24)
Va(z) == a"Vy(x) = a(Pu(x) — 2,B(x)). (5.25)

These operators are part of a non-diagonal basis. They arise from an oper-
ator twisting—that is an embedding of the conformal group in the bosonic
symmetry group—and hold an explicit  dependence. In particular, the
two-point function of the operator C'(z) is a constant in space-time. For a
more thorough treatment of these operators see [36].

Again, we can write these operators as contractions with six-vectors:
B(z) = uh(z)®;(x) uk(z) = (0,0,0,0,1,1) (5.26)
C(x) = ub(x)®;(2) ub(z) = (22,1 — 2, —i(1+ :L'2)) (5.27)
Va(x) = ui, (2)®;(x) ui, (z) = (ay, —a -z, —ia - x) (5.28)

with the contractions

up(1) up(xz) =0, up(z1) ut(a2) =2,
up(1) i, (z2) =0, ug (1) ug(w2) = 213,
ub (1) u{/a (x2) =2x12 - a, u{/a (1) u{/b (x2) =a-b. (5.29)

From these length one operators we can build single-trace operators of arbi-
trary length. Correlation functions of such trace operators are always zero if
there are more B’s than C’s in them, because every B has to be contracted
with a C' in order not to give a zero contribution.

5.2.1 Length Two Operators
We can construct the following length two trace operators:

Tr (B?) (z), Tr (BC) (z), Tr (BV,) (x),
Tr (02) (x), Tr (CV,) (x), Tr (Vo V) ().
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The results for all the two- and three-point functions can be found in ap-
pendix [A.T] We just draw a heuristic picture here.

Two-Point Functions The two-point functions are zero if there are more
B’s than C’s in it. They can also be zero if they contain some V, and V
with a and b orthogonal. There are three two-point functions that are not
protected, i.e. get one-loop corrections. These are

62
(Tt (BC) (21) T (BC) (z2) ) = 47#11:6312 <1 + ﬁ (mﬁ? - 1)) (5.30)
a - 82
(T3 (BC) (o) T (VaVh) (22) ) = 555 (1w 5 —1) (531

(Tr (VaVp) (z1) Tr (VeVy) (22) )

1 < )\a-bc-d( g2 ))
= a-eb-dra-dbe+ 2220 M 1)), (5.32)
167424, 4 iy

Three-Point Functions We can divide the three-point functions into
four classes.

e Three-point functions with a total number of B’s larger than the num-
ber of C’s are always zero.

e Three-point functions consisting of two of the operators C? or CV
and one of C2, CV, B? or BV, as well as the three-point function
(Tr (BV) (z1) Tr (BV) (x2) Tr (C?) (23)), get no one-loop corrections.

e The three-point functions
(Tr (VuV3) (z1) Tr (B?) (z2) Tr (C?) (z3))
(Tr (VoV) (z1) Tr (BC) (x2) Tr (BC) (z3)) and
(Tr (VaVp) (1) Tr (VeVa) (22) Tr (BO) (23))
yield no tree-level contribution but do get one-loop corrections.
e All others yield both tree-level and one-loop contributions.

Additionally, for all of the functions containing more than one of the oper-
ators V,, some or all contributions are zero if the attached vectors of some
V’s are orthogonal.
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5.2.2 Length Three Operators

These are all operators of length three:

Tr (B) (2), Tr (B2C) (2), Tr (B*V,) (x),
Tr (BC?) (z), Tr (BCV,) (), Tr (BVaVy) (),
Tr (CBV,) (), Tr (C?) (x), Tr (C?Va) (),
Tr (CV, V) (o), Tr (VaVoVe) (2)

The results for some of the the two- and three-point functions can be found
in appendix There are fifteen two-point functions that are not pro-
tected.

In summary we conclude that these correlation functions seem too com-
plicated to learn something about their general structure. Due to the space-
time dependency of the operators, the structure constants are space-time
dependent and because of the non-diagonality of this basis it is unclear how
the structure constants of these correlators should be interpreted. In the
following, we thus consider operators in diagonal bases.
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Structure Constants in Diagonal Bases

6.1 Transformation between Diagonal and
Non-Diagonal Bases

6.1.1 Two-Point Functions

We consider operators O (z) (o = 1,...,d) of arbitrary length that form
a d-dimensional, non-diagonal basis. Let {D,(z)} denote a basis in which
the two-point functions are diagonal

(Do (21)Dg(a2)) = ap (1 + Ma <1n i - 1)) . (6.1)

o
We work in the fixed renormalisation scheme from section where
Ja = —Ya- (6.2)
Let M be the change-of-basis matrix from the operators O, to D,
D, = M,s0s, (6.3)

where we suppose M to be block diagonal with respect to the tree-level
scaling dimensions. The two-point functions of the O, take the general

form
d 1 (0) A (O 2
ADA €
(Oa(21)0s(x2)) = 7(0‘; <ta06) + Mag <hr12 — 1>> . (6.4)
2Al T3y
L12

This means

(Da(21)Dp(x2)) = Moy Mps (On(21)O5(22))

INOING) 2
Aa A 0 £
== <Mmt§ )M+ AMon 1,5 M (m - - 1) )
Ti5® Z12

(6.5)
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Comparing (6.1) and (6.5)) leads to the following matrix equations:

MOMT L1 = MT = Oy 1yt (6.6)
MVMT ; diag(717727"'7’yd) =:D (67)
= D=M~tO)tp (6.8)

As we have seen, the change-of-basis matrix M is the matrix diagonalising
'y(t(o))_l. The eigenvalues are the anomalous dimensions v,. 7 and t(©)
can be directly read off from the two-point functions of the non-diagonal
operators.

6.1.2 Three-Point Functions
Equation (4.13]) together with (6.2]) gives us the form of the three-point
functions in the diagonal basis

(Da(x1)Dp(w2) Dy (w3))

1
QEUNQEING |

0, A0 _ A0 ©) L A0 _ A0
D+af -l |A5 SN

|9613|A
A e2y2 e2x?
CO (14537 (In 52 —1 In 18 1
. [ atr\ T 2 Te " x%zx%?, e x%ﬂ%:s

e’af W
74 <ln = 2 _ 1) }) + /\Com]. (6.9)

13723

|z19]2 x93

We perform the change of basis and obtain

(Oa(@1)Op(w2) Oy (23)) = My, M M (Dy(w1) Do (22)Dr (w3))

1
= M Mt e
|x12|A&0)+A230)7A§0) |x13‘A&o)+Ago>7Ago) |x23|Ago)+A£{o)7Ago) [ ap " Bo T Ypor
:.6(0)
apy
A —1as—1pns—1 5299%3 —1a;—1ps—1 525”%3
+2{MapM50M,YT’yp In5—5- -1+ M, Mz, M v |In 57— —1
T12%713 Li2T23
2.2
SMIIMIIM (I ST FAMIIMIMIOW (6.10)
ap Bo YT ’V’r x%gl‘%g ap Bo YT Y poT |* .
=(1)
::Calﬁ’Y

Using this formula we can extract the non-diagonal constants 6&(27 and
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—(1 : . .
C’flg7 from the three-point functions of the non-diagonal operators. To-
gether with the change-of-basis matrix M obtained from the two-point func-
tions, the renormalisation scheme independent structure constants for the

diagonal basis can be calculated as

0)

CY) = MoyMso M, O\, (6.11)
1 —(1
C) = MapMso M, O, (6.12)

6.1.3 Degenerate Subspaces

If the considered basis holds linearly independent operators of both the
same tree-level and anomalous scaling dimension, there is an ambiguity in
the determination of the diagonal basis. It can then only be determined
up to orthogonal transformations within the subspaces of identical scaling
dimension. The structure constants are therefore only determined up to
these orthogonal transformations, too.

Suppose that the one-loop structure constant in some subspace V- C {O,}
can be written as

cly =evC) (6.13)

where ¢y is a constant for all operators in V' [[] This constant is then invariant
under arbitrary basis-transformations within V:

)
Cagy _ oW o MapMpgMorClor  MapMasMorey Cpor o
G ST T

(6.14)

If the quotients 055)7 / ng,y differ in any subspace they must differ in ev-
ery basis for this subspace. For the anomalous dimension eigenspaces this
indicates an additional degeneracy that should be broken on higher loop
levels.

6.1.4 Summary

As we know, operators of different lengths are automatically orthogonal
and the scalar-single trace operators do not mix with any other operators
at one-loop level. For a given non-diagonal basis of length L operators O,
we can thus determine the basis-independent quotients of the renormali-

'The following considerations are in fact true for arbitrary subspaces, but we expect
this situation to appear only in eigenspaces for the same anomalous dimension.
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sation scheme independent one-loop structure constants and the tree-level
constants, as well as the anomalous dimensions, as follows:

1. Determine all possible two- and three-point functions of the non-
diagonal operators.

2. Extract tg)ﬁ) and .4 from the two-point functions.

3. Extract 6&%7 and 6%7 from the three-point functions.

4. Diagonalise (@)=, If M~(t®)~1M~1 is diagonal, then M is the
demanded change-of-basis matrix. The eigenvalues are the anomalous
dimensions .

5. Calculate C’(()loﬁ)7 and C’((Xlﬁ)7 using (6.11) and (6.12]).

6. Calculate the quotients 06(35)7 / Cé%),y. If there is no additional degener-

acy, these results will be unique within the ~, eigenspaces.

This procedure serves as a starting point for the computational calculations
of structure constants in section
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6.2 Three-Point Functions with only Length Two
Operators

Three-point functions with all three operators of length two are in some re-
spects less complicated than those of longer operators for two reasons. First
of all, there are no 2-gons appearing in the three-point function. So not only
the structure constants but the full correlation functions can be calculated
by considering only the 3-gon corrections. Second of all, as described in
section only the self contraction terms in the dressing formula
contribute. The full three-point function up to one-loop order can then be
depicted as

(Oalz1) Og(2) Oy (23)) = T12113123

AV,
AT
j+
A

+ N ] (6.15)
-

_|_

3
Ik

AN
AN

Yo

I 7

We could also handle the SO(6) indices with symmetric matrices and denote
operators by

Oy (z) = U Tr (qb]ng) (z). (6.16)

Unlike the notation with vectors attached to the fields, this notation allows
us to write any scalar length two trace operator as a single matrix. The
Konishi operator then corresponds to the unity matrix. This leaves us with
formulae for the two- and three-point functions that contain nothing but
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traces of products of these matrices:

_ arrfB
(Oa(z1) Op(2)) = il Tr(UU”)
A (mi Te(U)Te(UF) | (6.17)
872 3,
(Oa(z1) Og(22) Oy(x3)) = v Tr(UO‘UﬁUV) + A
¢ K 86 22, 22,3, 1672

521‘2
X (m 28 —2> Tr(U*)Tx (UPU)
L1213

g2y2
+ <1n S — 2) Te(U%) Te (UUY)
L1223

g2y2
+ (m S —2) Te(U7) Tx (UUP)
L13T23

(6.18)

We are interested in a basis in which the two-point functions become di-
agonal. This means that Tr(UO‘)Tr(Uﬁ) ~ 6% and Tr(UO‘UfB) ~ §9P,
Therefore all except one of the matrices have to be traceless. We have

Tr(U°) =0
Tr(U*) =0 (a=1,...,20)
Tr((U%)?) = ca (a=0,...,20)
Te(U°UP) =0 (a # B), (6.19)

where without loss of generality we choose Oy to be the operator with a non-
vanishing trace, which is known to be the Konishi operator K corresponding
to the unity matrix. The only non-vanishing three-point functions are then
those of one Konishi operator with two identical operators. We obtain the
structure constants

1 9 0
Crix = _@CI(CI)CK (6.20)

o 3 0
CICOQOQ__W KOLOn> (6'21)
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in accordance with equation
the general form

1
C((oczoﬁoW =

4.76|), that for éélﬁ),y =0, i.e. no 2-gons, yields
— c) 6.22
5 (Ya+78+7%) Co0,0, (6.22)
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6.3 Three-Point Functions with a Konishi
Operator

The only possibilities for non-vanishing three-point functions
(Oa(21) Op(22) K(23)) (6.23)

containing a Konishi operator are extremal ones with Ag] ) = Ag)) +2 whose
structure constants are given by equation (4.69) and such with two operators
of equal length.

We will show that for the latter, i.e. three-point functions of a Kon-
ishi operator with any two operators of a diagonal length A(®) basis, the
structure constants take the form

o __ | D V8 K (0)
Ca,BIC - A&O) + A530) + A/(CO) Caﬁlc

8o 3
e +3 A(0)> 6.24

Let K be the length two Konishi operator and the set {O,} an arbitrary
non-diagonal basis for the operators of length A©) that can be written in
terms of attached vectors, namely

1 i
IC:\/E;Tr(gb(b) (6.25)
O =Tr (uf ¢ w0 - 0) (AO) > 2), (6.26)

Let Zj C Sk denote the set of cyclic permutations of (1,2,...,k).

We choose the renormalisation scheme € — ee in which only the 2-gons
hold finite contributions

1."U2 _[ A 1 2 1 ..
1 B 12 872 Il33124_ .. B

1-loop

X1 X2
while the 3-gons only contribute to the logarithmic terms. For the two-point
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functions we get

A0) 2
LA o« B A €
(Oa(z1) Op(z2)) = Ifs Y [ T oyt g3 <1n =, + 1>

2
UGZA(O) =1 8
B B
X Z < : Toa(1) UZ(2)  Urog(2) ~ Ur(1) " Urop(2)
TEZA(O)

o .8 Lo o B 8
XuT(Q) ) u’TOO’(l) + 5 Ur() " Ur(2) UTOU(l) ’ UTOJ(2))

x H U2 Ui ] : (6.28)

Now let D, = Mg Op denote a diagonal basis of the length A subspace.
Then

1 2
(Da(z1) Ds(x2)) = —xw7 <5a5 + Agap + AMVadapIn — >
T2 12

= Moy Mps (Oy(x1) Os(x2)) (6.29)
from which we immediately get the condition for tree-level diagonality

A(0)
(0)
S Moy Mg Hu wly = (2m)*2% 6. (6.30)
UEZA(O)

Using this result we obtain

(Da(z1) Dp(2))

1 A g2
2A (5a5+82<1n 12+1>

5 5
XYY May Mgs <UZ(1) U (2) Uy (2) * Uroo(1)
UEZA(O) TEZA(O)

A0)
1 5
_iuZ(l) ’ UZ(Q) uTOO’(l TOO’ ) H UT(Z ’ uroo (3) ]) (631)
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and thus the condition for one-loop diagonality

(27T)2A(0) (501,6’ <A(0) _ 87T2 '}’a)

1 1
- Z Z Ma'y MB6 (uZ(l) “Urog(2) UZ(2) “Urog(1)
UGZA(O) TGZA(O)
1 A0)
_§u:(1) ’ UZ(Q) uf’oa ’ 700(2 ) H u TOO’ (632)

and
Ja = Ya- (6.33)

The three-point functions are

(Da(z1) Dg(w2)K(23)) = Mary Mps (Oal21) Op(22)K(23))

1
" s, o 2 Mot

.5[713 .1723 UEZA<0) TEZA(O)

A0
A Y 6 Y é
[ H g T@ ) Z (“aopm " Urop(1) Ugop(2) * Urop(2)

pEZA(0)72
O S Y I 1 R T I, )
oop(1) " P1op(2) Yoop(2) Top( ) 9 a'op(l) aop(2) “Top(l) < YTop(2)
A _9
x H (uzop(i) ‘UTOP(Z')) X uZ(A(O)_l) “Ur(A0) 1) uZ(A(O)) TU(A0)
=3
+A % logs]
! 1 (0) A1)
= A0 _9 9 o (Caﬁlc + A Coc,BIC + A x 10gS> (634)
212 T3 23

and we obtain the tree-level structure constant

A0)

Céoﬁ)/C - (27 2A(0)+2 V3 Z Z Mar Mgs H u

UGZA(O) TEZ (0)
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(27T2A—0>+2\[ > MavM&SH“ Uy, (6.35)

TGZ (0)

where we omitted one sum over all permutations in the second line because
the first sum already delivers all possible contractions.

Using equation ((6.30) we get

) A0)

afK — 47T2\/§504/3'

(6.36)

The one-loop structure constant is

(2 )2A(0>+4\ﬁ Z Z Z Moy Mgs

a'EZA([)) TEZA(O) PEZA(O) R

~L)
Ca,ﬁ)C

A0
u° s
[ H ( Ugop(i) Top()) X u, o(A® 1) Ura®_1) “Z(A«») EENON
1
ol 5 Y 5 ol Y 4 5
B (“aor»(l) “Urop(2) Yoop(2) T Urop(1) T 5 Yaop(1) T Yaop(2)trop(1) | “rop<2>>

A©O) 3
X H ( Ugop(i) ” m,@) xu, o (A 1) uf—(A(O)—l) “Z(Nm) '“i(mo))]
dap
=" (A _ A0 _ (A0 _9)(A0) _gr2
i 3 (A7 DA = (A0 = 2) (A0 - 87|

(A —2),
B8 D% 6.37
472 /3 g ( )

where the sum over the p-permutations gives only a factor of (A(O) —2) and

we made use of equations (6.30) and (6.32)) in the second step.

