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We present a brief introduction to three reliability engineering techniques: failure

mode, effects, and criticality analysis; reliability block diagrams; and fault tree analysis.

We demonstrate the use of one of these techniques, reliability block diagrams, in

evaluating the availability of information technology (IT) systems through a case study

involving an IT system supported by a three-tier Web-server configuration.

INTRODUCTION

The overall complexity of information technology

(IT) systems has grown dramatically in recent years.

With the increasing dependency in our society on IT

systems, customer requirements for service resil-

ience and high availability are becoming more

stringent. Because of external threats and because of

the risks caused by increased complexity and quality

problems, the design of IT systems for high

availability remains a challenge.

We have identified three phases in the evolution of

high-availability systems, during which the focus

shifted from component-level availability to busi-

ness-process availability. In the first phase of this

evolution, designing for high availability meant

focusing on individual components and the hard-

ware infrastructure (see, for example, Reference 1).

In the next phase, as the IT industry evolved, the

focus shifted to delivering high-availability services

from the end-user perspective. This trend demanded

that attention be paid not only to the component and

infrastructure level but also to applications, data,

and middleware.

Now, in the third phase of this evolution, the focus

is shifting to the availability of complete business

processes, which may be made up of various IT

processes and services. The genesis and constituent

technologies of these processes vary widely, yet the
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outcome for the user and the business depends on
the entire business process.

The use of formal analysis techniques is more
prevalent in industries that have produced mission-
critical systems, such as defense and aerospace.
Such techniques can also be put to good use in the
IT industry by promoting a more rigorous approach
to the design of high-availability systems.

2–4
Al-

though many sophisticated techniques are available
to analyze and model the dynamic behavior of
systems,

2,3
adoption rates of these has, in our

experience, been low. Key inhibitors are complexity,
lack of skills, and the cost of adoption.

Three reliability engineering techniques that are
sufficiently simple yet effective in the design of high-
availability systems are: failure mode, effects, and
criticality analysis (FMECA); reliability block dia-
gram (RBD); and fault tree analysis (FTA).

6–10
In

this paper, we provide a brief description of these
techniques and present a case study that involves
the application of RBD for evaluating the availability
of an IT system.

The rest of this paper is organized as follows. In the
next section, we present an overview of the practice
of high-availability design and describe the main
steps involved in the process. In the following
section, we describe each of the three reliability
engineering techniques and list their benefits and
limitations. In the section after that, we illustrate the
use of these techniques by applying RBD to the
design of a high-availability IT system based on a
three-tier server configuration. The last section
contains our final comments.

THE PRACTICE OF HIGH-AVAILABILITY DESIGN
In this section, we summarize the current practice of
high-availability design by describing its main
activities: gather availability requirements, deter-
mine the cost of outages, design the key components
for high availability, make use of availability
patterns, and validate the test strategy.

We use in this paper a number of terms such as
availability, reliability, and resilience. Availability is
the ability of a system to perform its required
function at a random point in time. It is usually
expressed as the availability ratio: [(agreed service
time ! unavailable time)/(agreed service time)]3
100%. We say a system has high availability if it

provides service during defined periods, at accept-

able or agreed upon levels, and masks unplanned

outages from end users.

Reliability is the ability of a component to perform

its intended function for a specified interval and

under stated conditions. It is usually expressed as a

probability. Simply stated, it shows the time interval

over which the component is expected to work.

Resilience is the ability of a system to recover from

failure and continue to function.

Gather the availability requirements
To determine the availability requirements of a

system, one must identify the main users of the

system and then determine what these users expect

from the system. Examples of availability require-

ments include:

" The days and hours a service is to be available;
" Special periods of a day when core business

services must be available;
" Special considerations at weekends, month ends,

vacations, etc.;
" How quickly the system must be restored and the

limits on the amount of data lost in the event of

failure; and
" Any degraded levels of service that might be

acceptable.

