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Vertices are of central importance for constructing QCD bound states out of the individual constituents

of the theory, i.e. quarks and gluons. In particular, the determination of three-point vertices is crucial in

nonperturbative investigations of QCD. We use numerical simulations of lattice gauge theory to obtain

results for the 3-point vertices in Landau-gauge SU(2) Yang-Mills theory in three and four space-time

dimensions for various kinematic configurations. In all cases considered, the ghost-gluon vertex is found

to be essentially tree-level-like, while the three-gluon vertex is suppressed at intermediate momenta. For

the smallest physical momenta, reachable only in three dimensions, we find that some of the three-gluon-

vertex tensor structures change sign.
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I. INTRODUCTION

Vertices describe the basic interactions between the

elementary degrees of freedom of QCD and are thus of

central importance for the understanding of nontrivial

phenomena in the physics of strong interactions. The prop-

erties of vertices, in particular, in the momentum regime of

the average constituent momentum, are crucial for the

formation of bound states. Furthermore, the far-infrared

behavior of vertices should be connected to the confining

properties of the theory, since confinement necessarily

originates in the interaction of the fields. Quite clearly, a

determination of these vertices is an important step in any

understanding of the nonperturbative regime of QCD.

Finally, in QCD the vertices are also important for the

breaking of chiral symmetry, and thus are a central ingre-

dient in the understanding of hadron physics.

In general, the vertices are gauge-dependent quantities.

This means that one must understand how gauge-invariant

objects, such as hadrons, are constructed from gauge-

variant objects, i.e. quarks and gluons. This question has

been widely studied by analytical methods, using, in par-

ticular, Dyson-Schwinger equations [1–3]. Most of these

studies were carried out either in Landau or in Coulomb

gauge and specific models were used for the vertices. Here

we consider the (minimal) Landau gauge in order to add

results for these vertices from lattice gauge theory. We

concentrate only on the vertices in SU(2) Yang-Mills the-

ory. A thorough study of the SU(3) case, as well as of the

quark-gluon vertex [4–6], is the next logical step. Let us

stress, however, that recent lattice studies (in the quenched

case) [7] have provided support to the analytic prediction

[1] of identical infrared behavior for Landau-gauge gluon

and ghost propagators in SU(2) and SU(3) gauge theory in

any dimension.

We note that predictions for the infrared behavior of all

Green’s functions in Landau gauge have been made in four

[4,8–12] and also in lower dimensions [13]. These predic-

tions are claimed to be unique under certain assumptions

[14]. Furthermore, they yield an infrared enhanced ghost

propagator which is accompanied by an infrared finite or

vanishing gluon propagator. In particular, an infrared tree-

level-like ghost-gluon vertex leads to an infrared vanishing

gluon propagator [8].

The analytic results have been extensively tested in

lattice gauge theory studies [15–20] and were confirmed

in two dimensions [21]. In higher dimensions a major

obstacle are finite-volume effects [15,19,21–24]. Never-

theless, it has been recently shown [25] that one can control

the infinite-volume extrapolation of the data for the gluon

propagator DðpÞ by considering rigorous lower and upper

bounds, expressed in terms of the momentum-space gluon

field. As a result, it was found that the Landau-gauge gluon

propagator at zero momentumDð0Þ is finite and nonzero in
3D and in 4D, while Dð0Þ ¼ 0 in 2D, in agreement with

Ref. [21]. At the same time, the infrared enhancement of

the ghost propagator seems to disappear when large lattice

volumes are considered [16,24]. However, in Refs. [26] it

has been claimed that the analysis of Gribov-Singer-copies

effects [27] may modify these results, even though these

effects seem to diminish, albeit slowly, with increasing

volume. In any case, a better understanding might be

obtained by considering upper and lower bounds also for

the ghost propagator [28].

Let us remark that in Ref. [29] it was shown that one can

also obtain a finite Dð0Þ gluon propagator and a tree-level-
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like ghost propagator at small momenta using the Gribov-

Zwanziger approach. Similar results, using numerical so-

lutions of the Dyson-Schwinger equations, have been

claimed in [30].1

Here we consider the simplest vertices, i.e. the three-

point vertices. Two of these exist in Landau gauge: the

ghost-gluon vertex and the three-gluon vertex. We present

results in four dimensions in Sec. II. As we will show, we

find an essentially tree-level-like ghost-gluon vertex and a

three-gluon vertex that is suppressed at intermediate and

small momenta. We note, however, that in four dimensions

most of our lattice volumes are rather small and the statistic

for the largest volume is low, i.e. for the three-gluon vertex

we cannot really probe the asymptotic infrared limit.

Therefore, we also present results in three dimensions, in

Sec. III. In this case we find a qualitative change for the

three-gluon vertex. More precisely, this vertex shows a sign

change and an enhancement (in absolute value) in the far-

infrared regime.