The renormalisation scheme independent structure constants are given

by equation (4.14) as

1 1 1
Cay = Caghy — 3 C8), (9a+ 95+ 97).- (6.38)

Regarding (6.33) we obtain the desired result

o _ &0 1 0 3
CO!B/C - CaBIC 9 CaBIC (PYCV +8+ 47_[.2>
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op 472/3

_ (20
- A0
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A0 9 A0, A0
(80 =), - A0, - 20

3 (0)
* w) Cosr

Vo Y K 0
= —( o > . (6.39)

A0,

IOV
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6.4 Three-Point Functions of SU(2) Operators

We recall the complex fields
Z = ¢1 +1igo, W =¢3+i¢s and X = ¢5+1i¢g (6.40)

and consider the SU(2) operators Tr(Z"W°), Tr(Z' X*) and Tr(Yth).
Let us denote the permutations of the fields by [Z"W"], where the index a
runs over all permutations of the fields that are genuinely different modulo
cyclic permutations. Now consider operators of a diagonal basis that we

denote by
T (Z W) giag = 2 ca T ([Z7Wa), (6.41)
Te(Z"X") g = O & Tr([Z" X']s), (6.42)
b
Tr(XW) g = O e Tr((XTW70), (6.43)
where 6111’712):? are arbitrary coefficients. The three-point function of these

three operators is
= — —t
(T (Z7W) g (1) Te (Z7X7) g (2) T (XW) () = D cheed
a,b,c

X <Tr([ZTWS]a)(x1) Te([Z° X',) (22) Tr (X W) (x3)> . (6.44)

There is only one non-vanishing tree-level diagram, pictured in figure

We consider again the renormalisation scheme in which only the 2-gons
contribute and in which the scheme independent structure constant is

~ 1
€, = C = 5 (e + 9 +7) O

By aby 9 aBy’ (6.45)

All self-contractions on these operators yield zero and 2-gons that contribute
at tree-level do not contribute at one-loop level, because

(6.46)

N
N
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Z Z
Z )\ Z
W X
W X
wowx X

Figure 6.1: The only non-vanishing tree-level diagram.

But neither do the other permutations:

Zor Wl 1Z or X Zor W\l '1Z

(6.47)

Wl..|Zor X wl..

This argument equally holds for all possible types of 2-gons and therefore
there are no 2-gon contributions at all, i.e.

c) —o. (6.43)

The renormalisation scheme independent structure constants are

1 1 0
{3y = =5 (a+1+7) C,. (6.49)
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6.5 Computational Calculation of Structure
Constants

Using the dressing formulae given in section [4.2] we can in principle straight-
forwardly calculate arbitrary three-point functions. Nevertheless, because
of the summation over all permutations, these calculations become very
lengthy even for short operators. For operators of lengths L, M and N
there are LM N tree-level and LM N(L + M + N + 1) one-loop diagrams
that have to be calculated.

To handle this problem we calculate the structure constants computa-
tionally on two different levels. The first program simply performs the
summation over permutations and can be used as a tool to calculate the
structure constants of diagonal operators by hand. The second program
that we introduce is used to calculate both the diagonal bases themselves
and the structure constants for the whole set of operators of a given length
by “brute force”.

6.5.1 Summation of Permutations

The Matlab® programs zpf.m and dpf.m listed in appendix can be
used to calculate anomalous dimensions and structure constants. They

perform the summation of 2-gons and the summation of 3-gons given in
equation (4.73]) respectively. Length L operators

O = uj, - ug, Tr (qﬁil ~--qz5iL) (6.50)

are represented by 6 x L matrices where each row corresponds to one of the
attached vectors ug".

Anomalous Dimensions The program zpf.m takes two such matrices
as parameters and returns two values tree and loop. If the parameters are
integer matrices, the return values are integers, too. Then, in the standard
renormalisation scheme of section[d.2the two-point function of the operators
corresponding to the parameter matrices is given by

A g2
(On(21) Op(29)) = It <tree +— (ln — — 1) X loop> . (6.51)
12 1672 z2,

In general, diagonal operators are represented by linear combinations

Ou =Y a0k (6.52)
k
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of operators of the form . The anomalous dimension of O, is then
given by

1 Dpgarw x loopy
- 1672 Zk’l ap a; X treey;

Yo (6.53)

where loop,, and treey; are calculated for OF and O..

Structure Constants The program dpf.m takes three matrices, repre-
senting OF Olﬁ and OF', as parameters and returns two values cOgy, and
c1lgpn. The renormalisation scheme independent structure constant is given
by

C(l) _ 1 Zk,am af 4 Gy X Clgm (0) '
aBy T 39572 Zk,l,m Qe @) Qm X COkpm P27

(6.54)

6.5.2 Diagonal Structure Constants from Non-Diagonal
Bases

To calculate the diagonal structure constants from non-diagonal bases by
brute force, one needs to follow the steps in section We start with
a standard basis for the operators of a given length and calculate the
change-of-basis matrix diagonalising these operators. In a second step all
non-diagonal structure constants for the standard basis are calculated. Fi-
nally the diagonal structure constants are obtained by summation using the
change-of-basis matrix.

For operators of length two and three we can perform these calculations
with Mathematica® and obtain exact algebraic results. Unfortunately Ma-
thematica® fails at diagonalising the 336 x 336 matrix for length four alge-
braically. Numerical results for operators of length four and five are there-
fore calculated with Matlab®.

As the calculations of all diagonal structure constants would have taken
several months, we calculate them for each eigenspace separately and re-
strict our calculation to small samples of about 250 randomly chosen data
points.

The program codes for both the Mathematica® and Matlab® routines
can be found in appendix All numerical results are listed in ap-
pendix[A:2] In the next section we analyse the results for which an algebraic
form can be found.
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6.6 Short SO(6) Operators in Diagonal Bases

We depict the operators

T (s, - 6 i, - 67 (2) (6.55)
by n-tuples (u;,,...,u;,) and regard non-diagonal bases
B —L(e e1), (e1,e2) i(e €6)
2*\/5 1,€1), 1;27"'7\/§ 6, €6
By == (en,en,en), ensenea), o, (e o 60)
=——(e1,€e1,¢€1), (e1,€1,€2),..., —=(eq, €6, €
s = glenenen);lenen e /3.6 €6> €6

(6.56)

where e; is the i-th vector of the RS standard basis. These serve as a starting
point for the programs described in the previous section. Exact results can
be obtained with Mathematica® up to length three and by hand for the
length four singlets.

We already know the form of structure constants for extremal correlators
. We have also derived the general form of structure constants for
three length two operators in section and of those that include a Konishi
operator in section As far as they were calculated, these results could
be confirmed and will not be listed here.

For correlators that contain operators of lengths larger than three we
calculate the structure constants numerically. All numerical results are
listed in appendix [A.2] In this section we state only results that are non-
zero and for which we can reasonably guess the exact values based upon the
numerical results. All possible classes of non-extremal correlation functions
up to length five are calculated, except those of one length four and two
length five operators.

In addition to the results that are given below, we found several classes
of operators for which the results vary strongly. As shown in section [6.1.3
if they vary in one basis they have to vary in every basis. Therefore there
has to be an additional degeneracy for these operators that is broken by the
three-point functions. This will be shown explicitly for the protected length
two operators in the next section where we calculate structure constants of
BMN operators.

In appendix we list the qualitative structure of the three-point
functions, i.e. whether they take a definite value, indicate an additional
degeneracy, or vanish.
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6.6.1 Anomalous Dimension Eigenspaces

The diagonalisation provides us with the anomalous dimensions. The diag-
onal bases can be decomposed into eigenspaces of operators with the same
anomalous dimension. We can therefore classify the operators by these
eigenspaces. This classification is given in the following table including the
dimensions of the eigenspaces.

Length | Class Dimension A.nomallous BMN operators
(degeneracy) | dimension | in this class

9 2A 1 v = %
2B 20 y=0
3A 20 v = %

3 3B 6 v = # Bt1£1
3¢ |50 =0 8BS
4A 1 v= %
4B 20 v = 5;;2@ Bt2£2
4C 99 v = % B?Zjl)

4 4D 90 v = ﬁ [2131]
AL ! 7= 131?3@
4F 20 v = 5;;45 Bt2£1
4G | 105 =0 B
5A 20 N = 7-;\7/2ﬁ
5B 12 v = %
5C 128 v = %

S 1=t | By
5E 190 v = % 831;2

5 5F 128 V=g
5G 300 v= # B?”l)
5H 20 v = 7—7\/2ﬁ
5l | 258 v=F | Bl
5J 50 = # Bfr’l
i 7=0 Bl
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6.6.2 Operators up to Length Three

For operators of length two and three the following results were obtained
with Mathematica®:

O, | O3 | O, CSB)'Y / C’éoﬁ)ﬁ/ As function of scaling dim.
2B | 3A | 3A | —3; —2%5—, (Fa = 0)
2B | 3B | 3B | —z —YB=r, (Fa = 0)
2B | 3B | 3C | —is —3 98, (Yo =7y =0)
2B | 3C | 3C || O (Ya =7 =7 =0)

Here as well as in the following, we propose a function of the scaling
dimensions—where possible—that reproduces the structure constant simi-
lar to the form (6.39) for the Konishi operator, i.e. a function

aﬁfy/ aﬁry p?Oé + q;\);ﬂ + T:y/’}ﬂ (657)

with p, ¢, r € Q. We denote the quotient of the anomalous dimension and
the tree-level scaling dimension by

~ Yo

Ya = NG} (6.58)
Note that this structure is just a suggestion and for some of the following
results it is rather questionable whether this suggestion is anywhere close
to the truth. Where we cannot guess the complete form of the structure
constant, we use £ to symbolise a free parameter that can take values in the
interval [0, 1].

6.6.3 Exact Results for Length Four Singlets

The diagonal bases for length two and three found with Mathematica® are:

Length Two
6
Ooa =Y Tr(¢¢') =K (6.59)
=1
Oap,(i5) = Tr (¢'¢”) (i <) (6.60)
Osp; =Tr (¢'¢") — 2k (i=2...6) (6.61)

V3
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Length Three

O ijey = Tr (96 (i<j<k) (662
6
O3B = Z Tr (¢'¢’¢) (6.63)
j=1
Ozc.i(ik) = (q% 7 k) ) (i<j<k) (6.64)
6
Oscis =8 Tr (#9767) = 3 T (¢'650%) (i #j,j=2...6) (6.65)
k=1
6
O30, =8 Tr (¢'¢'¢") — 3> Tr (¢'¢7¢7) (i=2...6) (6.66)
7=1

Note that these operators are neither normalised nor diagonal at tree-level
within the eigenspaces. As described in section [6.1.3] the choice of the basis

within the eigenspaces has no influence on the quotients o) / c Bv as long

afy
as these are constant within the eigenspaces.

Length Four Singlets The length four singlets can be easily found by
hand. They are

Oga = 26: 26: 4T (60 6I¢)) + (5 - VAT) Tr (6'0/e'eT)] (6.67)

i=1 j=1
6 6
O=>> [4 Tr ($'¢' ¢ ') + (5 + \/4H> Tr (<z5i<z>j¢"¢")] . (6.68)
i=1 j=1

We can therefore calculate the structure constants for these operators man-
ually, and obtain the following non-zero results:

O, | 0| O, | C, Bv / CC(YOBV As function of scaling dim.
3A | 3A | 4A | —2LVE —(Famp + 27,

3A | 3A [4E | —250R | —(Famp +2%),

3B | 3B | 4A | —26LOVIL |9 (35 5497,

3B | 3B | 4B | -Gt |~ (3Fems +27),
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O, | O3 | O, C(Sﬁ)7 / C’C(:,)B)7 As function of scaling dim.
3C [ 3C [4A | 134V —27,, (Fa =95 =0)
3C | 3C | 4E || —13-vL —2%,, (Fa =75 = 0)
4A | 4A | 4A —%ggﬂ;/ﬁ not possible

A | 4A | 4E | -2V —& (4Fa=p +17%,)

4A | 4E | 4E | -Z4/L —& (179 + 475—)

4E | 4E | 4E _%ggﬂ\?/ﬁ not possible

65

For the correlators of three 4A operators or three 4E operators there is no
possibility to write the structure constants as a function of the type (6.57).

6.6.4 Operators up to Length Four

More results can be obtained by numerical calculations. The exact results

stated above are confirmed by the numerical results.

operators we obtain the following further results:

O. | O | O, Célﬁ)v / C’éoﬁ)w As function of scaling dim.
NOE e =0
2B | 4A | 4F | -3 —27,, (Fa = 0)
2B | 4A | 4G |0 (Yo =7y =0)
2B | 4B | 4B || — 112;217%2‘/5 not possible

[ an |4 | 58 | 25, Ga=0)
2B [ 4B | 4D | -3 ~27g, (Fa = 0)
[ an |48 | 58 | 25, Ga=0)
9B | 4B | 4F | 0 (Yo = 0)
9B | 4B | 4G | -5 —27, (Fa =7, =0)
2B | 4C | 4C | -2 —255-, (Fa = 0)
2B | 4C | 4D || — 53 —(A8+ 37%), (Fa =0)
2B |4C | 4F | 58 | 27, (50 = 0)
2B | 4C | 4G | 0 (Ya =7, =0)

Up to length four
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O, | O3 | O, aﬂ Y / c N B ., | As function of scaling dim.

2B | 4D | 4F | -3 ~27,, (Yo = 0)
2B [ 4D | 4G || 0 (Yo =7y =0)
9B | 4E | 4F || -2 -27,, (Ya = 0)
9B [ 4E | 4G || 0 (Yo =7y =0)
2B | 4F | 4F 112321;%2‘/5 not possible

9B | 4F | 4G | -3 —27p, (Yo =7y =0)
2B | 4G | 4G || 0 (Yo =78 =7 =0)
3A | 3A | 4B | %0 —(Fazs +27,)

3A | 3A | 4C || g2 —(Yazp +27%)

3A | 3A | 4D | -, ~(Ya=p + )

3A | 3A | 4F | %20 —(Fa=p +27,)

3A | 3A [ 4G || —5% —3 Fa=sp; (%, =0)
3A | 3B | 4C || — ﬁ ambiguous

3A | 3B | 4D || — 8% ambiguous

3A | 3C [ 4D || —g3, —(Ya + %), (Y8 = 0)
3B | 3B | 4A | —26LL0VAL | 18 (35 .15

3B | 3B | 4B || —83v5 | 3 (95, ;5 +27,)

3B | 3B | 4E | —26L0vAL | 1835 o1 5)

3B | 3B | 4F || —8T3v5 | 3 (95, _;5+27,)

3B | 3C | 4B | —34Tv5 | 1 (35, 1147, (35 = 0)
3B | 3C | 4C | — L5 —389.+31-9%, (=0)
3B | 3C [ 4D || — iy %£7a+2(1—£)%» (75 =0)
3B | 3C | 4G | — s 5 Yo (78 =% =0)
3C | 3C | 4B | -3 —27,, (Fa =78 =0)
3C | 3C | 4C | -2 —29,, (Yo =7 =0)
3C | 3C | 4D || 0 (Yo =78 =0)
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Oa | O | O, Célﬁ)w / Cc(v%?v As function of scaling dim.
3C | 3C [ 4G || 0 (Ya =7 =% =0)
AA | 4A [ 4G | BL | o5
4A | 4B | 4F | -2V 2. + 2 (A +75)
4A | 4D | 4D | —2VL | o5, 1075,
4A | 4D | 4G | -BEVIL | o5, (% =0)
AA [ 4G | 4G || —BRL | 95 (Y =3, =0)
4B | 4B [4C | A5 | gy 54 195
4B | 4B | 4D | -BEL5 | A (145, 5 - 57,)
4B | 4B | 4G || — 25722\2/5 not possible
4B |4C | 4D | 1305 ~(Fa+ 2675 +2(1 -9 7,)
4B | 4D | 4F | —52 —5 (26 (Fa +7,) +5(1-&)7p)
4B | 4D | 4G | -3t ~29a, (% =0)
4B | 4E | 4F | 21 2 (Ja +7y) — 275
4B | 4F | 4G || — 52 —2 (Fa +78), (%, =0)
4B | 4G | 4G | -3 —27a, (Y8 =7, =0)
AC | 4C 4G | -5, —450=p, (7, =0)
4C | 4D [4F | —B5 | _(deq, +2(1- )75 +7,)
AC | 4D | 4G | -5 —(269a+3(1-6)7s), (3, =0)
AC | 4F | 4F | 1205 | 195 g5,
AC | 4G | 4G | -3 ~27a, (Y8 =7 =0)
4D | 4D | 4D | — % —2%4=B=y
4D | 4D | 4E | —2VIL | 105, 4 + 27,
4D | 4D | 4G | — 4 —2%0—3, (77 =0)
4D | 4E | 4G | -BYL | 95, (%, =0)
AD | 4F | 4F | 505 | A (55, + 147,-,)
D | 4F | 4G | -390 —273, (%, =0)
4D | 4G | 4G || 0 (78 =% =0)

67
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O, | O3 | O, 6’35)7 / C{E{OB)7 As function of scaling dim.

