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The paper illustrates the use of mathematical induction to extend results which are true for a line 

segment to trees . Three separate theorems are stated and proved , each of which has some importance in 

its own right. 
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1. Introduction 

This paper presents three theorems each of which extends to trees a result that is known or ob

vious for a line segment. While the theorems are of interest in themselves, it is the purpose of the 

paper to use them as examples of how the inductive process may be effective in proving theorems 

for trees or for graphs with treelike structures. Other examples of the application of induction to 

trees include the proof that a tree with n nodes has n - 1 arcs (cf. [5],· p. 35), or a paper such as [4]. 

The definition of a tree which will be used throughout is the followin g: 

A tree is a connected graph containing no cycles. 

2. A Minimal Node-Cover Problem for Trees 

This section deals with the following problem: Given a (finite) tree T and a collection {Ti}.m of 

subtrees, find a set of nodes Pin T of least cardinality, such that 

P n Ti "" ¢ 

for all i. This problem has been considered for more complex graphs than trees (cf. [1], for example), 

but the following recursion algorithm, applicable to trees, IS particularly simple to use. 

ALGORITHM. Consider any " tip" node (node of order 1), xeT. Let Ax consist of x and its as

sociated arc. 

1. If there exists some Tj = {x}, take x to be in P and derive the remaining members of P as the 

set of nodes which solve the problem for the tree T' = T - Ax, with the collection of subtrees 

{T;: i=1,2, ... , m,x~Ti}. 

2. If no Ti= {x}, find P as a solution to the problem on the tree T' with the collection of sub

trees {T;'}. m, where 

for each i. 

AMS Suhjec. C/a.ssificalion: 0540. 

I Figures in brackets indicate the literature references at the end of this paper. 
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THEOREM 2.1. The above algorithm produces a minimal set P. 

PROOF. Consider first case 1, where some Tj = {x}. Let P' be some solution to the reduced 

problem stated in the algorithm. If P is any solution to the original problem, then clearly XEP, while 

P - {x} meets at least every Ti not containingx. Thus by the optimality of P and P', P - {x} and P' 

both have the same cardinality. Clearly {x} U P' is a feasible solution for the original problem. 

In the second case, if xETi for some i, then each such Ti must contain some element besides x. 

Since each such Ti is connected, it must therefore contain y, the node at the other end of the arc con· 

taining x, since y cuts Ax from the rest of the tree T. 

Now let P' be some optimal solution set of nodes for the reduced problem of case 2. Since 

T;' n P' ¥- cp for each i, Ti n P' ¥- cp also, so that P' is feasible for the original problem. Let P 

be any optimal node set for the original problem. If xfP, then P is a feasible solution for the reo 

duced problem, so that IF I ;?; I P' I, proving the optimality of P' . On the other hand, if xeP, con· 

sider the new node set 

PI=P - {x} U {y}. 

Since P n Ti ¥- cp for each i, it follows that PI n Ti ¥- cp for each i, since if XETi then YETi for any i. 

But again PI is a feasible solution for the reduced problem, so that 

IPI = IPd;?; IP'I, 

proving the optimality of P' . 

3. Minimum-Length Coverings by Intersecting Subgraphs 

This section deals with an extension of a problem previously considered by the author [2]. 

Let G be an undirected, connected graph whose edges have nonnegative lengths. If A and Bare 

disjoint sub graphs of G, we shall use the notation P(A, B) to refer to a (any) path in G with one 

endpoint in A, the other in B, and no other point in A U B. 

Let {S;} I n be a collection of connected nonempty subgraphs of G with the property that if 

Si n Si +1 = cp, for any i, then there exists a unique path P(Si, Si+ I). A collection {T;}, n of con· 

nected s ubgraphs of G will be called feasible, relative to {S;} 1 n, if 

Si C Ti 

Ti n Ti+1 ¥- cp 

i= 1,2, ... , n, 

i=1,2, ... , n - 1. 

We treat the problem of choosing among feasible {T;}," so as to 

n 

minimize L I Ti I , 
i=1 

(3.1) 

(3.2) 

(3.3) 

where lTd is the sum of the lengths of all edges in Ti • A simple algorithm solves this problem. (The 

problem considered in [2] was the same as that treated here, except that compact intervals on the 

real line replaced the subgraphs Ti , above.) 

ALGORITHM. 

1. Let T, =51, 

2. Having determined Tk , find Tk + 1 as follows. 

(a) If Sk +1 n T k· ¥- cp , set Tk +1 =Sk+l. 

(b) If Sk + I n Tk = cp, let P(Sk +" Tk) be any path between Sk + 1 and Tk. Set Tk+ 1= Sk + I U 

P(Sk +" Tk). 

THEOREM 3.1. 'The algorithm gives a minimal valuefor IITil. 
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PROOF. The proof is by induction on the number n of subgraphs Si. Clearly the algorithm works 

for one subgraph. Assuming it works for n - 1 subgraphs, we prove its validity for n subgraphs. 

First we show that there exists an optimal feasible solution {TiLn, which minimizes klTd, for 

which TI =SI . For if {Tnln is optimal, but TI' ¥- SI, let P(SI,T2') be any shortest path fromSI to T2'. 