Technical details of the lattice calculations are given in

Appendix A. In particular, the lattice parameters employed

are reported in Table I. For the sake of completeness, the

data for the propagators are presented in Appendix B.

This work extends previous studies in three and in four

dimensions [17,18,32,33] including additional kinematic

configurations and larger lattice volumes. Preliminary re-

sults have been reported in [34].

II. VERTICES IN FOUR DIMENSIONS

In lattice calculations, one can easily evaluate the full

Green’s functions, while the vertex functions cannot be

computed directly. Let us recall that the ghost-gluon vertex

has only one (color-antisymmetric) tensor structure in its

full Green’s function. On the contrary, the three-gluon

vertex has a much richer structure. It is possible to deter-

mine the contribution of each tensor structure by consid-

ering the appropriate projection of the full Green’s

function. Here only one such tensor structure will be

investigated, the one given by the projection2

G ¼
�tl
abcDadDbeDcf�def

�tl
abcDadDbeDcf�

tl
def

; (1)

where � denotes the vertices, D are (gluon or ghost)

propagators and the indices are multi-indices encompass-

ing field-type, Lorentz and color indices. The superscript tl

indicates tree-level quantities. Note that this quantity is

dimensionless.

Clearly, for the ghost-gluon vertex the above tensor

structure (1) reduces to the single tensor structure charac-

terizing its full Green’s function. On the contrary, in the

case of the three-gluon vertex, it is a linear combination of

the transverse vertex tensor structures in the conventional

separation scheme discussed in Ref. [35]. Note that the

normalization in (1) is chosen so as to absorb trivial kine-

matic factors, yielding G equal to 1 if the full and the tree-

level vertices coincide. A more detailed discussion of the

quantity (1) can be found in [18].

One should also recall that three-point vertices depend

on two independent external momenta. Using translational

and rotational invariance, this dependence can be reduced

to three kinematic quantities. These will be chosen as the

magnitude of two of the external momenta and the angle

between them. In the case of the three-gluon vertex, due to

bosonic symmetry, it is irrelevant which of the momenta of

the three external lines are chosen as independent. For the

ghost-gluon vertex, we consider the gluon and the ghost

momenta. Note that, since Landau gauge is ghost-anti-

ghost symmetric [1], the ghost and antighost momenta

can be exchanged without modifying the result.

Of course, in lattice calculations, the kinematic variables

have to be compatible with the (hyper-cubic) symmetry of

the lattice. As discussed in Ref. [18], we consider two

specific kinematic configurations, denoted, respectively,

as orthogonal and equal. In the first case the two external

momenta are chosen orthogonal to each other, i.e. the angle

in between is equal to 90 degrees. In the equal case the two

momenta have equal magnitude and the angle is 60 de-

grees. The first case allows one to reach the smallest

possible nonzero momentum on a given lattice. The second

case reduces the problem to a one-scale problem, which is

attractive in studies using functional methods in the far-

infrared [4,10,13,14]. Indeed, in that case it is predicted

that all n-point vertices behave as power laws in this single
external scale [4,10,14]. In addition, if the exponent of the

power law of one of the vertices is known, the others are all

fixed [14].

The remaining technical details for the determination of

vertices can be found in [18] and in Appendix A. A list of

the studied systems is given in Table I in Appendix A.

Our results for the ghost-gluon vertex Gc �cA are shown in

Fig. 1. For all momentum configurations, the vertex is

essentially flat, except for a shallow maximum at about

1 GeV. Therefore, the ghost-gluon vertex is essentially

unmodified compared to its tree-level version. In particu-

lar, this is the case both for the vertex measured in the equal

(symmetric) or in the orthogonal momentum configuration.

This result is in agreement with previous studies in 4D [17]

and with data obtained in lower dimensional systems (see

Sec. III and Refs. [18,21]). Furthermore, it is in agreement

with results from Dyson-Schwinger equation calculations

[36]. As noted above, this result can also be used as an

input to solve the complete tower of functional equations

for the Yang-Mills Green’s functions.

The results for the three-gluon vertex GA3

are shown in

Fig. 2. As has been previously observed [34], the vertex is

1However, see the remarks in [3] on these solutions.
2The collinear singularities discussed in [11] are not affecting

the tensor structure considered here. We are grateful to Markus
Huber and Kai Schwenzer for providing this information.
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suppressed at midmomentum compared to a bare one,

independently of the momentum configuration considered.

However, even on the largest lattice it is not clear whether

(or not) the vertex becomes negative at small momenta, or

shows a divergence towards zero momentum. Indication of

such a divergence was found in lower dimensions [18,21].

Note that, as in lower dimensions [18], there is also a clear

increase in the statistical noise for large lattice momenta. A

possible solution to this problem, in order to obtain a good

signal-to-noise ratio also at large physical momenta, would

be of course to simulate at larger values of �.