4E | 4E | 4G || -8BV | 27,4, (3, = 0)
AE | 4G | 4G | BV | 95 (35 =3, = 0)
4F | 4F | 4G _25776% not possible

AF | 4G | 4G | 35 ~25a, (35 =3, = 0)
4G | 4G [ 4G |0 (Ya =78 =7 =0)

6.6.5 Operators up to Length Five

For the correlation functions that contain length five operators the structure
constants are:

O. | O3 | O, C’SB)A/ / 01523)7 As function of scaling dim.

2B | 5A | 5C | —5= 33, (Yo = 0)
2B | 5A | 5) | gk 25, (Fa = 0)
2B | 5A | 5K || 0 (Yo =7 =0)
2B | 5B | 5K || 0 (Yo =7y =0)
2B | 5C | 5G | —zis (37 +2(1-9%), (Fa=0)
B [5C |5 | -2 [ -5(G&5+50-9%), (a=0)
2B | 5D | 5B | +12E | -5 (35, - 17,), (Fa = 0)
2B [ 5D | 5] | -9 —5 (- 378+ 25%,), (Fa = 0)
2B | 5E |51 | +33y5 | 5 (475 +27,), (3o = 0)
2B | 5E | 5] | —gh (39 +(1-9%),  (Fa=0)
2B | 5B | 5K || —gw —5 8 (o =3 =0)
2B | 5F | 5G | — 3l 3 (EH+530-9%),  (Fa=0)
2B | 5F | 5J || 9 +5(EM+5(1-9%),  (Fa=0)
2B | 5G | 5) || gk ~3(3€+01-9%),  (Fa=0)
2B | 5H | 5J || —52 23, (Yo = 0)
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O, | O3 | O, aﬂ . / c N B ., | As function of scaling dim.

2B | 51 | 5] || —%54Y5 —a1 (= 378 +25%), (Fa =0)
2B | 5J | 5J 2y —2 55, (Ya = 0)
9B | 5] | 5K || —gis —3 78, (Yo =7y =0)
2B | 5K | 5K || 0 (Yo =78 =7 =0)
3A | 4A | 5A || 213 —3 (Fa +57)

3A | 4A | 5D || —TH5 ~3 (Fa +57,)

3A [ 4A | 5H | —922Y43 ~3 (Fa +5%)

3A | 4A |51 | T —3 (Fa+5%)

3A | 4B | 5C | +1EES | (Beq, — 185+ 2 (1-6)7,)

3A [4B | 5D || —%5 —(Ja +2675+ 3 (1€ 7)

3A | 4B | 5F | -, 1 (387 +(1-9%)

BA | 4C | 5A | -3 1 (3. +57,)

3A | 4C | BE 8‘22 ambiguous

BA | 4C | 5H || —243 ~1 (Fa +57,)

3A | 4C | 5F 5 ;2 ambiguous

3A | 4D | 5A || -, ~2 (£ +2(1 - €)9p)

3A | 4D | 5D || —10ty5 —5 (9 +2(1 - €) 75 +27,)

3A | 4D | 5G || — ﬁ ambiguous

3A | 4D | 5H || — L, ~2 (650 +2(1 - €)3p)

3A | 4D | 5T || —10=y5 —5(£Fa+2(1—&)7p+27,)

3A | 4D | 5J || — % ambiguous

3A | 4D | 5K | —51, 2(Fa+2(1-86)7%),  (3,=0)
3A | 4E | 5A || %D —3 (Fa +5%)

3A | 4E | 5D | T 1 (e +5%)

3A | 4E | 5H | —2-Y13 —5 (o +57%)

3A | 4E | 51 || —T=5 —1 (Ao +5%)

BA | AF | 5C || +12156 | _(Re5, — 1875+ 2 (1-6)7,)
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O, | O3 | O, C’C(ylﬂ)7 / c N ﬂ ., | As function of scaling dim.
BA | 4F | 5F | —1 1, 1 (367 +(1-97,)
3A | 4F |51 | -5 —(a+267+3(1-9)7)
3A | 4G | 5D || —THY5 —1 (o +5%), (Y8 =0)
3A | 4G | 51 || —1=5 — 2 (o +5%). (8 =0)
3B | 4A | 5B | S (3F+(1-97)
3B | 4A | 5B | —.L; ~(3¢9a+301-9%)
3B | 4A |5 | —<L LB eFa+5(1-6)7,)
3B | 4A | 5K || — 115 —3 Yoy (%, =0)
3B | 4B | 5C || —L8ys | (- 8eq, 4675 - 2(1-6)7,)
3B | 4B | 5D | +TE2YE | —2 (15, 2653+ 3(1-6)7,)
3B | 4B | 5B | —BESyE | L (125 4047, 4 A5(1-¢)7,)
3B | 4B | 5F | —124Y6 | lex 83,41 _¢)7,
3B | 4B |51 | —ZERS | _3(Zey, 4+ M- ¢+ (1- 16)F,)
3B | 4B |5) | -5 | (367, + 855+ 3(1-9)7,)
3B | 4B | 5K | —is —3 Fas (%, =0)
3B | 4C | 5A || —5, —(3&9a+ 5 (1-9)7p)
3B | 4C | 5B || — ﬁ ambiguous
3B | 4C | 5D | —51, — (37 + 5 (1-6)7p)
3B | 4C | 5E || — % ambiguous
3B | 4C | 5G —ﬁ ambiguous
3B | 4C | 5H || — L, —(367a + 5 (1-6)%)
3B | 4C |51 | —L — (3670 + 5 (1-6)%)
3B | 4D | 5A || TV | 5 (2eR, 4 7(1-€)F5+ 1 7,)
3B | 4D | 5C || — 32122 ambiguous
3B [4D | 5D || —3=¥3 ~3
3B | 4D | 5F 8% ambiguous
3B | 4D | 5H | -T2V | 5 (Beq, +7(1-€)Fs+55,)
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On | Op | O, aﬂ . / c N B ., | As function of scaling dim.

3B [4D |51 || -3t ~3 %

3B | 4D | 5K | —1L —(3¢9.+2(1-8)7), (%, =0)
3B | 4E | 5E | — 1% ~(3¢Fa+201-97%)

3B | 4E |5 | —L 137 +51-9%)

3B | 4E | 5K | — 1 ~3 Fa, (% =0)
3B | 4F |5C | —128¥5 | (%63, +675 - 2(1-¢)7,)
3B |4F | 5D | —ZE8Y0 | 3(3eFa + ¥ -9 + (1 - FO7)
3B | 4F | 5E | -T-6v5 | L (129c5 4945, 1 25 (1 ¢)7,)
3B | 4F | 5F | 1845 | 1eq, g’Y,BJFg(l*&)%

3B | 4F |51 | +72% | —Z (15, - 269+ 3(1-6)7,)

3B | 4F |51 || 1228 | —(3eq.+ 575 +3(1-9)7)

3B | 4F | 5K | —1i5 —3 s (%, = 0)
3B | 4G | 5A | —1% —3 Fas (75 = 0)
3B | 4G | 5B | — %(357,1-1-2(1 %), (Fs=0)
3B | 4G | 5C | —1& —3 (3T +5(1-9%), (@Fs=0)
3B | 4G | 5D | —is -3 Fa, (75 =0)
3B | 4G | 5E | — 1% -1 (3¢7, -87%), (=0
3B | 4G | 5F || — iy %(35%+4 1—5)%), (75 = 0)
3B | 4G | 5G || - 1 (367, +5(1-97,), (Fz=0)
3B | 4G | 5H | — i, — 2 Fao (Y5 = 0)
3B | 4G |51 | —% —3 Fas (Vs = 0)
3B | 4G | 5] || —¢& 5 (3€9a+5(1-9%), (=0
3B | 4G | 5K || — 115 —3 Fas (Y8 =7 =0)
3C | 4A [ 5E || -2 —% ¥ (Yo = 0)
3C | 4A | 5F | —12 -5 %, (Yo = 0)
3C | 4A | 5G | — L5 -55, (Yo = 0)
3C | 4A | 5] | —gis —3 %, (Yo = 0)
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O, | O3 | O, C’C(ylﬂ)7 / c N ﬂ ., | As function of scaling dim.

3C |4A | 5K || 0 (Ya =79y =0)
3C | 4B | 5C || 4351805 | 5 (967, 4 275 ), (o = 0)
3C | 4B | 5E || —g 25, (Yo = 0)
3C | 4B | 5F =7 -23, (Yo = 0)
3C | 4B | 5G || 4135 —2 (375 —57%,), (o = 0)
3C 4B |51 | 5% | 27+ 5%, (3 = 0)
3C | 4B | 5] . 25, (Yo = 0)
3C |4B | 5K | —305 | 27, (o =3 = 0)
3C [ 4C | BA || — 1% —2 9, (Yo = 0)
3C | 4C | 5B | — = ~(3€7 + (1-9%), (Fa = 0)
3C [ 4C | 5D || —4k —2 9, (Yo = 0)
3C | 4C | 5E || —¢3, ~(2¢7:+3(1-97), (Fa = 0)
3C | 4C | 5G | —1& (369 +3 (1 %), (a=0)
3C | 4C | 5H |~ —379, (Yo = 0)
3C | 4C |51 || — gL —3 78 (Fa = 0)
3C | 4C | 5] || —¢& ~(3€9+30-9%),  (Ga=0)
3C | 4D | 5A | YA | -§ (295 + %) (e = 0)
3C | 4D | 5C || —gg7 (3 +30-9%), (Fa=0)
3C | 4D | 5F | —¢h — (€95 + (1= 6)7), (Yo = 0)
3C | 4E | 5C || —522; -39, (Yo = 0)
s[4 [0 -%F | -i% Ga =0)
3C |4E | 5E || —g35 23, (Fa = 0)
3C |4E | 5F || —12 -23,, (Yo = 0)
3C | 4E | 5G || — 4% 25, (Fa = 0)
3C | 4D | 5H | 1Y | -§ (29 + 7). (Fa = 0)
3C |4E |51 | -3 -27, (Yo = 0)
3C | 4E | 5] | —gis -5 %, (Yo = 0)
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O, | O3 | O, 6’35)7 / C{E{OB)7 As function of scaling dim.

3C | 4E | 5K || 0 (Yo =7 =0)
3C | 4F | 5C | 43541805 | 5 (967, 4 275 ), (Fa = 0)
3C | 4F | 5D || -5 295+ 37, (a = 0)
3C | 4F | 5E || —5% -275,, (Yo = 0)
3C | 4F | 5F |~ ~3 % (3o = 0)
3C | 4F | 5G || 41245 —2(355—57,), (Fa = 0)
3C |4F | 5] || —gk -2%, (Fa = 0)
3C | 4F | 5K | -5 —27, (Fa =7, = 0)
3C | 4G | 5C || =52 23, (Fa =75 =0)
3C 4G | 5D | 302 | 37, (o =75 = 0)
3C | 4G | 5F || —12» 23, (Yo =75 =0)
3C | 4G | 5G | —1%5 -5 % (Yo =78 = 0)
3C [4G |51 || —3=¥3 -3%, (Fa =75 = 0)
3C | 4G | 5] || —5= 23, (Yo =75 = 0)
3C | 4G | 5K || 0 (o = 35 = 7y = 0)

We can state a function of the form for most of these operators but
not for all of them.

In order to obtain the analytic results given above, we assumed the struc-
ture constants to take the form

(1) 0 _a+t b+\/{5, 13, 41}
Capr/ Capy = o (6.69)

with integers a, b and ¢ and sought for values of these integers reproducing
the numerical results. Regarding the anomalous dimensions, we see that
for each of these values there should also appear the value where —b is
substituted for b. The appearance of this value can serve as a consistency
check.

For some of the numerical results listed in appendix we could not
determine the analytic form. For these the integers a, b and c¢ respectively
may be too large, or these results do not hold the structure at all.
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6.7 Three-Point Functions for BMN Operators

Let us now consider the two impurity BMN operators

Bl = N(J.n) Zc 2k+1) [ r(¢iZ’f¢jZ=’—k)

v ZTr <¢lzk¢’ZJ ’f)} (6.70)
Bl" = N(Jn) Zsm 2k+ 2 1y (qsizk(zﬂ‘z"*’f) (6.71)
k=0
Jn L3 T2k +3) (i i g Tk
By" = Z Zcos T3 Tr ((blZ A ) (6.72)
k=0 =1

introduced in [7], keeping the convention Z = ¢; + igo. In the table of
section we denoted to which anomalous dimension eigenspace these
operators belong. They have anomalous dimensions

1 9 TN
n — o Sin 673
B3 T w2 J+1 (6.73)
1 9 TN
n = — sin 6.74
’YB[JLJ] 2 J+2 ( )
1 . ™
784;];” = ﬁ Sln2 m, (675)

and are already part of a diagonal basis. Thus, we can calculate their
structure constants by hand.

6.7.1 Correlators with Length Two Operators

First, we consider three-point functions of two BMN operators of equal
length with a length two operator. In order to obtain these, we have to find
a diagonal basis for the length two operators. According to [7] the length
two operators split in the Konishi operator

6
K=Tr(Z22)+) Tr(¢'¢'), = yoo (6.76)
1=3
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and four classes of protected operators that we denote by

On = Tr(Z2) (6.77)
Oy = z:Tr (¢'¢") —2Tx (22) (6.78)
0! = T; (24" (i=3...6) (6.79)
o) = Tr (¢'¢7) — (Zj 26:”[&" (¢>’f¢k) (i=3...6) (6.80)

Together with their complex conjugates O, and @i, these are the twenty
operators with v = 0, i.e. the operators of the class 2B.

One Konishi and Two BMN Operators Let us first calculate some

correlators with the Konishi operator:

(1) __3 o0

2,0 72,0 ) 2,0 72,0 (6‘81)
KB 5B 8= KB Bij)
1 3 0
C;(c;?’1 By, 4m? C;(cz)s“ B (6.82)
(i5)P (i) 0 (i) P (i)
1) 3 (0
c = _ (6.83)
s , 2 3,0 33,0
KB Big 8 KB Big
W =2 O (6.84)
3,1 723, 2 3,1 723, :
KB\ B 407= KB Bij)
(1) 3~
4,0 734,0 - 4,0 34,0 (6'85)
KB ;) Bij) 8m2 T KB\ B
(n) 41 — — - \/5 (©) 4,1 (6 86)
4,1 734, 2 4,1 724, :
KB Bij 24m KBy Bij)
W 4,2 — M \/S (©) 4,2 (6 87)
4,2 754, B 4,2 724, .
KB(2 B 247 KB B

These results are in complete accordance with our general result (6.39) E|

®Note that Okuyama and Tseng come to a different result in equation (5.26) of [40].
While our results for n = 0 are in accordance with theirs all others are not.
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One Protected and Two BMN Operators For the protected length
two operators, only the operators O, and Oc(iij) give non-zero results in
correlators <Oa’b,c’d BMN m> These are the structure constants for all
non-vanishing three-point functions that can be built from the J = 1 and
J = 2 operators:

(1) _

COS”B(IZ?;’)E%;?) =0 (6.88)
) __1 -0

Cot(iij)B(lig)Etlr’l = a2 Coffj)B(lgf)Etl;l (6.89)

(1) __ 1 o
CObBSSEif - 672 Oob83;153;1 (6.90)
c e =0 (6.91)
ObB?i?)B?i’?)
(1) _

C’Oyﬂs(g{;)ﬁé?) =0 (6.92)
I fe i e (6.93)
0B B 1672 "0 By B
(1)“ —22 — — ot \/5 C(O)" —2,2 (6-94)
0B B 1672 "0, By B

3 (0
ct =" 6.95
ovez s, ~ n? Coutt B (0:99)
3 0)

c® =200 6.96
oty E ~ 8w Cop s B (6:20)
(1)“ =21 — _5 — \/5 (O)" =2,1 (6-97>
of e B T Tom? ol B
W o 5tVSom (6.98)
of e B T Ton? ol B

1 0)
C(l) . =+ C( . 6.99
oyt ~ 16w Coumymty (699
3 0)

c® o =—" 00 6.100

op sy = sa Qo) (0100
115 — 145
(1) __ oo (6.101)

o8B 63272 0,B21B2:
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(1) _

OB By

1) _ 115414V5 )

OB By 63272 0,B2?B%

7

(6.102)

(6.103)

For J = 3 and J = 4 we calculate only some correlation functions with two

equal BMN operators. We obtain:

o
ObB?£?>B?5?)
(1) _
o mE
(1) __ L o
OBl 8T OWBL B
I o
cy e
(951”)5(3{;)5?5]1') 4 OS”B?{;)B?ZYJI')
) 7—3V5—2,/2(3 - V5) 0
OB By 1672 (5 — v/5) 0B} B
) B 3(5 —v5) —24/2(3 — V/5) )
04" BB 872 (5 — v/5) 04" BBy
e _ +67—31\/5— 164/2(3 — /5) -0
OuBy B 12872 (5 — /5) OuBy B
W 3(5 —V5) +24/2(3 — V/5) )
048 B 872 (5 — v/5) 047 Bl By
m 5 A
08B 56m% 08By
(1) ___3 o
0,B22BY? 4072 T O,BRBY?
o
ObBé’?)Bt?)
cv oy

('L]) 4,0
Oa""Bi;Bij)

(6.104)

(6.105)

(6.106)

(6.107)

(6.108)

(6.109)

(6.110)

(6.111)

(6.112)

(6.113)

(6.114)

(6.115)
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W o _ 5=V5.m o116
OuB15\Bij) 4872 T 0,81 B
N 5=Vh o) N -
OBl B 1672 0 7B} B
sty =i o (6.118)
OuB(; B(5) 4872 T OB B
w :_5+\/5 © 6119
04 BB 1672 07 BB
1 0)
Coutisty = s Cotya 6.120
OuB(;) By * 4872 T 0B Bl ( )
VBB DEh1E 6.121
(’)51”)8 Elwll B ?ul] 1672 (9((1” )Bé}-l] 3?1]1] ( )
1 0)
Coutzsts = 1o Consti 6.122
ObBEIi’J?] B?UZ] 1672 "0, 3?”2] Béf} ( )
7
cn o= co o1

_7]_671'2 Oéij)64,26

(37) 24,2
Oa" Byi;) B (5]

[i5] = [i4] [45]

As we see, we get different results for three-point functions of O, and Oc(lij )
respectively with the same BMN operators. The protected length two op-
erators, i.e. the operators of class 2B, are thus an example of a class of
operators of the same anomalous dimension that hold an additional degen-
eracy.