Once this information is available, a decision must

be made with regard to the availability strategy that

is adopted for the solution. Availability require-

ments are too often expressed as 99.9-percent

service availability during office hours, e.g., 5 a.m.

to 10 p.m., or no more than 3 hours downtime per

month averaged over 1 year. What these figures do

not tell us is whether the system should be designed

to cope with a few lengthy outages or a larger

number of short outages. The availability design

decisions can be quite different for these two cases.

A time line should be created that captures the key

business processes and the critical periods when

different processes must run. If the availability

requirements identify many types of users (i.e.,

hundreds of types of users), the number may be too

high to handle, as each type may have different

availability requirements. This number can be

reduced by grouping them into a more reasonable

value, say, 20 user roles.
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Costs associated with service outage
Cost plays an important role in determining how

much redundancy can be incorporated into a system

in order to enhance its availability. Thus, it might

not be possible to achieve the desired availability

because of cost constraints. An understanding of the

real value of service availability will help designers

to better select where to invest the greatest effort to

provide this availability.

It is important to look at each of the services

provided to the users and to assess what costs, such

as financial costs, might be associated with an

outage to that service. System designers need to

consider items such as: lost revenue from existing

business, lost opportunity for new business, loss of

operational productivity, financial penalties, and

loss of brand image, customer confidence, or

loyalty. In addition, there are special situations,

such as a major sporting event, when the service

must be available ‘‘at all costs.’’

The cost of a service outage may vary with the time

of the day or day of the week. For instance, ATM

(automated teller machine) cash services at 1 p.m.

on a Friday are more critical than the same services

at 2 a.m. on a Sunday.

The evaluation of costs associated with service

outage should include answers to the following

questions: Which services incur cost penalties if

they are not available? Are any of the services time-

sensitive? What is the monetary value of any

outages? Does the design need to be changed to meet

the cost implications of service outages or should

these cost implications be reviewed and perhaps

changed? These findings should be checked with the

sponsor to determine whether they are correct and

to agree on any possible changes required.

High-availability design of key components
This task starts with a study of the overall design of

the system whose purpose is to determine the

granularity of key components for which a high-

availability design is required. The level of granu-

larity selected determines the amount of effort

required and the accuracy of the high-availability

design outcome. It is important that availability data

for the chosen components be available and that the

design makes these components as independent

from each other as possible.

Invariably each component can be broken down

into subcomponents. A computer center can be

decomposed into servers, cables, workstations, etc.

It may be necessary to decompose the servers into

types and then into the components that make up

each type. Even a workstation can be decomposed

into screen, disk, power supply, etc. In most cases,

however, it will not be necessary to decompose the

system to that level of detail.

A number of key decisions are made at this stage.

The key components of the system are identified and

their availability characteristics, such as mean time

between failure (MTBF) and mean time to recover

(MTTR), are specified.
11,12

In addition, the critical

components required to support the core business

services are identified.

It is important to also identify out-of-line situations

such as: ‘‘the mean time to replace, repair, or restart

a failed component is two hours and the service

downtime is limited to one hour,’’ or ‘‘a component

is likely to fail once per week but the service must

not fail more than once per month.’’

For the components created specifically to provide

high availability, the following questions need to be

answered: Are these components required to main-

tain state and should they be able to recover to a

point in time prior to the failure? What levels of

component recovery are required (e.g., should the

recovery include all data processed)? What are the

recovery points, that is, where will the recovery

information be coming from? What special mecha-

nisms will be required in order to control the

recovery of the component?

Make use of availability patterns
Reusable patterns provide us with a structured

approach to capturing recognized, repeatable best

practices. Although availability patterns are not

currently used on a wide scale, we believe they will

play an important role in the future practice of

availability design.

There is clear evidence of the value of reusable

patterns and their use throughout the industry.

Patterns have focused primarily on the design and

programming phases of application development,

dealing with the structure and behavior of the code

that supports the application.
13
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Availability patterns are component-level patterns,

which identify and describe the overall structure and

interactions that occur between components of a

system. They enable the reuse of existing solutions

when designing a system with specified availability

properties. We illustrate the use of availability

patterns with an example. The store-and-forward

pattern, which is similar to existing patterns,
14

is

used here to demonstrate the concept.