Unfortunately, the three-gluon vertex is in general very

noisy, and thus the results for the expensive case of the

484 lattice are affected by very strong statistical fluctua-

tions. Nonetheless, the data points with acceptable errors

confirm the trend seen on the smaller lattices.

As said above, it is difficult to compare the result for the

three-gluon vertex GA3

with results obtained using func-

tional methods, since one needs a sufficiently large statistic

for large lattice volumes, in order to probe the true infrared

limit. However, the midmomentum suppression observed

may already be relevant for phenomenological applications

FIG. 1. The ghost-gluon vertex in four dimensions. The bottom-left panel shows the so-called equal configuration. The bottom-right

panel shows the orthogonal configuration. The top panels give cuts through the orthogonal plane. The top-left panel shows the case of

ghost and gluon momentum with equal magnitude. The top-right panel shows the case with a vanishing gluon momentum. Full

triangles are from a 164 lattice at � ¼ 2:5, open diamonds from a 224 lattice at � ¼ 2:5, full circles from a 164 lattice at � ¼ 2:2,
open circles from a 224 lattice at � ¼ 2:2 and open squares from a 484 lattice at � ¼ 2:2. The bottom-right panel shows the data only

for the 224 lattice at � ¼ 2:2. All data are in physical units.
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and for the determination of the quark-gluon vertex using

functional methods [5]. This suppression is also certainly

useful in understanding the discrepancies obtained for the

propagators when comparing results from functional meth-

ods to lattice studies [1,3].

III. VERTICES IN THREE DIMENSIONS

For the numerical determination of the vertices in three

dimensions we follow the same procedure used in the four-

dimensional case. In particular, we consider again the

contraction defined in Eq. (1) above.

The results for the ghost-gluon vertex, shown in Fig. 3,

are found to be qualitatively similar to those obtained in 4D

(see Sec. II above and Ref. [17]). They are also in agree-

ment with the results in 2D [21] and with results obtained

in 3D for smaller physical volumes [18]. In particular, the

vertex is essentially flat and constant in the infrared limit—

except for a small maximum at midmomenta. As in four

dimensions, this result coincides with predictions obtained

using functional methods [36]. Note that the maximum of

the vertex occurs in the range [0.5, 1] GeV, i.e. at slightly

larger momenta than the maximum in the gluon propagator

[19], and that the position of this maximum agrees very

well with analytic predictions [36].

The results for the three-gluon vertex are shown in

Fig. 4. Again, the vertex is in qualitative agreement with

results obtained in higher [34] and in lower dimensions

[21]. In particular, it becomes negative at essentially the

FIG. 2. Same as in Fig. 1 but the data now refer to the three-gluon vertex in four dimensions. Note that, due to the relatively low

statistics in the 484 case, plot points with an absolute error large than 1.5 have been dropped for this system.

ATTILIO CUCCHIERI, AXEL MAAS, AND TEREZA MENDES PHYSICAL REVIEW D 77, 094510 (2008)

094510-4



same momentum where the maximum for the gluon propa-

gator occurs. At even smaller momenta, the quantity GA3

becomes rapidly large and negative, suggesting a diver-

gence, as in two dimensions [21]. As a consequence, at

least one of the two tensor structures contributing to GA3

should be infrared divergent (with a negative prefactor). Of

course, if they both diverge, then (at least) the term with the

stronger divergence should have a negative prefactor. Let

us recall that, in the case of one vanishing gluon momen-

tum, only one of the two tensor components (the one

proportional to the tree-level component) contributes to

the three-gluon vertex [33]. Thus, in this case, the vertex

self-energy should be negative and larger than the tree-

level result. Finally, let us note that a divergence for the

three-gluon vertex is predicted by functional methods

[10,13,37], although the sign of the prefactor is either not

accessible [10,13] or it is positive [37]. Since the sign of

this prefactor depends on the interplay between various

contributions, this discrepancy will probably not be easily

resolved.

FIG. 3. The ghost-gluon vertex in three dimensions. The bottom-left panel shows the so-called equal configuration. The bottom-right

panel shows the orthogonal configuration. The top panels give cuts through the orthogonal plane. The top-left panel shows the case of

ghost and gluon momentum with equal magnitude. The top-right panel shows the case with a vanishing gluon momentum. Full

triangles are from a 403 lattice at � ¼ 6:0, open diamonds from a 603 lattice at � ¼ 6:0, full circles from a 403 lattice at � ¼ 4:2
and open circles from a 603 lattice at � ¼ 4:2. The bottom-right panel shows the data only for the 603 lattice at � ¼ 4:2. All data are
in physical units.
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IV. SUMMARY

As shown above, we find that the ghost-gluon vertex is

essentially constant for all momenta in three and four

dimensions. At the same time, the three-gluon vertex is

found to be suppressed at midmomentum as well as at the

smallest momentum reachable in four dimensions. In three

dimensions, a clear zero-crossing with a likely infrared

divergence is observed.