6.7.2 Correlators of Three BMN Operators

In addition to the three-point functions with length two operators, the cor-
relators

<B_J.1_’m (21 )B.J.Q-,’NQ (1,2)?{3;”3 (w3)> (6.124)

with Ji + Jo = Js are generally non-zero. As we have seen in the previous
section, the results obtained for the BMN operators are in accordance with
those that we calculated numerically. We therefore focus on three-point
functions of operators for which the numerical calculations gave no definite
results, as well as those that we needed to interpret the numerical results.
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These are the results:

W 21:_5_\/50(0) 2,1
1,0 11,0 32, D) 1,0 11,0 732,
BiyBi)Bur 167 BB Ber
(1) -0
1,0 2,1 753,0 —
BijBiin B
C(l) 31 — ! o 3,1
1,0 52,0 733, 2 1,0 22,0 733,
B(iyBij) Ber 8m°  BijBijBu
cv TS
1,0 452,1333,1 2 1,0 4»2,17359,
B Biin Bl 1672 Byjj) By B
C(l) 32__7+\/50(0) 3,2
1,0 2,1933,2 2 1,0 12,1733,
B BiinBris 167 B 5 Biij1Blis
() 3,0 :_5_\/50(0) 3,0
1,0 52,1333, 2 1,0 22,1933,
B(ij)Btr B(ij) 167 B(ij)Btr B(ij)
(1) _ . 14+3vV5 (0)
1,0 152,1953,1 D) 1,0 122,1933,1
B By Big 167 BBy Bij
M _ 5+v5
1,0 152,2753,0 — T 2 1,0 422,2733,0
BB "B(ij) 167 Biij) B Bij)
) 3,1 :+1_3\/5 9 3,1
1, 2,2729, 1, 2,2733,
B(i]Q)Btr B(ij) 1672 B(i?)Btr B(ij)
C(l) 3.0 — = © 3,0
1,1,52,1 33,0 — 2 1,1 52,1 733,
B BiijBij) dm= By B\ Bij)
oW _ 73-65 (0)
BLBL B 15272 " BL'BL'BY
) _ _B+6V5
BL' BB 1522 T BL'BL B
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(6.125)

(6.126)

(6.127)

(6.128)

(6.129)

(6.130)

(6.131)

(6.132)

(6.133)

(6.134)

(6.135)

(6.136)

These results add to the numerical results obtained in the previous section.

In principle, we could calculate three-point functions for BMN operators
of arbitrary length, as long as J; + J2 = J3, but for longer operators the
calculations get more time-consuming.






Chapter 7

All’s Well That Ends Well

7.1 Summary and Conclusion

Let us begin our conclusion with what we did not find. We were not able
to state a general form of the one-loop structure constants for arbitrary
operators, for example in terms of the anomalous dimensions. Nevertheless
we identified such a structure for at least some special classes of three-point
functions.

As we know from [40] and explained in section the structure con-
stants for extremal correlators take the simple form

o _

afy (706 + Y8 — 7’}’) C(S,)B)'y' (71)

| =

The SU(2) operators in section yielded the structure constants

1 1 0
Clh, = =5 (a+7+7) C- (7.2)
For three-point functions with a Konishi operator we found that
O __(_ e RL:] K (0)
Capr = (A(O)a Tao, A(O)IC> Caprc (7.3)

According to equation , the same relation holds for correlators of only
length two operators of a diagonal basis.

Most of the results we obtained by the numerical calculations in sec-
tion seem to point in a similar direction, as for example the three-point
function of two operators of the class 3A with a 4A operator whose structure
constant could be written as

(1) _ (1 ma 1 ma V4A (0)
O3, 3, 48 = (2 A0, T3 A0, +2 A(O)4A> C3p, 3, 40 (T4)

Therefore, we can write all these structure constants as functions of only the
tree-level and one-loop scaling dimensions, as well as the tree-level structure
constants of the corresponding operators.

On the other hand, the anomalous dimension and structure constant of
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P—Y — o *-—e *r—
— — S
(a) Konsihi operator (b) Length four operator, straight
T
(¢) Length four operator, self- (d) Length four operator, crossed
contraction

Figure 7.1: While the index contractions of the Konishi operator always yield
straight 2-gon contractions, they yield also self-contractions and crossed con-
tractions for the length four singlets.

three operators of the class 4A are

13 + /41

VA = T and
C(l) _ 7185 + 309 v41 (o) (7.5)
4A, 4A, 4A 11728 72 4A, 4A, 4A> :

which cannot be written as any function of y44 holding a structure like ([7.4)).
Results like this as well as the fact that for some operators there seems to be
an additional degeneracy of the one-loop scaling dimensions that is broken
by the three-point functions, suggest that there are contributions to the
one-loop structure constants that do not only depend on the anomalous
dimensions.

7.2 Outlook

In the long term one would of course like to find an easy way of determin-
ing the three-point functions of N' = 4 super Yang-Mills and—going even
further—also regard n-point functions with n > 3.

It might be an interesting step into this direction to try to generalise the
proof from section for the Konishi operator to longer singlet operators,
starting with the length four singlets 4A and 4E. The indices of these op-
erators have to be fully contracted. The crucial point for safeguarding that
the structure constants simplify for the Konishi operator is that the index
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contraction corresponds to a straight contraction of the vectors attached to
the Konishi operator as depicted in figure [7.1](a).

For the length four operators that we wrote down explicitly in equation
1D we obtain two contributions, proportional to the traces Tr ((b’(ﬁ’qb] & )
and Tr (qﬁiqﬁj drl ) respectively. If we take all permutations into account,
we are left with three different ways of contracting the indices that are
depicted in figures [7.1)(b)—(d). These correspond to straight contractions
as well as crossed contractions and self-contractions. Applying the 2-gon
dressing to obtain the one-loop structure constants then, on one hand, yields
terms which hold two crossings or self-contractions. These look like two-loop
order contributions, but there are no next-to-nearest-neighbour contractions
in this picture.

On the other hand, as described in section [£.3:2] we could also omit
the 2-gons and consider only 3-gon dressings. We would then obtain only
next-to-nearest-neighbour contractions and no diagrams with two separate
crossings or self-contractions.

Therefore, it may be possible to express the one-loop structure constants
for length 2s singlets by the scaling dimensions up to s loops. This—if
it should turn out to be correct—could also explain why the additional
degeneracy of the two-point functions at one-loop level is broken by the
one-loop three-point functions.

It might also be instructive considering three-point functions similar to
those that reveal a simple structure. Among these are for example near-
extremal three-point functions, although, unfortunately, our calculations for
some of these structure constants seem to show no simple structure at all.

In order to proceed to four-point functions, one could try to extend the
dressing formulae from section [£.2] and in this way obtain a diagrammatic
description as for the three-point functions.

Anyway, we notice that there remains a lot of work to be done.






Appendix A

Results

A.1 Calculations for Twisted Operators

We list the results of the calculations for the twisted operators from sec-
tion [£.2] here.

A.1.1 Length Two Operators

Two-Point Functions

(Tr (B?) (z1) Tr (B?) (z2) ) =0 (A1)
(Tr (B?) (z1) Tr (BC) (w2) ) =0 (A.2)
(Tr (B?) (z1) Tr (BV,) (z2) ) =0 (A.3)
(T (B2) () T (€%) (22) ) = 5 (A4)
(Tr (B?) (z1) Tr (CV,) (z2) ) =0 (A.5)
(Tr (B?) (21) T (VaWh) (2) ) = 0 (A.6)
(Tr (BC) (21) Tr (BC) (12) ) = W#ﬁ? (1 + ﬁ(ln ;;2 - 1)) (A7)
(Tr (BC) (1) Tr (BVa) (z2) ) = 0 (A.8)
(Tx (BC) (1) Tr (C?) (2) ) = — = (A.9)

4,2
2mtaiy
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12 - Q

(T (BO) (1) T (CVa) () ) = s (A.10)
(T (BO) (1) Tr (Vi) (2) ) = 3;;’(1% -1) (A1)
(Tt (BV,) (1) Tr (BV) (22) ) = 0 (A12)
(Tr (BVa) (@) T (C%) (22) ) = —5 25 (A.13)
(Tr (BV.) (1) T+ (CV3) (02)) = g (A14)
(Tr (BV,) (1) Tr (ViV2) (w2) ) = 0 (A.15)
(Tr (C?) (1) T (C?) (2) ) = 54 (A.16)
(T (C%) (o0) T (CVa) (2) ) = —5 5 (A7)
(T (€2) (21) Tr (VaVi) (22) ) = W (A.15)
(6 (CV2) (20) T (CV) () ) = — - 22 B e 0 (A.19)
(Tk (CV,) (1) Te (GV2) (2) ) = 2120 o b (A.20)
(Tr (VoVy) (21) Tr (VoVi) (22) ) = m}lx%(a-cb-d—ka-db-c
+W(m;§2 ~1)) (A.21)
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Three-Point Functions

(Tr (B?) (1) Tr (B?) (z2) anything(zs)) =0
(Tr (B?) (21) Tt (BC) (z2) Tt (BC) (z3)) =0
(Tr (B?) (z1) Tt (BC) (z2) Tr (BV,) (z3)) = 0

(Tr (B?) (z1) Tr (BC) (x2) Tr (C?) (z3)) !

2,2

e%x
(S )

T19%33

(Tr (B?) (1) Tr (BC) (22) Tr (CV,) (z3)) =0

(Tr (B?) (1) Tr (BC) (22) Tr (V,V3) (23)) =0
(Tr (B?) (1) Tr (BV,) (z2) anything(zs)) =0

1
6.2 2
T T12T73

(Tr (B?) (z1) Tr (C?) (x2) Tr (C?) (x3)) = —

(Tr (B?) (21) Tr (C?) (w2) Tr (CVa) (w3)) = m

(Tr (B?) (z1) Tr (C?) (z2) Tr (VuVa) (z3)) = 0+

2,2

ex
X (111 5 122 —2)
Li3Ta3

<Tr (32) (71) Tr (CVa) (w2) Tr (CV5) (553)> - o

(Tr (B?) (z1) Tr (CVa) (z2) Tr (Vi Ve) (z3)) = 0

(Tr (B?) (z1) Tr (VaVa) (22) Tr (VoVa) (23)) =0

T 96,2 2 2(
2m0 119 T3 T5s 8w

A a-b
8.2 .2 2
327° x15T73T53

= Q26,2 .2 2
80 x75T13%53

87

(A.22)

(A.23)

(A.24)

(A.25)

(A.26)

(A.27)

(A.28)

(A.29)

(A.30)

(A.31)

(A.32)

(A.33)

(A.34)
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52

(13 (BO) (21) T+ (BO) (22) T+ (BO) (13)) = g (14 525 (1 -

2 2

€ 5
o —6)) (A.35)
(Tr (BC) (z1) Tr (BC) (x2) Tr (BV,) (z3)) =0 (A.36)

2 1 iy Fafy +ad, A
(Tr (BC) (1) Tr (BC) (w2) Tr (C?) (w3)) = — 1 i, (1 + 1

1 [ 2 e%a3, 2 e’x3,
S P B N T
$%2 + x%} + 93%3 m%zxgs 323

(Tr (BC) (21) Tr (BC) (w3) T (CV,) (w3)) = m ((m t13) - a

A g2x2 g2x2
+7[x23'a<ln 3 72>+w13~a(ln 3 72)}) (A.38)
Ar? atra%s w123,
A a-b

(Tr (BCO) (x1) Tr (BC) (z2) Tr (VoWs) (23)) = 0+ 647 22,0008,

x (I ;22 xj; -2) (A.39)
(Tt (BC) (21) Tr (BV,) (22) Tt (BV}) (23)) = 0 (A.40)
(Tx (BC) (1) Tx (BV,) (2) Tr (C2) (w3)) = m (212~ 25) -

1241323
- ﬁng : a(ln ;;fi - 2)) (A.A41)

a-b A
(Tr (BC) (w1) Tr (BVa) (z2) Tr (CV}) (23)) = m( T2
€2Z2
1 2 _2 A.42
% ( . 22,73, )) ( )

(Tr (BC) (1) Tr (BVq) (w2) Tr (Vi Ve) (23)) =0 (A.43)
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1 A
(T (B) o) T (C%) o) T (C%) o) = g (b + s+ 2 oy
X (m i —2)) (A.44)
T352%, .