We consider a system in which messages from a

primary (possibly external) source are processed in

a number of steps. If one of the processing

component fails, then messages that were ‘‘in flight’’

when the failure occurred may be lost and have to

be resent by the primary source. In order to speed up

the time needed to restore the service (and therefore

improve availability), rather than retrieve the lost

message from the primary source, we routinely store

the message at intermediate locations on the

message path and, in case of failure, retrieve the

message from the last storage location on the

message path.

To apply this pattern the designer determines the

required message storage locations and ensures that

messages are committed to persistent storage at

each of these locations. Figure 1 shows an applica-

tion of the store-and-forward pattern in a system

consisting of components A through E. Components

A, C, and D are provided with databases for storing
messages. Each one of these has the following
responsibilities: 1) receive message; 2) store mes-
sage (logging); and 3) forward message.

If component E fails, the recovery process retrieves
the last message from C. Thus, upon the successful
restart of E, messages lost in transit between C and E
are retrieved from C. Messages flowing in the
reverse direction are stored at D before being passed
on to B.

Other uses of patterns are the identifications of anti-
patterns and the analysis of failure patterns.

15

Validate the test strategy for availability
A test strategy and plan are needed to ensure that
the desired availability characteristics are achieved.
For example, failure injection tests can be added to
the test plans to confirm that recovery performs as
designed.

16,17
This is primarily a risk reduction

exercise because many nontrivial high-availability
systems cannot be fully tested for their availability
and reliability characteristics.

Sometimes it is not possible to test an entire system
with a complete end-to-end message flow. Increas-
ingly, with e-commerce systems, the constituent
parts of the system may have different owners,
which can make testing the system in its entirety
difficult. Nevertheless, it is important that all critical
interfaces, especially external interfaces, are thor-
oughly tested.

Availability and resilience testing often involves the
selective ‘‘destruction’’ of a working system, such as
disabling servers, corrupting data, and so on. It is
therefore unwise to assume that availability testing
can be done using the same testing environments
that are being used for functional or performance
testing.

Testing operational recovery not only includes
testing the systems recovering the service but the
ability of the operational staff to follow the
procedures to manage the service. Operational
proving is an important step to ensure that
procedures for service recovery are tested alongside
the recovery of the system.

Some of the key decisions during the test stage
amount to providing answers to the following

Component E

C D

Component A

Component B

Primary source

Database Database

Database

Figure 1
An application of the store-and-forward pattern
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questions: Which current test practices need to be
updated? How many of the nodes and components
and their subsystems should undergo availability
testing? Can the system, as designed, be tested in a
way that ensures, with a specified level of confi-
dence, that it will provide the expected availability
of service to end users? Is the operational support
adequate, or are design changes required to make it
easier to manage the system?

Tools
The development and maintenance of highly avail-
able IT systems also require specialized tools, which
use sophisticated mathematical algorithms to cal-
culate failure rates and other reliability and avail-
ability measures. A number of commercial tools are
available today, such as the ones from Relex
Software Corporation, Isograph Ltd., and ITEM
Software.

18–20

Because models of complex systems can become
quite complex, reliability engineering tools should
be used for all but the most trivial of models. Key
benefits provided by such tools are: user-friendly
data entry; dependency management and data
consistency checking; calculation of availability
predictions; ability to run stochastic simulations to
predict system reliability characteristics; and a
consistent format for storing models, to enable and
encourage reuse. The cost of these tools may seem
high, but it is not difficult to make a business case
for their procurement given their labor-saving
ability.

RELIABILITY ENGINEERING TECHNIQUES
Reliability engineering techniques (such as the three
that we consider here) enjoy widespread use in
industries such as aerospace and defense, where
reliability and availability are critical. These tech-
niques are currently being used in computer
hardware design but have, unfortunately, not been
widely adopted in the development of entire IT
systems even though such systems are becoming
more complex and more critical for the business.

Although more advanced techniques for evaluating
availability have been developed,

3,4
adoption of

such techniques in IT organizations has, in our
experience, been limited. We believe that the three
techniques discussed here, which have been shown
to be mathematically related,

21
provide a reasonably

low barrier to use by IT staff, although we recognize

that they do rely on a number of simplifying

assumptions that may not always hold true for every

system.