Combining these results with previous data in four [17],

three [18] and in two dimensions [21], it is suggestive that,

for any number of dimensions d and for the momentum

configurations considered, the ghost-gluon vertex is infra-

red constant and nonzero, while the three-gluon vertex is

(negative) infrared divergent. These results are in good

agreement with predictions and assumptions in functional

calculations [10,13,36,37].

Let us also note that, in the case of the three-

gluon vertex, the midmomentum behavior is quite differ-

ent from the tree-level one. The consequences of this

result for the quark-gluon vertex, as well as the relevance

for bound-state calculations, are interesting open ques-

tions. Finally, it should be remarked that inspecting

the various terms in the Dyson-Schwinger equation of

the gluon propagator makes it clear that genuine

two-loop contributions, usually neglected in such cal-

culations, will likely be important at intermediate mo-

menta.

FIG. 4. Same as in Fig. 3 but the data now refer to the three-gluon vertex in three dimensions.
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APPENDIX A: TECHNICALITIES

The lattice simulations have been performed essentially

in the same way as in our previous investigations on

smaller lattices [18]. In particular, a standardWilson action

has been used. The parameters of the individual runs can be

found in Table I. Gribov-Singer copy effects [27] have not

been taken into account. Finally, the calculation of the

vertices and the error determination has also been per-

formed as in Ref. [18]. In particular, note that all errors

represent a 68% confidence level.

APPENDIX B: PROPAGATORS

Since the gluon and ghost propagators are necessary in

the process of amputating the Green’s functions in order to

obtain the vertices, we report here (for completeness) our

data for the scalar part of the gluon propagator D and for

the ghost propagator DG. These data are obtained as de-

scribed in Ref. [18]. Results are shown in Fig. 5 for four

dimensions and in Fig. 6 for three dimensions.

As obtained in previous studies for similar lattice vol-

umes, both in 3D and in 4D one finds an infrared diverging

ghost propagator. At the same time, when considering the

lattice volume 484 at � ¼ 2:2, the gluon propagator seems

to display a plateau or to get slightly suppressed at small

momenta. On the other hand, there is a distinct maximum

in three dimensions for all but the smallest volume. Let us

recall that in the context of the Gribov-Zwanziger scenario

[27,38,39] studies by Dyson-Schwinger equations predict

that all Green’s functions behave in the far infrared like

power laws [10,14]—at least in the case when all momenta

have the same magnitude. These power laws have charac-

teristic infrared exponents in the continuum. Because of

finite-volume effects, one expects that the effective infra-

red exponents obtained from lattice simulations [15,23]

should converge to the continuum results when the

infinite-volume limit is taken. This is indeed the case in

two dimensions [21]. On the other hand, as said in the

Introduction, recent results in 3D and in 4D using very

large lattices [16,24,25,28] show evidence that the gluon

propagator is finite (and nonzero) at zero momentum and

that the ghost propagator has an infrared exponent very

close to zero.

TABLE I. Number of configurations considered in our numerical simulations. The value of the

lattice spacing a has been taken from Ref. [19] in three dimensions and from Ref. [31] in four

dimensions. Sweeps indicates the number of sweeps between two consecutive gauge-fixed

measurements. More details on the generation of the configurations, error-determination, etc.

can be found in Ref. [18].

d Vertex N � a�1 [GeV] Configurations Sweeps L ¼ V1=d [fm]

3 Ghost-gluon 40 6.0 1.733 1267 50 4.5

3 Ghost-gluon 60 6.0 1.733 460 70 6.8

3 Ghost-gluon 40 4.2 1.136 1077 50 6.9

3 Ghost-gluon 60 4.2 1.136 367 70 10

3 Three-gluon 40 6.0 1.733 9709 50 4.5

3 Three-gluon 60 6.0 1.733 5017 70 6.8

3 Three-gluon 40 4.2 1.136 11095 50 6.9

3 Three-gluon 60 4.2 1.136 8114 70 10

4 Ghost-gluon 16 2.5 2.309 1336 30 1.4

4 Ghost-gluon 22 2.5 2.309 1248 50 1.9

4 Ghost-gluon 16 2.2 0.938 1351 30 3.4

4 Ghost-gluon 22 2.2 0.938 1043 50 4.7

4 Ghost-gluon 48 2.2 0.938 100 100 10.1

4 Three-gluon 16 2.5 2.309 11446 30 1.4

4 Three-gluon 22 2.5 2.309 6291 50 1.9

4 Three-gluon 16 2.2 0.938 8600 30 3.4

4 Three-gluon 22 2.2 0.938 5365 50 4.7

4 Three-gluon 48 2.2 0.938 3396 100 10.1
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