(Tr (BC) (1) Tr (C?) (w2) Tr (CV,) (w3)) = S (w3 + 233 ) was

T 46 2 2
470 2752755,

IO I . I E55 g A 45
23713 + 5 T23T23 el ¢ (A.45)

<TI‘ (BC) (xl) Tr (02> (56‘2) Tr (Va%> (iL‘3)> = M((l‘lg s a4 T23 b

A e2a3
+x13~bm23-a) +ﬁ [a:23~aa:23-b (IDZ'Q 223 —2)

2,.2

- a7~b 3y (hl 8%:;%23 - Q)D (A.46)

(Tr (BO) (a1) T (CV,) (2) Tr (CV) (3)) = . (e +at)

- 6 2 .2
1670 {2152

A
><a~b+2x23-axlg~b—2x12~a$23~b+—(a-bx§3+2x23-axgg-b

472
e?x?
X (In——2 2 (A.47)
( 2,73, )
1
<Tr (BC) (.’I’l) Tr (CVa) (.’I’Q) Tr (‘/b‘/c) ($3)> = m ((a . bmlg - C

A e2a?,
+a~cw13-b)+—2[x12-ab~c(lnﬁ—2) + (xgg-ba-c+x23~ca-b)
47 T13T5g

< (52 2)]) (A48)

TIoT73

A a-cb-d+a-db-c

(T (BO) (1) Tr (VaVi) (w2) Tr (VeVa) () = 0+ s =

X (ln <k f2) (A.49)

2 .2
LioT73
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(Tr (BVa) (z1) Tr (BV3) (22) Tr (BV,) (x3)) = 0 (A.50)

a-b

(Tr (BV,) (z1) Tr (BV}) (z2) Tr (C?) (x3)) = O s (A.51)
1241323

(Tr (BV,) (x1) Tr (BVy) (z2) Tr (CV,) (23)) =0 (A.52)

(Tr (BVa) (21) Tr (BV) (22) Tr (VeVa) (23)) =0 (A.53)

(T (BV,) (1) Tr (C%) () T (C?) () = — g5 2 012 g (A.54)

T 9.6 2
2m%  xiywis

2
2(x12 + x13) - axa3 - b+ 550+ b
6,2 2 2
80 T15T13%53

(Tr (BV,) (1) Tr (C?) (22) Tt (CV) (z3)) = —

(A.55)
1
Tr (BV, Tr (C? T g = (a-bxo-
< r (BV,) (z1) Tr (C ) (z2) Tr (VL) (x3)> 870 2%, 000, (a ZTog - C
ba-casb— —beca .a(ln e —2)) (A.56)
23 Am? 2 33155 ’

(Tr (BV,) (21) T (CV) (22) Tr (CV,) (23)) = ! » (@12 +213) -

1670 2202,
xb~c+m23~ba~c—z23'ca~b) (A.57)

(Tr (BV,) (21) Tr (CV3) (w2) Tr (Vi) () L - (a-cb-d

= 6,2 .2
3270 xioriaT

A e2z3,
+a-db-c+ma-bc-d(lnm%3:n§372)) (A.58)
(Tx (BVa) (1) Tr (WV,) (22) Tr (VaVe) (25)) = 0 (A.59)
(Tx (C?) (1) Tr (C2) (w2) Tr (C2) (w3)) = —— (A.60)

6
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9 9 _ 1 rmg wazy
(T (C2) (1) T (C2) (2) Tr (CVa) (3)) = 35 (?%3 + 733) a (A.61)
1
(Tr (C?) (1) Tr (C?) (w2) Tr (VuVa) (w3)) = T o022, (xls “axa3 b
A, e2z?,
+ Xo3-ax13-b— T2 b0 b(ln T2 2)) (A.62)

@NC%uwTﬂcmﬂm>ﬁ«wwu@»=i;C”b+@wamyb

6 2 2 2
470 \2z35, T13T53

Ti2-aTo3-b  Tip-awiz-b
- 2 2 - 2 2 ) (A.63)
L1233 T1aT73
1
2
(T (C?) (1) Tr (CVa) (w2) Tr (VyV2) (ws)) = —m(m ‘ba-e
2010 -
+ Z13 -ca-b— 1’1; a(l'lg 'b.’ng - C+ T13 - CXxa3 b)
L2
A e2x?
+ 7(1n 12 —2)3012 -ab-c) (A.64)
472 r2,13,
1
2
(Tr (C?) (z1) Tr (VaVa) (z2) Tr (VeVy) (x3)) = 8r022,22, 22, ($12 ~azi3-chb-d

+$12~b$13'Ca'd+£12'a$13'db'c+$12'b$13~da'0+4 3
T

2,.2 2,.2
X |:<1H 521'123 72)%13'C$1g'da‘b+ (111%72)‘%12'&5612'()6'(4)
T19T55 T137T23
(A.65)

1

(Tr (OVa) (1) Tr (OV5) () Tr (OVe) (23)) = ~ -

2
[a b (x73T23
2 2 2 2 2
+ x55w13) - ¢+ a - ¢ (Tia®az + T53212) - b — b« ¢ (215213 + TY3T12) - @

+2r13-ax13-bxo3-c—2x12-ax23-bT13-C (A.66)
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1

(Tr (CVq) (x1) Tr (CWy) (22) Tr (VL Vy) (x3)) = T 32m02%,0%, 0,

(—2a~cx12-b

X$23'd+a'0b'd.’£§272a'b$13'6’£23'd+2b'd$12'a’£13'6*2(1'd

><xlg-bxgg-c—i-a-db-cxﬂ—2a~bx13-dac23~c+2b-ca:12~ax13-d

A e2x2
(1 12 _9)¢-d(2z1y - _ - ba? A.67
+ 472 ( 22303, )C (2212 - az12 + @ le)) ( )

(Tr (CV,) (z1) Tr W VL) (z2) Tr (V4Ve) (x3)) ! 7 ((xlg ‘ba-dc-e

= 6,2 .2
3270z x5

+xz13-da-bc-e+x12-ca-db-e+x13-da-cb-e+x12-ba-ec-d+x13-¢

A
><a-bc~d+x12~ca~eb~d+x13~ea-cb~d)+ﬁ{(sc13-ea-d+x13~d
T

e2z? e2z?
. el 1 13 9 .ba- .ca- el 12 9
X a-eb c( nx%ngs )+(a:12 ba-c+x12-ca-b)d e( nx§3x§3 )D
(A.68)
1
Tr Tr Tr - . . .
(T (VaVa) (04) T (VeVi) (w2) T (VeVp) (0)) = g 5o ((a eb-de- f

+a-fb-dc-e+a-eb-cd-f+a-fb-cd-e+b-ea-dc-f+b-fa-dc-e

+b-ea'cd~f+b~fa~cdoe)+L{a~b(c'ed-f+c~fd~e)(ln%
22 s
5237%3
—2) —l—c-d(a-fb-e—l—a-eb-f)(lnm—2) +e-fla-db-e+a-eb-d)
< (522 2)]) (A.69)
235735
A.1.2 Length Three Operators
Two-Point Functions
(Tr (B?) (z1) Tr (B?) (z2)) =0 (A.70)
(Tr (B®) (z1) Tr (B*C) (22)) =0 (A.71)

(Tr (B?) (z1) Tr (B*V,) (z2)) =0 (A.72)
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<Tr (B3) (z1) Tr (BC'Q) ($2)> =0
(Tr (B?) (z1) Tr (BCV,) (z2)) =0

(Tr (B?) (z1) Tr (BV,V3) (w2)) =0

(T (B) (1) T (C°) (22) = g
12

(Tt (B%) (@) T (C2V2) (@) = 0

(Tr (B?) (z1) Tr (CV,V3) (22)) = 0
(Tr (B?) (1) Tr (VaVoVe) (22)) = 0
(T (B2C) () Tx (B2C) (22)) = 0

(Tr (B*C) (z1) Tr (B*V,) (22)) =0

(Tr (B*C) (z1) Tr (BC?) (z2)) = wlx%

(Tr (B2C) (z1) Tr (BCV,) (z2)) =0

(Tr (B*C) (z1) Tr (BV,V3) (z2)) =0

(T2 (B2C) (21) T (C) (@) = — -

12

(T (B°0) (00) T (C*Va) (22)) = g g
Aa-b

(Tr (B*C) (%1) Tr (CV,V3) (22))

1287829,

93

(A.73)

(A.74)

(A.75)

(A.76)

(A.77)

(A.78)

(A.79)

(A.80)

(A.81)

(A.82)

(A.83)

(A.84)

(A.85)

(A.86)

(A.87)



94
(Tr (B*C) (1) Tr (VaVoVe) (w2)) = 0
(Tr (B*V,) (1) Tr (B*W}) (z2)) = 0
(Tr (B*V,) (1) Tr (BC?) (22)) =0

(Tr (B2V,,) (z1) Tr (BCV}) (22)) = 0

(Tr (B*V,) (z1) Tr (BV,Ve) (22)) =0

<Tr (BZVa) (z1) Tr (CS) (z2)> _ *3:8162 .6a
8Oy
(T (B () T (C°V0) (22)) = 0

(Tr (B*V,) (1) Tr (CV,Ve) (22)) =0

(Tr (B?V,) (z1) Tr (V3 V.Vy) (22)) =0

(Tx (BC?) (21) Tr (BC?) (22)) = —ﬁ(l + 8;(110;;2 - 1))
(Tr (BC?) (1) Tr (BCV,) (ws)) = Sx;éxé (1 T 8%(111 ;;2 _ 1))

2 __Arab e
(T (BC?) (o0) Tr (BVaWa) (22)) = s (1 = 1)

3
= —o
8mlxis

(To (BC?) (1) Ti (CP) (22))

(Tr (BC) (22) Tr (C*Va) (a)) = — et
12

A Results

(A.88)

(A.89)

(A.90)

(A.91)

(A.92)

(A.93)

(A.94)

(A.95)

(A.96)

(A.97)

(A.98)

(A.99)

(A.100)

(A.101)
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1 A
(Tr (BC?) (21) Tr (CV, Vi) (2)) = m(ﬂﬂm cawyb- cosadab
2
€
(Tr (BC?) (z1) Tr (V,VuVe) (22)) = #(hl i - 1) (a “bxig-c
e 1287829, \ ™ 22,
+a~cx12-b+b~cx12~a) (A.103)
5 a-b g2
(Tr (BOVa) (1) Tr (BCV:) (22) = — 50 (m e 1) (A.104)
(Te (BOV,) (1) Tr (BYV,) (1)) = 0 (A.105)

2

(Tr (BOV,) (1) Tr (CBV) (22)) = 1 6‘7‘@2?2 (1+ 1;22(1]0;2 —1)) (A.106)

31’12 - a

(Tr (BCV,) (z1) Tr (C?) (22)) = ST (A.107)
m0xly
2 a-b+2 . b
(Tr (BCV,) (1) Tr (CV3) () = — 212270 F MLRLL (A.108)
1670273,
1 A
<TI‘ (BCVG) ($1) Tr (C‘/b‘/c) (.’L‘g)> = M(mg -ba - c+ 16?(61‘12 -ba-c
2
€
—6x12-ca-b—w12-ab-c)(In— —1 (A.109)
2 weab-c) (1))
A
(Tr (BCV,) (x1) Tr (Vy Ve Vy) (z2)) = m(a “be-d+a-cb-d+a-db-c)
x <lni—1> (A.110)
%y ‘

(Tr (BV,V3) (a1) T (BV, V) (22)) = 0 (A.111)
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(T (BVaVA) (a0) T (C°) () = 2212 012 (A112)

6
8mhxl,

Tia-ab-c+x12-ba-c
6.6
167%27,

(Tr (BV,Vs) (1) Tr (C?V2) (22)) = —

2

(Tx (BV,V3) (21) Tr (CVLVa) (w2)) = ?Q;%%(a ceb-d+ Tfrg(m w% -1)

><(6a-cb-d—6a-db-c+a-bc~d>) (A.114)
(Tr (BVaVp) (1) Tr (VeVaVe) (22)) =0 (A.115)
(T (C%) (1) T (CP) (2)) = o (A.116)
(Tr (CP) (1) Tr (C2V,) (2)) = Zf:ﬁz%;‘ (A.117)

3 3{E12 caT12 b

(Tr (C?) (z1) Tr (CV, V) (22)) = T smtad, (A.118)
(T (C°) (1) T (VVe) (o)) = 212000 Do o (A119)
(T (C2V,) (01) Tr (C2V) (1)) = Dz bt A0 ams b (A.120)

6.4
16727,

1
<Tr (C’QVa) (z1) Tr (CV, VL) (x2)> = 7W<x%2 T12-ba-c+ 9:%2 Tig-ca-b
12
+ 2212 - a1z - o -C) (A.121)
1
<TI‘ (CQVG) (CCl) Tr (V},VCVd) ($2)> = W ((Elg cCT19 da-b + X192 - bl’lg -d
12

xa-c—i—a:lg-bxlg-ca-d) (A.122)
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1

—W(Jc%a-cbd—i—ng-bxlg-c
12

(Tr (CVL V) (1) Tr (CVLVG) (22)) =

(g 1)t
ln——1)(6x12a~cb-d—|—12x12-b

Xa-d+2xi9-ax10-db-c+ 5

A
1672 2o

><x12~ca-d+12x12-amlg-db-c—6x?2a-db~c—12m12~ax12~cb-d

—129512-bx12~da-c+x%2a~bc-d)) (A.123)

1

:W((xlg-ca-db-e+x12-da~eb~c
12

(Tr (CVaWa) (1) Tr (VeVaVe) (22))

A g2
+$12~ea-cb~d+@(lnx—%z—1>[x12-c(6a~db-e—6a~eb-d

+a-bd-e)+z12-d6a-eb-c—6a-cb-e+a-bc-e)+x12-€e(6a-chb-d

—6a-db-c+a-bc.d)]) (A.124)

(Tr (VoVuVe) (1) Tr (VaVeVy) (z2)) = M(a~db~ec~f+a~eb~fc'd

+a~fb-dc~e+i(lni—1)[6a~db-ec-f—|—6a-eb-fc-d+6a-f
1672 z3,
xb-dc-e—6a-eb-dc-f—6a-db-fc-e—6a-fb-ec-d+a-blc-fd-e

+c-de-fH+c-ed-f)+a-clb-ed-f+b-de-f+b-fd-e)

+b~c(a~de-f+b~de~f+b-fd-e)D (A.125)

Three-Point Functions

3 A
(Tr (B?) (1) Tr (B*C) (x2) Tr (C°) (23)) = 8roa%,02,00, (1 T3
52.7}%3
X (1n o 2)) (A.126)

(T (B2) (21) T (BC?) (22) Tr (BC?) (x3)) = m (1+

x (2 In 553 - 3)) (A.127)
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(Tr (B?) (1) Tr (BC?) (2) Tr (C?) (w3)) = _4st§jﬁ3x§3 <1 + 16>;r2

y (m ;;zafgs 3 2)) (A.128)
(T (B%) (1) Tr (BC?) (22) T (CPV) (3)) = 52 (1+

y (1n gﬁi 3 2)) (A.129)
(Tr (B?) (21) Tr (BC?) (x2) Tr (CVa Vi) (23)) = 256#135%:;%31;33 ( ;;ji

+21n ;; ~4) (A.130)

(Tr (B?) (21) Tr (BOV,) (w2) Tr (C°) (23)) = —gﬂs?;zz.%:mg:%( * 16/:T2
g2z, B
(0 oy 2)) (A.131)
(Tr (B?) (1) Tr (BOV,) (22) Tr (C?V3) (23)) = 16W8%;2§3x33 (1 16>;r2
y (ln ;%23;1%33 B 2)) (A.132)
(Tr (B?) (1) Tr (BVaVy) (x2) Tr (C?) (23)) = 2567r?0)\w§2f%3m4213
e2a?
y (ln x%xi B 2) (A.133)
(Tr (B?) (1) Tr (CBV,) (22) Tr (C?) (x3))
= (T (B?) (1) Tr (BOVL) (w2) Tr (C°) (23)) (A.134)

(Tr (B?) (z1) Tr (CBV,) (22) Tr (C*V;) (23))
= (Tr (B?) (z1) Tt (BCV,) (z2) Tr (C*V4) (23)) (A.135)
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9

(Tr (B?) (z1) Tr (C?) (x2) Tr (C%) (z3)) = STl (A.136)
323 - a
(Tr (B?) (z1) Tr (C®) (z2) Tr (C?V,) (z3)) = _m (A.137)
3
(Tr (B?) (z1) Tr (C?) (z2) Tr (CVoVp) (23)) = S750%,0%, 0k (x23 -axes - b
A g e2z3,
 ytBsa- b(ln o 2)) (A.138)
2 3 3A
<Tr (B ) (z1) Tr (C ) (z2) Tr (Vo V3 Ve) (x3)> = _2567r10:£%2x%3x33 (w23 -ab-c
g2z,
+x23-ba-c+x23-ca-b)<ln ey —2) (A.139)

(Tr (B?) (1) Tr (C?Va) (22) Tr (C?Vs) (25)) = _ @330-b+ 2wy - azas - b

8m8at, 11575,
(A.140)
1
Tr (B? Tr (C? T =——————— (223 ba-
(T (%) () T (C2V2) (22) T (CVVe) (1) = g o (o0 b
A g2z,
+293-ca-b— 16W2x23~ab-c<ln oy —2)) (A.141)
A
Tr (B?) (1) Tr (C?Va) (x2) Tr (VyVoVa) (3)) = a-be-d
< ( )( ) ( )( ) Tr ( ) )> 5127r10:c%2x%3x‘213<
+a-cb-d+a-db c)(ln G —2) (A.142)
213235 .
1
Tr (B?) (z1) Tr (CV, W) (22) Tr (CV.Vy) (23)) = =55 (a-db-c
(T (57) “ ¢ ) 327r8x%2x%333‘213<
g2 g2
+ [(a~db~cfa~cb~d)(6lnx—%3710) +a~bc-d<lnx—%3—1)b

(A.143)
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s s B 9 A
(Tx (BC) (1) Tr (BY) () Tr (C?) () = W( +
2,.2
X (ln ;;;2%33 - 2)) (A.144)
(Tx (BC) (1) Tr (B2C) (x2) Tr (BC?) (x3)) = oL (1 + 5
X (31 G R 12)) (A.145)
! 215275 ! 35 .
3
<TI‘ (BC) (371) Tr (320) (.’L’Q) Tr (03) ($3)> = —W <$%2 + .’E%g
2 i 2 £%x3, 2 e’xly
+ 2x54 + 2 [3x23(ln a2 2) + x13(ln a3 Q)D (A.146)
1
2 2 _
(Tr (BC) (z1) Tr (B*C) (22) Tr (C*V,) (z3)) = 628,000, (:1713 + 293
A 223, e2x?,
t 52 [3x23(1n T 2) i x13<ln o 2)]) ‘a (A.147)

Aa-b g?
Tr (B Tr (B? T - In =
(T (BC) a2) T (B7C) () Te OV ) = sy e (B 2
e2x?
+In ——2 —4 (A.148)
3
Tr (B Tr (B?V, Tr (C3 - Ve —
(T (BO) (@) Tr (BVa) (22) T (C°) (28)) = ~ s (200 — 12
3A g2z,
b 3\
T 2 2 _ a
(Tr (BC) (21) Tr (B2V,) (z2) Tr (C2V3) (z3)) TE TS (1+ =
x (ln G —2)) (A.150)
13527,
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A.2 Numerical Results for Short SO(6) Operators

All definite numerical results of the calculations from section [6.6] are listed
below. We also specify the margin of deviation of the results. The definition
of the classes of operators can be found in section For classes of
large dimension we calculate only about 250 random samples of structure
constants. The column titled “# values” contains the number of non-zero
values obtained. We quote the values with the smallest numerical error, i. e.
the ones with the largest values for C’gﬂ)7 and Céoﬁ)w. The specified “errors”
are the differences to the largest and smallest value respectively.