One of the key benefits resulting from the applica-

tion of the techniques is that they force the analyst

to follow a systematic procedure of analysis of the

system. In most cases, the mere construction of the

model leads to a better understanding of the system

design, including aspects such as component inter-

dependencies and reliability weaknesses.

Failure mode, effects, and criticality analysis
FMECA is a risk assessment technique for complex

systems that have stringent reliability, availability,

or safety requirements. The FMECA technique

allows the engineer to consider how the failure

modes of each system component can result in

system performance problems and to ensure that

appropriate safeguards against such problems are

put in place. It also provides an opportunity to

define the detection and recovery mechanisms that

should be in place when failures do occur.

The FMECA technique can be used for the design of

products (including software), processes, and ser-

vices. The principal objective is to anticipate the

most important design issues early in the develop-

ment life cycle so that one or both of the following

actions can be taken: a) modify the design to

eliminate or mitigate the problem; and b) minimize

the consequences by means such as early detection

and well-defined recovery mechanisms.

Table 1 shows a FMECA worksheet for the function

generate_payments. The worksheet shows that there

are two ways in which the function can fail: crash

and hang. For each of these failure modes, the

FMECA worksheet captures details about the type of

failure. For example, a crash can be detected by the

system monitoring software, whereas a hang is

more difficult to detect and needs a manual check.

FMECA provides a number of benefits. The use of

FMECA usually leads to better system design, which

results in fewer critical failures and more predictable

recovery from failures. It enables early identification

of diagnostic tools and operational procedure

requirements. It also enables earlier identification of

design weaknesses and thus fewer design changes in

later phases of the life cycle.
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FMECA provides input to the test strategy and test

case design, allowing early identification of negative

test scenarios. It also provides information that can

be used (via export from most FMECA tools) to

create draft fault trees that can be further analyzed

using fault-tree analysis (FTA). It can also be used as

a model against which to perform impact assess-

ment when changes to the system are considered.

The FMECA involves certain limitations. It provides

a static system analysis that does not consider the

impact of multiple component failures, latent defects

that impact timing and sequencing, or effects on

redundant components (in which case RBDs and

FTA can be used).

Reliability block diagram
RBDs provide a graphical means for representing

availability-related system dependencies. Whereas

this can be useful in itself, the real value of this

technique is realized when it is used to predict

overall system availability. A detailed case study

using RBD is presented in the section ‘‘Example of

Reliability Block Diagram Analysis.’’

RBDs can be used to predict the reliability of systems

in which the reliability characteristics of the

components that make up the system are known (or

can be estimated to a reasonable degree of accura-

cy). Given the limited quantitative failure informa-

tion available for software components, this

technique is currently mainly used for hardware

components.

RBDs provide a number of benefits. An RBD

provides an intuitive graphical representation of the

system from a reliability perspective. Because RBDs

Table 1 FMECA worksheet for function generate_payments

FMECA Sheet

Project Name: Payment project

System Identifier: Payment system

Version: 1.234

Date: 1 January

Item # Functions
performed
by item

Failure
modes

Root
cause
(optional)

Probability Operational
mode

Failure effects
(local, higher
level and end
effects)

Detection
method

Compensating
provisions

Severity

1928 Generate
payments

Crash Programming
error

Medium Real-time
input
window

End-effect:
None

Tivoli alert
generated
if process
not running

Automatic
restart

Low

Programming
error

Medium Batch
window

End-effect:
No payments
to process

Tivoli alert
generated
if process
not running

Automatic
restart

High

Hang Programming
error

Low Real-time
input
window

End-effect:
None

None None Low

Programming
error

Low Batch
window

End-effect:
No payments
to process

Regular
manual
check on
throughput

Stop and
restart
manually

Critical
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can be nested, the techniques can be viewed as

scalable from simple to highly complex systems.

The RBD technique can be used to identify
components that are critical from a reliability point

of view, and, in particular, it can be used to identify
single points of failure. It can also be used to assess

the impact that design changes will have on system

reliability.