Define a new collection of subgraphs 

TI=SI, 

T2=T2' U P(SI,T2'), 

Ti=T;' 

(3.4) 

(3.5) 

(3.6) 

Then it is clear that Si C Ti, 1 ,;;; i,;;; n, and that T2 is connected, since P(Sl,T2') is connected and in· 

tersects T2'. Also, Ti n Ti+1 ¥- 1>, for all i, since TI n T2 contains the common point on P(Sl,T2'), and 

Ti n Ti +1 C T;' n T'i+1 for 2 -,;;; i,;;; n. Next we note that 

(3.7) 

for the connectivity of TI' , together with the fact that TI' n T2' ¥- 1>, imply that there exists a path 

from S1 to T2 ' which is contained in T I ' but does not contain any arcs of SI. Thus we have from (3.4) 

and (3.5), 

so that 

lTd + IT21,;;; ISII + IT2'I + IP(SI,T2') I 

,;;; ISd+ IT2' 1+ ITI' - Sd 

= ITI'I + IT2'1, 

n " 

L I Ti I ,;;; LIT;' I 
i= 1 i= l 

and the collection {Ti } is optimal. 

(3.8) 

(3.9) 

Now let {TiLn represent any optimal collection for which TI = SI, and let {Ti*hn be a collection 

obtained from using the algorithm. We first note that T2 * C T2. For if SI n S2 ¥- cp, this is clear, since 

T2* = S 2. If SI n S2 = 1>, and P(St, S2) is the unique path from St tOS2 in C, then P(St, S2) C T2, 

since if this were not the case then T2 would be connected and contain S2, while intersecting 

S t, so that there would exist another path in T2 from S 2 to S I, contradicting the uniqueness of 

P(SI, Sz). Since T2* =S2 U peSt, S2), by definition, T2* C T2. 

Thus the members of the collection {Ti}zn cover the respective members of the coller.tion 

{1; *, S3, S4, ... , Sn} in C. If there exists a unique path in C between 1; * and S3 (or if 

1;* n S3 ¥- 1» , then the induction hypothesis applies to the set {Ti*hn, which was obtained by using 

the algorithm on {1;*, S3, S4, . .. , Sn}, a set of n -1 elements, so that we have 

n n 

L I TI * I,;;; L I Ti I· (3.10) 

i=2 i=2 

Since lTd = ITI *1, the proof is complete once it is shown that any path from T2 * to S3 in C is unique. 

Assuming T2 * n S3 = 1>, let P and Q be two different paths from T2 * to S3 in C. Since S2 C T2 *, 

there exist paths M and N (possibly the same path) from S2 to the points (possibly the same point) 

where P and Q, respectively, meet T2 *. But then M U P and N U Q are different paths from S2 to S3, 
contrary to the initial assumption. 

COROLLARY 3.2. The algorithm is valid when G is a tree and the Si are subtrees of G. 

PROOF. We need only show that there exists a unique path between any two disjoint subtrees 
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in a given tree. Suppose that there exist two distinct paths P and Q between subtrees A and B, hav

ing respective endpoints PA and qA in A and PB and qB in B. If PA = qA and PB = qB, then P= Q, since 

there is a unique path between points in a tree. Therefore, assume PA 0/= qA, and let RA be a path 

between PA and qA in A. If P n Q 0/= <1>, then clearly P U Q U RA contains a cycle. If P n Q = <1>, let 

RB be a path between PB and qB in B. Then P U Q U RA U RB is a cycle. Thus there exists a unique 

path between A and B. 

4. Helly's Theorem for Trees 

Helly's theorem [2] states, in one dimension, that a collection of closed connected segments on 

a line El has a nonempty intersection if and only if every pair of segments has a nonempty intersec

tion. In this section we extend the result to trees. 

THEOREM 4.1. A collection of subtrees of a tree has at least one common node if and only if 

every pair of subtrees has at least one common node. 

PROOF. The proof is by induction on the number of nodes. For a tree with 1 or 2 nodes the 

theorem is obvious. ! 

Assume the theorem true for a tree with n - 1 or fewer nodes and consider a tree T with n 

nodes. Let S1, S2, . .. , Sm be a collection of subtrees of T such that 

for every pair (i, j). 

Let x be any node of Twhich is also a cut point of T, and let C1 ,C2 , ••• , Ck be the connected com

ponents of T - {x}. Let 

A={x}UCt, 

k 

B={x}UUC i . 
1=2 

Then A and B are subtrees of T. Furthermore, either 

Si n A 0/= <1>, all i, 

or 

Si n B 0/= <1>, all i. 

For ifthis were not the case, then we would have some Si C A - {x} and some Sj C B - {x}, so that 

Si n Sj=<1>. 

Suppose, without prejudice to the argument, that 

Si n A 0/= <1>, all i, 

Let 

S;'=Si n A 

for each i. Then 

s;' n S/ 0/= <1>, 

for every pair (i, j). For if s;,n S/ = <1> for some (i, j), then since Si n Sj 0/= <1> we must have a 

point YEB - {x} such that 

But since x is a cut point and Si n A 0/= <1>, Sj n A 0/= <1>, we must have XESi n Sj, by the connected

ness of Si and Sj. 
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Thus {S;,} is a collection of pairwise intersecting subtrees of the finite tree A of order less than 

n. By the induction hypothesis, there exists a point 

m m 

ZE n S/ c n Si, 
1. = 1 1. = 1 

proving the theorem. 
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