A.2.1 Operators up to Length Four

Ou | 05| O, | # values | 3272 C1) /c¥)
2B [ 4A [ 4B 380 | 14.4721359550 (0)
2B [4A | 4F 250 | 5.5278640450 (0)
2B [4A [ 4G 250 | 0.0000 (106)

2B | 4B | 4B 380 | 7.407845655 (185)
2B | 4B | 4C 250 | 14.4721359550 (0)
2B | 4B | 4D 248 | 14.472(201)

2B | 4B | 4E 250 | 14.4721359550 (0)
2B | 4B | 4F 8000 | 0.000000000 (623)
2B | 4B | 4G 250 | 14.472135955 (553)
2B | 4C [4C | 15234 [ 12.0000000000 (0)
2B | 4C | 4D 250 | 8.0000000000 (0)
2B [ 4C | 4F 250 | 5.5278640450 (1)
2B [ 4C [ 4G 250 | 0.0000 (119)

2B [ 4D | 4F 247 | 5.5279 (245)

2B [ 4D | 4G 250 | 0.00000 (183)
2B | 4E | 4F 250 | 5.5278640450 (0)
2B [ 4E | 4G 250 | 0.00000 (141)
2B | 4F | 4F 380 | 4.2377239654 (127)
2B [ 4F | 4G 250 | 5.527864045 (294)
2B [ 4G [ 4G 250 | 0.0000000000 (0)
3A [ 3A [4A 19 [ 27.40312(0)

3A | 3A | 4B 3620 | 22.47214(0)

3A [ 3A [4C [ 20790 [ 20.0000000000 (0)
3A | 3A | 4D 4] 12.0(4)
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|0 | 05 | O, | # values |

/C(O)

2 ~(D)

afy

J

3A | 3A [ 4E 49 | 14.59688 (0)

3A | 3A | 4F 3620 | 13.52786(0)

3A | 3A | 4G 9961 | 20.0(11)

3A | 3B | 4C 10494 | 16.00000 (0)

3A | 3B | 4D 10800 | 20.0000000000 (1)
3A | 3C | 4D 250 | 12.0000000000 (0)
3B | 3B | 4A 16 | 12.74512(0)

3B | 3B | 4B 401 | 17.03786(0)

3B | 3B | 4E 16 | 8.13488(0)

3B | 3B | 4F 401 | 14.59851(0)

3B | 3C | 4B 248 | 9.93681379 (13)
3B | 3C | 4C 248 | 8.0000 (400)

3B | 3C | 4D 250 | 8.00000 (243)

3B | 3C | 4G 249 | 8.0000000000 (0)
3C | 3C | 4B 250 | 14.472135963 (455)
3C | 3¢ | 4c 250 | 12.000000000 (473)
3C | 3¢ | 4D 4995 | 0.0000 (344)

3C | 3¢ | 4G 250 | 0.0000000000 (0)
AA | 4A | 4G 250 | 19.4028 (10)

4A | 4B | 4B 210 | 24.6559311634 (899)
AA | 4B | 4F 400 | 15.403124237 (210)
4A | 4D | 4D 325 | 20.59687576 (117)
4A | 4D | 4G 250 | 19.4031018 (79316)
AA | 4F | 4F 210 | 9.731571887 (171)
4A | 4G | 4G 250 | 19.4031242(0)

4B | 4B | 4B 1540 | 13.545909392 (459)
4B | 4B | 4C 250 | 19.8885438198 (490)
4B | 4B | 4D 232 | 17.12(2)

4B | 4B | 4E 210 | 76.040506 (363)

4B | 4B | 4F 4200 | 52.153275 (158)

4B | 4B | 4G 250 | 17.1168319337 (76)
4B | 4C | 4D 250 | 15.2360679775 (0)
AB | 4D | 4F 232 | 6.66(1)

4B | 4D | 4G 250 | 14.472(39)

AB | 4E | 4F 232 | 2.596875763 (346)
AB | 4F | 4F 4200 | 10.74995130 (709)
4B | 4F | 4G 250 |  6.6666666697 (411)

A Results



A.2 Numerical Results for Short SO(6) Operators

|0 | 05 | O, | # values | —3272 () /c©) |
4B | 4G | 4G 250 | 14.47213595 (24)
aC [4C 4G 250 | 24.000000000 (258)
AC [ 4D | 4F 250 | 10.7639320225 (0)
4C [ 4D [ 4G 250 | 12.0000 (138)

AC [ 4E [ 4E 2 | -14.1573750398 (0)
AC [ 4F [ 4F 250 | -15.88854381 (231)
4C [ 4G [ 4G 250 | 12.0000000000 (653)
4D [ 4D [ 4D 156 | 8.000 (10)

4D [ 4D [ 4E 623 | 33.4031243 (489)
4D [ 4D | 4G 530 | 8.0000000000 (0)
4D [ 4E [ 4G 250 | 6.5969 (18)

AD [ 4F | 4F 250 | 3.93(2)

4D | 4F [ 4G 250 | 5.5278 (145)

4D [ 4G [ 4G 250 | 0.0000 (970)

4E | 4E [ 4G 250 | 6.596879 (651)
4E [ 4G | 4G 250 | 6.59687576 (13)
AE | 4F | 4F 210 | 9.571990923 (871)
AF | 4F | 4F 1540 | 8.92997485 (742)
4F [ 4F [ 4G 250 | 3.9357996451 (387)
4F [ 4G [ 4G 250 | 5.527864044 (43)
4G [ 4G [ 4G 250 | 0.0000000000 (0)

A.2.2 Operators up to Length Five

O | 05| O, J # values | —3272 C’C(Ylﬂ)7 / Céoﬁ)v
9B | 5A | 5A 3860 | 15.2947444 (1562948)
2B | 5A | 5C 248 9.000000000 (986)
2B | 5A | 5D 250 | 13.8416192530 (28)
2B | 5A | 51 250 | 9.3694832980 (13)
2B | 5A | 5] 229 | 4.000 (690)

2B | 5A | 5K 248 | 0.000 (663)

2B | 5B | 5K 238 | 0.000 (223)

2B | 5C | 5G 250 5.0000000000 (151)
2B | 5C | 5J 250 | 25.00000000 (214)
2B | 5D | bE 250 | 11.4164078649 (222)
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|0 | 05 | O, | # values | —327% C}) /C) |
2B [ 5D | 5H 250 | 6.6305167020 (13)
2B | 5D | 5J 250 | 4.5250698548 (231)
2B | 5E | 51 250 | -15.4164079 (39)
2B | 5E | 5J 250 | 4.0000000000 (449)
2B [ 5E | 5K 250 | 12.000000000 (226)
2B | 5F | 5G 250 | 10.0000000000 (259)
2B | 5F | 5J 250 | -10.000000000 (102)
2B | 5G | 5J 250 | 4.0000000000 (258)
2B | 5H | 5H 238 | 6.4195412873 (1416831)
2B | 5H | 51 250 | 2.1583807470 (48)
2B | 5H | 5J 223 | 4.0(8)
2B [ 51 | 5] 250 | 4.7432228282 (70)
2B | 5] [ 5J 250 | 2.8571428571 (78)
2B | 5] | 5K 250 | 4.0000000000 (142)
2B | 5K | 5K 45 [ 0.0000000000 (0)
3A [4A [ 5A 190 | 25.2111025509 (97)
3A | 4A | 5D 250 | 18.47(11)
3A [ 4A | 5H 197 | 107888974491 (408)
3A | 4A | 51 250 | 9.52(1)
3A | 4B | 5A 240 | 22.4171957150 (1417)
3A [ 4B | 5C 50 | -51.2492235950 (532)
3A [ 4B | 5D 50 | 224721359550 (37)
3A | 4B | 5F 50 | 14.0000000000 (12)
3A | 4B | 5H 222 | 13.9742897905 (4035)
3A [ 4C [ 5A 250 | 25.2111025509 (79)
3A [4C | 5E 50 | 200000000000 (3)
3A [ 4C | 5F 50 | 16.0000000000 (1)
3A [4C | 5H 236 | 10.7888974491 (2)
3A [ 4D | 5A 242 | 16.0(6)
3A [ 4D | 5D 50 | 19.57770876 (2)
3A [ 4D | 5G 50 | 16.0000000000 (0)
3A [ 4D | 5H 235 | 16.00 (72)
3A | 4D | 51 50 | 12.4222912 (3)
3A [ 4D | 5J 250 | 12.0000000000 (452)
3A | 4D | 5K 50 | 16.0(2)
3A | 4E | 5A 181 | 25.2111025509 (536950)
3A | 4E | 5D 50 | 18.472(4)
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|0 | 05 | O, || # values | —327% C) /)
3A [ 4E [ 5H 193 | 107888974491 (1)
3A | 4E | 51 50 | 9.527(2)

3A | 4F | 5C 50 | 29.2492235950 (3)
3A | 4F | 5F 50 | 14.0000000000 (1)
3A | 4F | 51 50 | 13.527864045 (107)
3A | 4G | 5D 50 | 184721359550 (8)
3A [ 4G [ s 50 | 9.5278640450 (0)
3B | 4A | 5B 31 [ 20.0000000000 (1)
3B | 4A | 5D 43 | 21.0936915713 (0)
3B | 4A | 5E 50 | 8.00(13)

3B | 4A | 51 5| -1.0936915713 (0)
3B | 4A | 5] 209 | 4.0000 (1647)
3B | 4A | 5K 50 | 8.000 (43)

3B | 4B | 5B 118 | 12.9660490573 (0)
3B | 4B | 5C 50 | 14.4164078650 (0)
3B | 4B | 5D 50 | -9.8104413686 (45)
3B | 4B | 5E 50 | 1819292797 (11)
3B | 4B | 5F 50 | 18.6295146067 (0)
3B | 4B | 51 50 | 16.8541019662 (1)
3B | 4B | 5J 250 | 23.29618127 (858)
3B | 4B | 5K 50 | 8.000 (19)

3B | 4C | 5A 250 | 16.00000 (7969)

3B | 4C | 5B 247 | 16.00000 (10960)
3B [ 4C | 5D 50 | 16.000 (124)

3B | 4C | 5E 50 | 20.000000000 (514)
3B | 4C | 5G 50 | 16.0000000000 (0)
3B | 4C | 5H 236 | 16.00000 (509)

3B | 4C [ sl 50 | 16.00 (28)

3B | 4D | 5A 250 | 9.4830060324 (20)
3B [ 4D | 5C 50 | 19.0000000000 (12)
3B | 4D | 5D 50 | 5.5278640450 (16)
3B | 4D | 5F 50 | 12.0000000000 (13)
3B | 4D | 5H 241 8.6346410264 (25)
3B | 4D | 51 50 | 144721359550 (0)
3B | 4D | 5K 50 | 8.00(38)

3B | 4E | 5A 58 | 10.34(10)

3B | 4E | 5D 41 [ 9.6394347207 (0)
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|0 | 05 | O, | # values | —327% C}) /C)
3B [ 4E [ 5E 50 | 8.000 (59)
3B | 4E [ sl 44 | 10.3605652793 (0)
3B | 4E | 5J 298 | 4.0000 (5322)
3B | 4E | 5K 50 | 8.000 (34)
3B | 4F | 5B 127 | 75085272139 (2533852496)
3B | 4F | 5C 50 | -12.416407865 (2)
3B | 4F | 5D 50 | 10.1458980338 (1)
3B | 4F | 5E 50 | 12.543914133 (24)
3B | 4F | 5F 50 | 6.7038187267 (1)
3B | 4F [ sl 50 | 7.2649868232 (0)
3B | 4F [ 5J 250 | 11.370485393 (306)
3B | 4F | 5K 50 | 8.000(12)
3B | 4G | 5A 50 | 8.0000 (38)
3B | 4G | 5B 50 | 8.0000 (40)
3B | 4G [ 5C 50 | 8.000 (35)
3B | 4G | 5D 50 | 8.0000 (27)
3B | 4G | 5F 50 | 8.0000000000 (0)
3B | 4G | 5F 50 | 8.000(17)
3B | 4G | 5G 50 | 8.000 (42)
3B | 4G | 5H 50 | 8.000 (13)
3B | 4G | 5 50 | 8.0000 (89)
3B | 4G [ 57 50 | 4.0000000000 (7)
3B | 4G | 5K 50 | 8.0000000000 (0)
3C [4A | 5E 48 | 12.0000000000 (0)
3C | 4A [ 5F 50 | 10.000 (35)
3C | 4A [5G 49 | 8.000(11)
3C |4A [ 5] 250 | 4.0000000 (1721)
3C | 4A | 5K 50 | 0.000 (32)
3C | 4B | 5C 50 | 12.2998107979 (40)
3C | 4B | 5D 50 | 10.322465743 (1)
3C | 4B | 5E 50 | 4.0000000000 (27)
3C | 4B | 5F 50 | 10.0000000000 (20)
3C | 4B | 5G 50 | 11.41640786 (1)
3C | 4B | 51 50 | 11.70820393 (8)
3C | 4B [ 5] 250 | 4.0000000000 (44)
3C | 4B | 5K 50 | 14.4721359 (1)
3C | 4C | 5A 247 | 8.000(303)
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|0 | 05 | O, || # values | —327% C) /)
3C [4C [ 5B 250 | 8.000 (169)
3C [4C | 5D 50 | 8.000000000 (382)
3C [4C | 5E 50 | 12.0000000000 (7)
3C [4C [5G 50 | 8.0000000000 (0)
3C [4C | 5H 248 | 8.000 (123)
3C | 4C [ s 50 | 8.0000000000 (6)
3C | 4C [ 5 250 | 4.0000000000 (44)
3C [ 4D [ 5A 250 | 13.7370341836 (29)
3C [4D | 5C 50 | 5.6666666667 (691)
3C [ 4D | 5F 50 | 4.0000000000 (52)
3C [4D | 5H 238 | 8.9296324830 (1)
3C [4E | 5C 50 | 15.00 (39)
3C [ 4E [ 5D 49 | 14.47(50)
3C [4E | 5E 50 | 12.0000000000 (0)
3C | 4E | 5F 50 | 10.0000 (28)
3C | 4E | 5G 50 | 8.0000 (12)
3C | 4E [ sl 50 | 5.52(1)
3C | 4E [ 5J 250 | 4.0000000 (7218)
3C [4E | 5K 50 | 0.00000 (76)
3C [ 4F | 5C 50 | 244595191 (9)
3C [ 4F | 5D 50 | -1.7082039335 (337)
3C | 4F | 5E 50 | 4.0000000000 (4)
3C [ 4F | 5F 50 | 10.0000000000 (31)
3C [ 4F | 5G 50 | -15.41640785 (10)
3C | 4F [ s 50 | 4.7920380737 (10)
3C | 4F [ 5J 250 | 4.0000000000 (36)
3C | 4F [ 5K 50 | 552786404 (1)
3C 4G | 5C 50 | 15.0000000 (305)
3C [4G | 5D 50 | 14.47213595 (3)
3C 4G | 5F 50 | 10.0000000000 (22)
3C | 4G [5G 50 | 8.0000000000 (10)
3C 4G [ s 50 | 55278640450 (27)
3C 4G [ 5J 50 | 4.0000000000 (2)
3C [4G | 5K 50 | 0.0000000000 (2)
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A.2.3 Qualitative Structure

Beside the results given above, there are classes for which all three-point
functions vanish identically and therefore no results are obtained at all. For
some classes of operators we obtain ambiguous results, these are divided
into three types:

o If ngv is finite, ambiguous results suggest that there is an additional

degeneracy that is hidden at one-loop level. We would have to choose
the right diagonal basis to obtain proper results.

o If CC(M%)V ~ 0 but all values for Cc(xlﬁ)'y / C’C(M%)7 hint at a definite result, this

result is probably right but has a large deviation.