The RBD technique has a number of limitations.
Reliability predictions are only as accurate as the

failure data available for the components that make
up the system. It should be noted that, even if

absolute values are not very accurate, an RBD

analysis can still be useful for comparing alternative
design options and for performing sensitivity anal-

ysis.

RBDs assume that items fail independently of each
other. This may not always be the case. If, for

example, an item overheats due to the conditions

that lead to its failure, then the overheating may
affect the redundant component intended to provide

the function of the failed component.

Fault-tree analysis
Fault-tree analysis (FTA) is a top-down, event-

oriented analysis technique that provides a struc-
tured approach to identifying the basic (lowest-

level) events that caused the system failure. FTA

uses a graphical tree structure to represent all the
events, including those caused by humans.

The event representing the failure of the entire

system, which is represented as the root of the tree,
is also called the top event; the lowest-level events,

which are shown as the leaves of the tree, are called

basic events. The nodes of the tree between the root
and the leaves involve logic symbols that combine

the events corresponding to the subtrees at each
node. Thus, Boolean algebra and probability theory

can be used to perform quantitative and qualitative

analysis of the fault trees.

Figure 2 shows a simple fault tree representing the
possible failures in the system supporting a Web

site. If any one of the events feeding an OR gate
takes place, then the event marked as the output of

the OR gate is triggered. For example, if either event

‘‘BT line down’’ or event ‘‘AT&T line down’’ takes

place, then event ‘‘WAN down’’ is triggered. The

INHIBIT gate is equivalent to an AND gate with an

additional condition added (on the side of the

INHIBIT icon). For example, the event ‘‘Application

code failure’’ will be triggered only if both events

‘‘Batch cleanup failed’’ and ‘‘No. users . 100k’’ take

place and, in addition, the side condition ‘‘Applica-

tion allocated less than 1 GB RAM’’ is also true.

FTA provides a number of benefits. The top-down

approach means that effort is focused on the most

critical events, which are those events closest to the

top of the tree (the failure of the entire system is the

ultimate critical event). Because the number of top

events that are analyzed and the depth to which the

analysis is carried out can be controlled, the

technique can be viewed as scalable with the size of

the system.

FTA can take all kinds of failures into account; this

differentiates it from FMECA and RBDs. It can be

used as a starting point for developing fault

diagnosis procedures and tools. It identifies com-

ponents and events that are critical from a reliability

point of view. FTA allows the evaluation of the

impact that design changes will have on the system.

It can be used for qualitative as well as quantitative

analysis.

FTA has a number of limitations. FTA supports a

single event as top event; to analyze other types of

failures, additional fault trees must be developed.

The level of detail, types of events included, and the

organization of the tree can vary significantly from

analyst to analyst. Because an FTA does not produce

a unique answer, the value of an FTA depends on

the skill and experience of the analyst. The accuracy

of FTA results depends on data that is often difficult

to obtain.

EXAMPLE OF RELIABILITY BLOCK DIAGRAM
ANALYSIS
In this section we illustrate the RBD technique by

using it to evaluate the availability of a Web-based

application supported by a three-tier server config-

uration.

System overview
The system we examine supports a Web-based

application and is built on the rather common three-

tier server configuration illustrated in Figure 3. We
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perform an availability analysis on the server

configuration using the RBD technique.

As can be seen from the RBD at the bottom of Figure

3, the eight servers are grouped in three tiers. The

first tier, which consists of nodes 1 and 2, involves

Hypertext Transfer Protocol (HTTP) servers, in the

role of load balancers. The second tier, which

consists of nodes 3 through 6, involves Web

application servers (WASs). The third tier involves

nodes 7 and 8 as database (DB) servers, The RBD for

the system, depicted at the bottom of the figure,

consists of the 10 blocks labeled A through J, where

each block corresponds to a subsystem (or tier) of

the system.