0 1) ()
e If on the other hand C,5 ~ 0 and C,4 /C,5.

there is no clear interpretation of these results.

varies considerably,

The qualitative structure of the three-point functions is listed in the tables
below. We use the following symbolic notations:

L Symbol H Description

results are available

results with large deviation are available

zero one-loop but non-zero tree-level structure constants

vanishing three-point function (also on tree-level)

results hint at an additional degeneracy

~lolx o]«

there is no clear interpretation of the results

Class 2B with Two Operators of Length Three

| 2B ][ 3A [ 3B | 3C|

3A || V X X
3B v |V
3C 0
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Class 2B with Two Operators of Length Four

| 2B | 4A [ 4B [4C [ 4D [4E | 4F | 4G |

4A || x | V ? X X v 0
4B VIV iV Y 0 v
4C v v X v 0
4D D x | (V)] 0O
4E X v 0
4F v v
4G 0

Class 3A with Operators of Length Three and Four

|3A | 4A [4B | 4C [ 4D | 4E | 4F | 4G |
Al v ivIivIimlv]v ]|
3B X X v v X X ?
3¢ x| 22 v x| 2] 2

Class 3B with Operators of Length Three and Four

3B | 4A [ 4B | 4C | 4D | 4E | 4F [ 4G |
B v |V | x| x|V |V ]|?
3C| x | vV | vV |V | x| 7]V

Class 3C with Operators of Length Three and Four

13C || 4A [ 4B [4C [ 4D [4E | 4F | 4G |
sellviviv]ofv][r]o]

Class 4A with Two Operators of Length Four

| 4A | 4A [ 4B [4C [ 4D [ 4E | 4F | 4G |

AA | v | x| 7 x| V| x| (V)
4B VI T x| x|V ?
4C D|v |7 ? ?
4D V| x| x | (V)
4E v | % ?
4F v ?
4G v
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Class 4B with Two Operators of Length Four
| 4B | 4B [4C | 4D [4E [ 4F | 4G |

BIlv | v | IV)|I V]|V v
4C D | Vv ? ? ?
4D D | x | (V)] (V)
4E X v ?
4F v v
4G v

Class 4C and 4D with Two Operators of Length Four

4C [4C | 4D [ 4E |4F [4G|  [4D | 4D [ 4E | 4F [ 4G |
sl pl?2]D[D]|Vv v I]v]D]| Vv
4D D| ? |v]v 4E x | x | ()
AE )| 7 D AF ) ()
4F v|D 4G 0
AG v

Class 4E, 4F and 4G with Two Operators of Length Four

[ 4E [ 4E [ 4F [ 4G | [ 4F | 4F [ 4G |
E [ v x[v F v v (4G | 0]

4F v |7 4G v
4G v

Class 2B with Two Operators of Length Five

| 2B || 5A [ 5B | 5C | 5D [ 5E | 5F | 5G | 5H [ 51| 5] | 5K |
A v | T |V | vV |?T]7? ? 1D
5B D|D]| ?
5C D | D
5D D
5E
5F
5G
5H
51
5J
5K

<

wihNlwllw)

viiviiviiwlle)

SIENICIEIEN

?
?
v
?
?
?
v

NENENENENENENENIC

v
D
D
D
v
D
5
v
D

0
0
?
?
v
?
>
>
>
v
0
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Class 3A with Operators of Length Four and Five

3A ]| 5A [5B|5C | 5D |5E [ 5F [5G [ 5H | 51 | 5J ] 5K |

AA | vV | x | x | (V)| x| x| ? | VvV | (V)] X :
4B v T VvV Tl v 7 v D ? ?
4C|| v | D| D | D | VvV |V |7 v D ? ?
D |V)|D|D| Vv |[D|D |V (V)| VvV |V ]I
AE || v | x | x | )| x| x| 7| vV |[(V)]x] ?
4F D ? 1 v | D TV 7 ? v ? ?
4G ? ? ? v ? ? ? ? v ? ?

Class 3B with Operators of Length Four and Five

3B ]| 5A [5B [ 5C | 5D | 5E | 5F | 5G | 5H | 51 [ 5] ] 5K |

AA | ? |V x| vV (V)] x| ? | x|V |IV]V
4B X | vV | vV |V VoIV T x| VvV
4C|| v | v | D|W)| Vv | D|V |V |V)]|? ?
4D || v TV ? VIV
4E | (V)| D | 7 v v ? TV VIV Y
4F ? VvV v I V|7 ? vV [ V|V
AG || v |V |V |V vV I VIV IV VvV
Class 3C with Operators of Length Four and Five
13C ][54 5B | 5C | 5D [5E | 5F | 5G | 5H | 51 [ 5] ] 5K |
4A || 7 ? ? ? Vv v? T v 0
4B || 7 ? v V I VIV v v | V|V
4C || v | v | D vV IV I DIV |V |V [V ]?
4D || v | 7 v D TV T v | D |77
4E || 7 T WV)I W)V YT W) V]0
4F || 7 ? v v [ VIV v v [ V|V
4G || 7 ? v v TV V7 v | vV ] 0







Appendix B

Program Code Listings

B.1 Summation of Permutations

As described in section [6.5] we can handle the summation of index contrac-
tions for all permutations computationally. The code of the corresponding
Matlab® programs is listed here. These program codes, as well as those
in the next section, are by no means as beautiful or simple as possible but
they serve their purpose.

B.1.1 Anomalous Dimensions

This program sums all tree-level and one-loop contributions to the two-point
functions.

Listing B.1: zpf.m

function [tree ,loop] = zpf(bl,b2a)
tree = 0;
loop = 0;
1 = size(bl,1);
if size(b2a,1) — 1
for r = 0:1-1
b2 = circshift (flipud(b2a) ,r);
tree = tree + prod(diag(bl*xb2.7));
if 1> 2
for s = 0:1-1
if s =20
trivl =
triv2 =
ul = b
u2 = b
vl = b
v2 = b
else
trivl = bl;
trivl (s:s+1,:)
triv2 = b2;
triv2(s:s+1,:) = [];
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ul = bl(s,:);

u2 = bl(s+1,:);

vl = b2(s,:);

v2 = b2(s+1,:);

end

trivprod = prod(diag(trivlstriv2.’));
if trivprod = 0

loop = loop + trivprods*( 2x(ulxvl.’)x(u2xv2.”)
— 2%(ulxv2.”)*(u2xvl.’) + (ulsu2.’)*(vlxv2.’) );
end
end
else
loop = loop + 2%(b1(1,:)*bl(2,:).7)*(b2(1,:)*xb2(2,:).");
end
end
end
end

B.1.2 Structure Constants

This program sums the 3-gons. The renormalisation scheme independent
structure constants can be calculated with these results.

Listing B.2: dpf.m
function [c0,cl] = dpf(bl,b2,b3)
1 size (bl,1);
m = size(b2,1);
n = size(b3,1);

c0 = 0;
cl = 0;
for r = 0:1-1
for s = 0:m-1

for t = 0:n—1
pl = circshift(bl,r);
p2 = circshift (b2,s);
p3 = circshift (b3,t);
c0 = ¢0 + cOkomp(pl,p2,p3,1 ,mmn);
cl = ¢l + clkomp(pl,p2,p3,1,m,n);
end
end
end
end
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function ¢ = cOkomp(pl,p2,p3,l ,m,n)
r= (1 +m-mn) / 2
s=(m+n-1)/ 2
t = (1 +n—-—m) / 2
c = (r>0)*pr0d(d1ag( 1(l:r,:)*flipud(p2(s+1m,:))."))
* (s>0)*xprod(diag(p2(1l:s,:)*flipud(p3(t+1l:in,:))."))
* (t>0)*prod(diag(p3(1l:t,:)*«flipud(pl(r+1:1,:))."));
end
function ¢ = clkomp(pl,p2,p3,l,m,n)
if 1 = 2
if m=— 2
if n — 2
¢ = 2«((pl(1,:)*pl(2,:).)+prod(diag(p2*flipud(p3).’))
+ (p2(1, )*p2(2,:).’)*prod(diag(pl*fﬁ;n1d(p3).’))
+ (p3(1,:)*p3(2,:). ) «xprod(diag(p2x«flipud (pl).’)));
else
c = 0;
end
else
¢ = 2x(pl(1,:)*pl(2,:). ) +prod(diag(p2*flipud(p3).’))
+ prod(diag(p2(1:m—2,:)*flipud (p3(3:n,:))."))
x (4 % (pl(l,:)*pQ(nL:).’) x (pl(2,:)*p3(1,:).")
x (p2(m—1,:)xp3(2,:).7)
— 2 % (pl(1,:)*p2(m—1,:).7) * (pl(2,:)*p3(1,:).")
* (p2(m,:)*p3(2,:).")
— 2 % (pl(1,:)*p2(m,:).") * (pl(2,:)*p3( ). 7)
* (p2(m—1,:)*p3(1,:).")
+ (p2(m—1,:)*p2(m,:).") * (pl(2,:)*p3(1,:).")
* (pl(1,:)*p3(2,:).")
S (pL(1,)p2(m,) ) (p3(2,5)#p3(1,:).7)
* (p2(m—1,:)*p1(2,:) ) )
+ prod(diag(p2(2:m—1,:)*flipud (p3(2:n—-1,:))."))
x (4 % (pl(1,:)*p2(m,:).") * (pl(2,:)*p3(1,:).")
* (p2(1,:)*p3(n,:).")
— 2 % (pl(1,:)*p2(1,:).7) = (pl(2,:)*p3(1,:).")
* (p2(m,:)*p3(n,:).")
— 2 % (pl(1,:)*p2(m,:).") * (pl(2,:)*p3(n,:).")
* (p2(1,:)*p3(1,:).")
+ (p2(1,:)*p2(m,:).") * (pl(2,:)*p3(1,:).")
* (pl(1,:)*p3(n,:).")
+ (p1(1,:)*p2(m,:).") * (p3(n,:)*p3(1,:).")
. * (p2(1,:)*pl(2,:).7) );

else
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r=(l +m—-mn) / 2

s =(m+mn-1) /) 2;

t =(l +n—-m) / 2

finnen = prod(diag(pl(l:r—1,:)*flipud
x prod(diag(p2(1l:s—1,:)«flipud
* prod(diag(p3(1l:t—1,:)«flipud

faussen = prod(diag(pl(2:r,:)«flipud(p
x prod(diag(p2(2:s,:)«flipud (p
* prod(diag(p3(2:t,:)«flipud (p

c = 0;

if finnen

¢ = finnen * dreigons(pl(r,:), pl(r+1

p2(s+1,:), p3(t
end

if faussen

¢ = ¢ + faussen * dreigons(pl(1,:
p2(m,:), p3

end

end

end

function d = dreigons(ul,u2,vl,v2,wl,w2)

d =6 % (ul*v2.’) x (Vl*WQ.’) * (Wl*u?
— 2 % (u2xv2.7) x (vlsw2.’) x (wl*ul
— 2 % (ulxvl.’) % (v2xw2.’) * (wlxu2
— 2 % (ulxv2.’) % (vlswl.’) x (w2xu2
+ (ulxu2.’) * (vlxw2.’) * (wlxv2
+ (ul*w2.’) * (vlxv2.’) * (wlxu2
+ (ul*v2.7) % (vl*u2.’) x (wlsxw2

end

B Program Code Listings

2(s+2m,:)
3(t+2:n,:)
1(r+2:1,:)
s+1lm—1,:)
t+1lin—1,:)

)

p
b
p
(
(
(r+1:1-1,:

i) p2(s 1),
1)y p3(t+1,1));

B.2 Diagonal Structure Constants from

Non-Diagonal Bases

The Mathematica® and Matlab® routines to calculate the whole spectrum
of structure constants for given lengths by brute force are listed below.

B.2.1 Calculation with Mathematica®

The SO(6) standard bases for length two and three operators are defined

in basen.m.
arguments by the following programs.

The vectors basis2 and basis3 defined here are taken as
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The program file mmatrizen.m listed below can be used to calculate all
two-point functions (gMatrix) and diagonalise them. The change-of-basis
matrix and anomalous dimensions are written in text files as output by the
functions WriteLx.

The program strukkonst.m calculates all diagonal structure constants.
The WriteCxxx functions are the main functions. They load the change-
of-basis matrix stored from the above program and calculate the diagonal
structure constants by summation with help from the change-of-basis ma-

trix.

Listing B.3: basen.m

CanonicalOrder [p_ | := Sort|Table|[RotateLeft|[p,k],
{k,Length[p]}]|][[1]]
basis2 = DeleteDuplicates [Flatten |[Table[Sort[{i,]}],
{i,6}.{j.6}],111;

basis3 = DeleteDuplicates [Flatten|Table|[ CanonicalOrder |

{i,5,k}].{1,6},{j,6} {k,6}],2]];

Listing B.4: mmatrizen.m

zpfvorfaktor[a ,b ,1 | := Module| {erg,i,nl,n2},
Catch |

nl = 1;

n2 = 1;

For| i=1, i<l, i++,

If| a=—RotateLeft[a,i], nl++];

If| b—RotateLeft[b,i], n2++]

K

erg = 1/Sqrt[nlsn2];
Throw[erg|]| |

gElem[a ,b ,1 | := Module| {i,j,erg},
Catch|
erg=0;
If[1-2,
For[i=0,i<l,i++,
For[j=0,j<l,j++,
If [RotateLeft|a,i+j|[[3;;]1]]==RotateLeft|[b,j]|[[3;;1]],
If |[RotateLeft [a,it+j]|[[1;;2]] == RotateLeft|b,j|[[1;;2]],
—)
If [RotateLeft[a,i+j][[1;;2]] ==Reverse| RotateLeft[b, j
[[11552]]] , erg —=2];
If |[RotateLeft [a,i+j|[[1]]==RotateLeft|a,i+]][[2]] &&
RotateLeft [b,j|[[1]]==RotateLeft [b,j]|[[2]] , erg
++111,
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If[a[[1]]==a[[2]] && b[[1]]==Db[[2]], erg+=4]];
Throw|erg ||
gMatrix [basis _,1 | := Table[zpfvorfaktor[basis[[i]], basis|[]

jl],1]*gElem[basis[[i]], basis[[]j]],!],{i,Length|[basis
|},{j,Length|basis|}]

MMgm[ basis _,1 | := Module| {g,es,gm,mm},
Catch|
g = gMatrix|[basis, 1];

es = Eigensystem|[g];
gm = es [[1]];
mm = Inverse|Transpose|es [[2]]]];

Throw [{gm,nm}[] |

WriteL2 [| := Module| {erg},
Get | "basen.m" |;
erg = MMgn| basis2 ,2];
Put|erg|[1]], "data/gm2.txt"];
Put|erg[[2]] ,"data/mm2. txt"]; |

WriteL3 [] := Module| {erg},
Get["basen.m" |;

erg = MMgn| basis3 ,3];

Put|erg[[1]], "data/gm3.txt"];
Put|erg|[[2]],"data/mm3. txt"]; |
Listing B.5: strukkonst.m
vorfaktor|a ,b ,c¢ ,1 ;m ,n | := Module| {erg,i,nl,n2,n3},
Catch |
nl = 1;

For[i=1,i<l,i++,

If [a=—RotateLeft|a,i]|,nl++][;
n2 = 1;

For|i=1,i<m, i++,

If [b—RotateLeft|[b,i]|,n2++]];
n3d = 1;

For|[i=1,i<n,i++,

If |[c—RotateLeft|c,i|,n3++][;
erg = 1/Sqrt[nlsn2xn3];

Throw[erg|]| |
Cola_,b _,c ,1 m ,n ,r ,s ,t | := Module[ {i,j,k,erg},
Catch|

erg = 0;
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For[i=0,i<l,i++,For[j=0,j<m, j++,For[k=0k<n, k++,

If [RotateLeft[a,i|[[1;;r]] = Reverse|[RotateLeft[b, ]
[T r]]

&& Reverse|RotateLeft[a,i]|][[1;;t]] = RotateLeft|c,k
[ t]]

&& RotateLeft|[b,j]|[[1;;s]] = Reverse|RotateLeft|c, k

" [11[155s]], erg++]
erg’*: vorfaktor [a,b,c,l mmn];
Throw|erg || |

dreigon|a_,b _,¢ ;1 m ,n ,r ;s ,t | := Module| {erg,i,j,k},
Catch |
erg = 0;
For[i=0,i<l,i++,For[j=0,j<m, j++,For[k=0k<n, k++,
If [RotateLeft[b,j|[[1;;s]]
—Reverse [RotateLeft [c ,k]][[1;;s]],
If [RotateLeft[a,i|[[1;;r—1]]
—Reverse | RotateLeft [b,j||[[1;;r—1]]
&& Reverse|RotateLeft [a,i|][[1;;t—1]]
—RotateLeft [c k]|[[1;;t—1]],
If [RotateLeft[a,i|[[r]|==RotateLeft[b,j|[[s+1]]
&& RotateLeft[a,i][[r+1|]|==RotateLeft|c,k]|[[t]],
erg +— 2];
If [RotateLeft[a,i]|[[r]]==RotateLeft [c,k]|[[t]]
&& RotateLeft[a,i|[[r+1||==RotateLeft[b,j|[[s+1]],
erg —= 2];
If [RotateLeft[a,i]|[[r]]==RotateLeft[a,i|[[r+1]]
&& RotateLeft b, |[[|s+1]|==RotateLeft|[c . k]|[[t]],
erg++]];
If [RotateLeft[a,i]|[[2;;1]]

—Reverse | RotateLeft [b,j|]|[[2;;r]]
&& Reverse|RotateLeft [a,i|][[2;;t]]
—RotateLeft [c k|[[2;;t]],
If [RotateLeft[a,i][[1]]==RotateLeft [b, ] |[[m]]
&& RotateLeft[a,i||[[l]][==RotateLeft|[c,k]|[[1]],
erg +— 2][;
If [RotateLeft[a,i][[1]]==RotateLeft[c,k]|[[1]]
&& RotateLeft[a,i][[1l]]==RotateLeft|b,j]|[[m]],
erg —= 2|;
If [RotateLeft[a,i][[1]]==RotateLeft[a,i|[[]]]
&& RotateLeft b, ] |[[m|]]==RotateLeft|[c k][[1]],
erg 11| 111;

Throw[erg]|]| |
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C1222[a_,b_,c_] := Module| {erg},
Catch|
erg = 0;

Iffa[[t]]==a[[2]],

If [b=—c,erg+=38]|;

If [b—Reverse|c]|,erg+=38]];
TE[b[[1]]-—b[[2]] .