If we use the letters A through J to also denote the
availability of blocks A though J, then the avail-
ability of the entire system is given by the product
ABCDEFGHIJ. Assume that the target availability for
the system is 99.99 percent (which can be written as
0.9999, also known as ‘‘four nines’’). If all tiers have
the same availability, then in order to satisfy a target
availability of 0.9999, the availability of each
subsystem has to be no less than the 10th root of
0.9999, which turns out to be 0.99999 (or five
nines). Because the components available today
cannot deliver by themselves this level of availabil-
ity, it is necessary to use redundancy in order to
meet the target availability. Notice that, except for
the SAN, each tier is made up of multiple parallel
nodes.

Web site down 

AND gate OR gate OR gate

INHIBIT gate

OR gate

OR gate

Switch
failure

Firewall
failure

H/W 
failureBT line

down
AT&T 
line
down

Hosting 
infrastructure down 

WAN down Web server down 

Application code 
failure 

Software failure 

WAS
crashed 

OS
crashed 

Batch
cleanup
failed  

No users
> 100k

Application
allocated less 
than 1GB RAM 

WAS =
OS =

H/W =
RAM =
WAN =

BT =

Web application server
Operating system
Hardware
Random access memory 
Wide-area network 
BT Group plc

Figure 2
Fault tree for Web-based system
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We will take a closer look at the WAS tier and the
database tier, as examples of stateless and stateful
components. We make the following assumptions:

" In the WAS tier, the redundant server supports its
share of the workload; this is the way n/N
redundancy works. In the database tier the
redundant server is standing by.

" Failures do not propagate between the servers of a
tier. This assumption is optimistic, particularly
when failures are driven by stressful loads when
failures naturally propagate between tiers.

" The mean failover time is fast enough that no
outage is recorded (i.e., work can be backed out
and rerouted quickly).

" The total load in the WAS tier is never larger than
three (N-n) servers can handle. Workload growth
and sub-linear growth of throughput with utiliza-
tion (saturation) may not let this hold up. In the
database tier, the assumption is that one server
handles the load.

" Each server, plus software, delivers 99-percent
availability. This assumption is made merely to
obtain a number for this example; in a real system,

it can be calculated by developing RDBs for each

node.

The WAS tier
The RBD for the WAS server tier is shown in

Figure 4. The letter H used in this diagram is also the
letter associated with the WAS server tier from the

system-level RBD in Figure 3. The dashed line in the

diagram indicates that three servers are required to

handle the entire system load, and thus the fourth

server is a redundant resource. For a configuration

such as this one, when one out of the four servers is

a redundant resource, we refer to it as a 1/4 tier.

The probability that this tier is unavailable is given

by the binomial distribution:

P ¼
XN

k¼nþ1

N
k

! "
pkð1! pÞN!k ð1Þ

where n¼ 1, N¼ 4, and p¼ 0.01, yielding a 0.0006

probability of unavailability. The availability of the

tier is 1 ! 0.0006, or 0.9994. Notice that this falls

short of the availability target. The possible reme-

SAN
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w
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l
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w
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l

Node 5

SSL/TLS
communication

Node 2

LANClient Internet Firewall FirewallLAN Edge WAS Data

Extranet

Client 1

Client 3

Client 2

Node 6

SSL =
TSL =

HTTP =
WAS =
SAN =

Secure sockets layer
Transport layer security
Hypertext transfer protocol
Web application server
Storage area network

Node 1

Load balancer
HTTP server 

Load balancer
HTTP server 

Node 4

Fi
re

w
al

l
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w
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l

Web 
application
server

Node 3

Web 
application
server

Web 
application
server

Web 
application
server

Storage
area
network

AA B C D E F G H I J

Node 8

Node 7

Database
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Figure 3
A three-tier server configuration for a Web-based application and its RBD
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dies are: improve the node reliability, add redun-
dancy in the form of an additional node, or make up
for the shortfall in other tiers. Otherwise one has to
accept the increased risk and lower the system
availability target.

Adding a node is often the most prudent solution.
because high availability requires redundancy of
capacity in addition to redundancy of components.
In the analysis above, one of the key assumptions
made was that three servers can handle the entire
load. There are two factors that can work against
this assumption.

The first is growth. As the workload grows, it will
consume more of the available capacity. At some
point, three servers will no longer be able to handle
the load, but four will.