If [a=—c,erg+=38];

If [a=—Reverse|c]|,erg+=38]];
TE[c[[1]]=—c[[2]] .

If [b=—a,erg+=38]|;

If [b—Reverse|a],erg+=38]];
erg x= vorfaktor|[a,b,c,2,2,2];

Throw[erg]|]| |
C1233[a_,b_,c ]| := Module| {erg},
Catch |
erg = dreigon[b,c,a,3,3,2,2,1,1]
+ dreigon|c,a,b,3,2,3,1,1,2];
Iffa[[1]]==a[[2]],

If [b—Reverse|c]|,erg+=12];
If [b—Reverse|[RotateLeft[c,1]],erg+=12];
If [b—Reverse|RotateLeft[c,2]|]| ,erg+=12]];
erg = vorfaktor[a,b,c,2,3,3];
Throw|erg|]| |

WriteC222 [] := Module|[ {i,j,k,c0,cl ,M2,r,s,t,cache0,cachel,
12 ,quot , leer , print },

Get | "basen.m" | ;

12 = Length|[basis2|;

M2 = SparseArray [Get["data /mm2. txt"]];

cache0 = SparseArray|[{}.{12,12,12} leer |;

cachel = SparseArray|[{},{12,12,12} leer|;

For[i=1,i<=12 ,i++,For[j=i,j<=12,j++,For|[k=j ,k<=12 k4,
print = False;
cO = 0;
cl = 0;
For[r=1,r<=12 ,r++,For[s=1,s<=12 ,s++,For[t=1,t<=12 , t++,

If[M2[[i,r]]'=0 && M2[[j,s]|]!=0 && M2[[k,t]]!=0,

If [cacheO[[r,s,t]]==1leer ,cache0[[r,s,t]]=C0[basis2 [[r
|],basis2[[s]], basis2[[t]],2,2,2,1,1,1]];
If[cachel [[r,s,t]]==leer ,cachel [[r,s,t]]=C1222][basis2 ||

r]],basis2[[s]],basis2[[t]]]];
c0 += M2[[i,r]|]*M2[[],s]]|*M2[[k,t]|]*cache0|[r,s,t]];
cl += M2[[i,r]|]*M2[[]j,s]|*M2[[k,t]|]*cachel [[r,s,t]]]
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E

If[c0==0,If[c1!=0,print=True;quot="Inf"]|, print=True; quot=

cl/c0];
If [print ,Print[{i,j,k,TeXForm|[c0] ,TeXForm|cl | ,TeXForm |
quot | }|]
IE
Exit [] |
WriteC233 [|] := Module| {i,j,k,c0,cl ,M2,M3,r,s,t,cache0,

cachel ,12 /quot,leer ,print},
Get | "basen.m" |;
12 = Length[basis2 |;
13 Length| basis3 |;
M2 = SparseArray [Get|"data /mm2. txt"]];
M3 = SparseArray|[Get["data /mm3. txt"|];
cache0 = SparseArray|[{},{12,13,13},leer |;
cachel = SparseArray|[{},{12,13,13}, leer |;
For[i=1,i<=12 ,i++,For[j=1,j<=13 , j++,For|[k=j ,k<=13 , k-++,
print=False;
c0 = 0;
cl = 0;
For|[r=1,r<=12 ,r++,For[s=1,s<=13 ,s++,For|[t=1,t<=13 , t++,
If[M2[[i,r]]!'=0 && M3[[j,s]]!'=0 && M3[[k,t]|]!=0,

If[cacheO[[r,s,t]]==leer ,cache0[[r,s,t]]=CO0[basis2[[r]],
basis3 [[s]], basis3 [[t]],2,3,3,1,2,1]];
If[cachel[[r,s,t]]==1leer ,cachel[[r,s,t]]=C1233|basis2 [[r

|],basis3 [[s]], basis3 [[t]]]];
c0 += M2[[i,r]|]*M3[[]j,s]]|*M3[[k,t|]*cache0|[r,s,t]];
](ﬁ 4= M2[[i,r|]*M3]]j,s]]*M3[[k,t]|]*cachel [[r,s,t]]]
If[éO::O,If[CII:O,print:True;quot:”Inf"] , print=True; quot=
cl/c0];
If [print ,Print[{i,],k,TeXForm|c0| ,TeXForm|cl | ,TeXForm|
quot | }]]

IE
Exit []]

B.2.2 Calculation with Matlab®

The programs listed below mainly serve the same purpose as the Mathema-
tica® programs listed above. Nevertheless there are some differences owed
to the fact that the language of Matlab® is fundamentally different from
that of Mathematica®.

The standard bases are defined by the basis function and the change-of-
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basis matrices are calculated in mmgm. The function writec stores a rank-
three tensor of the non-diagonal structure constants calculated by ctensor.
The non-diagonal constants are diagonalised by the diagc function.

Listing B.6: canonicalorder.m

function ¢ = canonicalorder (parr)
¢ = zeros(size(parr));
for row = 1:size(parr,l)
p = parr(row,:) ;
table = zeros(length(p));
for i = 1:length(p)
table(i,:) = circshift(p’,i—-1)";

end
sorted = sortrows(table);
c(row,:) = sorted (1,:);
end
end

Listing B.7: basis.m

function b = basis (1)

E = eye(6);
count = zeros(1,6);
count (1) = 1;
numbers = omnes(1,1);
while count (6) < 1

if count(6) =— 0

for i = 0:4

if count(5—i) > 0
count(5—1) = count(b—1i) — 1;
count(6—1i) = count(6—i) + 1;
break

end

end

else

for i = 0:4

if count(h—1i) > 0
count(b—i) = count(5b—i) — 1;
¢ = count (6);
count (6) = 0;
count(6—1i) = count(6—i) + 1 + c;
break
end
end

end
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numbers = [numbers ; unique(canonicalorder (perms([ones(1,
count (1)) 2«omnes(1,count(2)) 3xones(1l,count(3)) 4xones
(1,count(4)) bHxones(1,count(5)) 6xones(l,count(6))])),

‘rows ') |;

end
b = zeros(1,6,size(numbers,1));
for i = 1:size(numbers,1)

for j = 1:1

b(j,:,1) = E(numbers(i,j) ,:);
end
end
end

Listing B.8: tgmatrix.m
function [t,g] = tgmatrix (1)

b = basis(1);
dim = size(b,3);
t = zeros(dim);
g = zeros(dim);
for i = 1:dim

for j = 1:dim
sprintf(’i,j: %d, %d\n’,i,j)
for r=0:1-1
bl = b(:,:,i);
b2 = circshift (flipud(b(:,:,j)),r);
t(i,j) = t(i,j) + prod(diag(blxb2’));

if 1> 2

for s=0:1-1

if s=—20
trivl = bl(2:1-1,:);
triv2 = b2(2:1-1,:);
ul = bl(1,:);
u2 = bl(1l,:);
vl = b2(1,:);
v2 = b2(l,:);
else
trivl = bl;
trivl(s:s+1,:) = [];
triv2 = b2;
triv2(s:s+1,:) = [];
ul = bl(s,:);

end
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trivprod = prod(

if trivprod "= 0

g(i,j) = g(i,j) + trivprod=*( 2x(ulxvl’)*(u2xv2’) —
2% (ul*v2’) x(u2xvl’) + (ulxu2’)*(vlxv2’) );

diag(trivlxtriv2’));

end
end
else
g(i,j) = g(i,j) + 2#%(b1(1,:)*b1(2,:) " )*x(b2(1,:)xb2(2,:)
bR
end
end
end
end
end

Listing B.9: mmgm.m

function mmgm(1)

[t g] = tgmatrix(l);

[V gm] = eig(g*inv(t));

gmvsorted = sortrows ([diag(gm) inv(V)]);
gm = gmvsorted (:,1) ’;

M = gmvsorted (:,2:end);

datei = strcat(’data/mmgm’,int2str (1), .mat’);
save(datei, ’gm’, M) ;

end
Listing B.10: ctensor.m
function [c0,cl] = ctensor(l,m,n)
lmn = sort ([l m nJ);
1 = lmn(1);
m = lmn(2);
n = lmn(3);

clear Imn;
basisl = basis(1);
if m=—1

basis2 = basisl;
else

basis2 = basis(m);
end
switch n

case 1

basis3 = basisl;
case m

basis3 = basis2;
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otherwise
basis3 = basis(n);
end
diml = size (basisl ,3);
dim2 = size(basis2 ,3);
dim3 = size (basis3 ,3);
c0 = zeros(diml,dim2,dim3);
¢l = zeros(diml,dim2,dim3);
for i = 1:diml
for j = 1:dim?2
for k = 1:dim3
sprintf("%d %d d i, k)

bl = basisl (:, ),
b2 = babISQ( 23 )
b3 = basis3 ( k)
for r = 0.1—

for s = 0om—1

for t = 0:n—1

pl = circshift (bl,r);
p2 = circshift (b2,s);
p3 = circshift (b3,t);
c0(i,j,k) =c0(i,j,k) + cOkomp(pl,p2,p3,],m,n);
cl(i,j,k) = cl(i,j,k) + clkomp(pl,p2,p3,]l ,mn);
end
end
end
end
end
end
end
function ¢ = cOkomp(pl,p2,p3,1 ,m,n)
r=(l +m-mn) / 2
s=(m+mn-1) / 2;
t = (1l +n-m)/ 2;
¢ = (r>0)xprod(diag(pl(1l:r,:)*flipud(p2(s+1m,:))’))
* (s>0)xprod(diag(p2(1l:s,:)«flipud (p3(t+1l:in,:))’))
x (t>0)xprod(diag(p3(1:t,:)«flipud (pl(r+1:1,:))’));
end

function ¢ = clkomp(pl,p2,p3,1 ,mn)
if 1 = 2
if m=— 2
if n = 2
c = 2x((pl(1,:)*pl(2,:) ) *prod(diag(p2«flipud(p3)’))

125
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+ (p2(1,:)*p2(2,:) ") *prod(diag(pl*flipud (p3) ’))
+ (p3(1,:)*p3(2,:) ) *prod(diag(p2«flipud(pl)’)));

c = 2x(pl(1,:)*pl(2,:) )*prod(diag(p2*flipud (p3)’))
+ prod(diag(p2(1:m—2,:)«flipud (p3(3:n,:)) "))
* (4x(pl(1,:)*p2(m,:) ") * (pl(2,:)*p3(1,:)")

* (p2(m—1,:)*p3 (2 ) )
-2 = (pl(1, )*p2(HP-1 0)7) = (pL(2,:)*p3(1,:) ")
* (p2(m,:) *p3(2,:) "
= 2 % (p1(1,:)*p2(m,:) ") * (p1(2,:)*p3(2,:)")
*x (p2(m— 1,:)*p3(1,:)’)
+ (p2(m—1,:)*p2(m,:) ’) * (pl(2,:)*p3(1,:)"’)
* (pl(1,:)=*p3(2,:) ")
+ (p1(1,:)*p2(m,:) ") = (p3(2,:)*p3(1,:)")
# (p2(m—1,:)xpl(2,:)") )
+ prod(diag(p2(2:m—1,:)*flipud (p3(2:n—-1,:)) "))
* (4x(pl(1,:)*p2(m,:) ") = (pl1(2,:)*p3(1,:)")
* (p2(1,:)*p3(n,:) ")
— 2 % (pl(1,:)*p2(1,:)’) * (pl(2,:)*p3(1,:)")
* (p2(m,:)*p3(n,:) ")
— 2 % (pl(1,:)*p2(m,:) ") * (pl(2,:)*p3(n,:) ")
x (p2(1,:)*p3(1,:)")
+ (p2(1,:)*p2(m,:) 7) = (p1(2,:)*p3(L,:)")
* (p1(1,:)*p3(n,:) )
+ (pL(1,:)*p2(m,:) ") = (p3(n,:)*p3(Ll,:)")
* (p2(1,:)*pl(2,:)7) )s
end
else
r= (1 +m-mn) / 2
s=(m+mn-1) / 2,
t = (1l +n-—m) / 2
finnen = prod(diag(pl(l r—1,:)«flipud (p2(s+2:m,:)) "))
*x prod(diag(p2(1: sfl7 )*flipud (p3(t+2mn,:))’))
x prod(diag(p3(1l:t—1,:)*flipud (pl(r+2:1,:))"’));
faussen = prod(diag(pl(2: ,:)*flipud(p?(s—i—lm 1,:)) 7))
x prod(diag(p2(2:s,:)*flipud (p3(t+1:n—1,:)) 7))
x prod(diag(p3(2:t,:)*flipud (pl(r+1:1-1,:))"));

c = 0;

if finnen

¢ = finnen x dreigons(pl(r,:) ,pl(r+1,:),p2(s,:),
p2(s+1,:),p3(t,:),p3(t+1,:));

end
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if faussen
¢ = ¢ + faussen x dreigons(pl(1,:),pl(l,:),p2(1,:)

end
end
end

d = dreigons(ul,u2,vl,v2,wl,w2)
d =6 % (ul*xv2’) x (vlxw2’) x (wlxu2’)

(

(

2 % (u2xv2’) x (vlxw2’) x (wlxul’)
— 2 % (ulxvl’) % (v2xw2’) % (wlxu2’)
— 2 % (ul*v2’) * (vlswl’) % (w2xu2’)
+ (ulxu2’) * (vlxw2’) * (wlxv2’)
+ (ulxw2’) * (vlxv2’) * (wlxu2’)
+ (ul*xv2’) *x (vlxu2’) = (wlsxw2’);
end

Listing B.11: writec.m

function writec(1,m,n)
[cO,cl] = ctensor(l,m,n);
datei = strcat(’data/nondiage’ ,int2str(l) ,int2str (m),
int2str(n),’ .mat’);
save(datei,’c0’,7¢cl’);
end

Listing B.12: diagc.m

function d = diagc(1,m,n)
limit = 1.e—12;
if [l mn] = [3 3 4]

load data/nondiagc334.mat
fid=fopen(’data/c334.txt’,'w’);
load data/mmgm3.mat

M1 = M;
M2 = M;
clear M;
load data/mmgm4.mat
M3 = M;
end
% [...] %
clear M;
clear gm;
jo = 1

kO = 1;
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for i=1:length (M1)
if length(M2) — length (MI)
Jj0 = iy
end
for j=j0:length (M2)
if length(M3) — length (M2)
kO = j;
end
for k=k0:length (M3)
sprintf ("%d %d _%d’ ,i,j,k)
dcO0 = 0;
dcl = 0;
for r=1:length (M1)
for s=1:length (M2)
for t=1:length (M3)
ms = MI(i,r)«M2(j,s)*«M3(k,t);
deO0 = dcO + ms*xcO(r,s,t);
del = del + ms*cl(r,s,t);
end
end
end
if abs(dc0) > limit || abs(dcl) > limit
quot = NaN;
if decO0 "= 0
quot = dcl/dcO;
end

B Program Code Listings

fprintf(fid , "% %d _%d: _c0=_%10.5f_; _cl=_%10.5f _=_%10.5f

~c0\n’,i,j,k,dc0,dcl,quot);
end
end
end
end
end
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