The second factor is more subtle. For capacity
planning, although it is usually assumed that the
throughput is linearly proportional to the utilization
of the server, this is generally not true. Systems
often exhibit bottlenecks, which result from in-
creased contention in components such as memory
buses, caches, and I/O devices. These cause the
throughput-versus-utilization curve to flatten out
(i.e., saturation) as the utilization grows beyond a
certain point. Consequently, in our system, a single
redundant server might be insufficient to make up
for the lost capacity of a failed server.

Node availability plays an important role. If, for
example, the node availability is 0.999 instead of
0.99, the availability of the solution in Figure 4 is
0.999994, which improves on the target. Because it

is often unreasonable to expect software failure rates
to be low enough early in the product life, the best
remedy to the situation above is to add a server. If
we recalculate the availability for five nodes in total,
of which two are redundant, we get an availability of
0.99999. This now meets the availability require-
ment for the tier. If we are aware that the load
saturates at low utilization, it may be prudent to add
yet another server. While this results in a 3/6 tier
with an availability approaching 1 for the initial
workload, this would yield a 2/6 solution with
growth. This 2/6 solution has an availability of
0.999985, which approaches the target given the
loss of redundancy to workload growth.

It is also important to note that, as we add
redundancy to increase availability, we are dropping
the utilization of the servers involved. This is often
at odds with the desire to drive utilization up on
distributed server farms. Finally, as we add addi-
tional servers we drive the node failure rate up, thus
increasing the need for efficient error handling and
increasing the operational costs.

An alternative approach is to use a small number of
highly reliable components and virtualization (ver-
tical scaling), instead of a larger number of
distributed components (horizontal scaling). This
approach has the advantage of sharing hardware
capacity between redundant software components
and results in a higher utilization of the server
hardware. However, the more reliable components
are more expensive, which drives up the overall
cost.

One way to refine the model is to assume that the
unavailability increases due to increased stress
when a server fails and the remaining servers have
to support a higher workload. This means that the
node availability p in Equation (1) is actually a
function of k. We can simplify the model by adding
enough redundancy so that failures do not drive
utilization of the remaining servers into the stress
region. The required server capacity in that case is
the capacity that supports the workload stress free.
Suppose the known onset of stress is 60-percent
utilization. In a 1/2 solution (N¼ 2, n¼ 1) the target
utilization of the pair of servers before failure is 30
percent.

The database tier
In database tiers, state cannot be avoided. As a
result there must be redundant capacity with access

H2

H3

H4

H1

Figure 4
RBD for the WAS tier

BAILEY ET AL. IBM SYSTEMS JOURNAL, VOL 47, NO 4, 2008586



to the data or a standby replica of the data. A highly
reliable and quick mechanism is needed for the

failover process. Most server platforms have such
failover schemes: IBM High Availability Cluster
Multi-Processing (HACMP*) for AIX*, Veritas**
Cluster Server from Symantec Corporation, or IBM
Sysplex for System z*. All these schemes include

mechanisms for switching traffic to the redundant
server, preserving the lock state, and rolling back
lost work. They all require manual procedures,
scripted automation, and function in the middleware
to work properly. The automation scripts do not

usually cover everything that needs to be done
during an outage, which leads to the potential for
human error.

The difference in solution availability comes down
to the shape of the probability distribution of the
lock holding time. It turns out that on failover there
is no perceived outage most of the time. However,
because there is always a finite probability of a long

failover due to long lock holding time in all of these
schemes, individual node availability is key to
keeping down the probability of a long failover. A
tighter distribution around a fast average failover
will also drive availability higher. Thus, our

database tier l is actually made up of two tiers: the
operational tier I1 and the independent failover tier
I2. The availability of I1 is driven by the node failure
rate, as in the WAS tier H, and the failure rate of I2 is
driven by the probability of a long failover interval

along with the probability that the failover server is
down at the time of the failure. Although the
availability of I2 is usually high, it is nevertheless
less than 1 and thus it lowers somewhat the
operational availability of the DB tier.

Assuming a node availability of 0.99, we get an

operational sub-tier availability of 0.9998. As in the
WAS tier, the availability target is not met. For
database servers, however, the situation is a bit
more complicated. Database servers are generally
more complex and more expensive than those used

in the WAS tier. We usually expect higher node
availability instead of counting on redundancy in
order to achieve high availability. In this case, a
node availability of 0.998 will achieve the goal if we
assume that the failover sub-tier availability is

0.999999 (six nines).

Naturally, the standby server will drop the utiliza-

tion of configured hardware by 50 percent in a 1þN

configuration. One difference between this and the
n/N configuration of the WAS tier is that the

redundant server is often kept idle until the failure
occurs.

Lessons learned
Performing the RBD analysis above has taught us a
number of lessons. The system availability is always

lower than the availability of the weakest compo-
nent or tier of the solution. In other words, tier
availability targets are always higher than the end-
to-end availability target. As a result, the elimination

of tiers can lead to improved availability.

A three-tier server configuration results in an RBD
with a higher number of tiers (blocks) when
networks and other components are included.

The initial availability target for an RBD tier can be
difficult to attain for a specific subsystem. Remedies

include shifting the burden to other tiers, improving
tier reliability through additional redundancy, or
acceptance of reduced availability.

Systems with more than one redundant node are
often better solutions from the availability point of
view, but they naturally run at a lower utilization. A

consequence of the relationship of capacity and
availability is that workload growth reduces avail-
ability by consuming redundant capacity in n/N
configurations.

Node reliability is a key factor in the design for
availability. The amount of redundancy required to

provide high availability is inverse to the component
reliability. Node availability is particularly impor-
tant in the database tier, where high variance in the

failover time affects the probability of a perceived
outage during a failover.

CONCLUDING COMMENTS
Availability has long been seen as a hardware issue.
In this paper we advocated a business-oriented
approach to system availability. This approach calls
for availability requirements to be stated in business

terms. It also requires an understanding of the cost
of unavailability to determine the optimal invest-
ment that should be made to provide system

availability.

Reliability engineering techniques that have been

proved in other industries should be used to model
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and analyze the availability characteristics of the

overall system design at all stages of the develop-
ment life cycle, starting during conceptual design;

this will allow design changes to be made early,
when the cost of making these changes is still low.

The output of these techniques should also be used
to improve the tools and procedures that will be

used to operate the system.

While the adoption of rigorous techniques could

increase the cost of analysis and design, this can be
offset through the use of design patterns with known

availability characteristics. Patterns will improve
our ability to develop solutions that meet the

availability requirements at a cost that is affordable
and can be justified by balancing the additional

development cost with the cost of unavailability.

The application of these techniques and patterns
will also serve to improve system testing. Testing

the availability and reliability of systems is known to

be difficult and expensive because of the low
probability of failure. It is therefore critical that

failure recovery be tested by inducing failures using
a risk-based approach.

The increasing use of service-oriented architectures

(SOA) presents a number of opportunities and poses

new challenges from a system availability perspec-
tive. A few of these are outlined below.

SOA complicates static reliability modeling by

providing the ability to select and invoke services at
run time. The dynamic nature of SOA will therefore

place new demands on modeling techniques used to
predict reliability and availability, For example, it

may be justified to develop stochastic simulation

models for mission-critical SOA systems.

SOA also provides the ability to assemble a system
from services that have guaranteed quality of

service (QoS) attributes that specify reliability
characteristics. This provides very loose coupling

and could allow the reliability engineer to model
system availability using a clearly defined hierarchy

of independent models. In practice, services are

usually dependent on shared resources and very few
have guaranteed availability defined in their QoS

specifications. The reality of the underpinning
infrastructure needs to be factored into the tech-

niques and models used for availability prediction.

SOA provides the ability to create even more
complex systems with a high degree of dynamic
configurability. Intuitive approaches cannot be used
to predict system availability with a sufficient degree
of confidence. We conclude that the use of SOA will
further increase the need for a structured approach
to reliability engineering and the use of more
complex modeling techniques and tools to be
implemented throughout the development life cycle.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation in the United
States, other countries, or both.

**Trademark, service mark, or registered trademark of
Symantec Corporation in the United States, other countries, or
both.
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