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Short-term prediction of passenger �ow is very important for the operation and management of a rail transit system. Based on the
traditional Kalman 	ltering method, this paper puts forward three revised models for real-time passenger �ow forecasting. First,
the paper introduces the historical prediction error into themeasurement equation and formulates a revisedKalman 	lteringmodel
based on error correction coe
cient (KF-ECC). Second, this paper employs the deviation between real-time passenger �ow and
corresponding historical data as state variable and presents a revised Kalman 	ltering model based on Historical Deviation (KF-
HD). �ird, the paper integrates nonparametric regression forecast into the traditional Kalman 	ltering method using a Bayesian
combined technique and puts forward a revised Kalman 	ltering model based on Bayesian combination and nonparametric
regression (KF-BCNR). A case study is implemented using statistical passenger �ow data of rail transit line 13 in Beijing during
a one-month period. �e reported prediction results show that KF-ECC improves the applicability to historical trend, KF-HD
achieves excellent accuracy and stability, andKF-BCNRyields the best performances. Comparisons among di�erent periods further
indicate that results during peak periods outperform those during nonpeak periods. All three revisedmodels are accurate and stable
enough for on-line predictions, especially during the peak periods.

1. Introduction

With the rapid development of urbanization and motoriza-
tion in most Chinese large cities, the urban transportation
systems are facing more and more serious problems, such as
congestion, crashes, and pollution. As an e
cient trip mode,
rail transit system has played a more and more important
role in solving tra
c issues. In Beijing, there are a total
of 21 lines in operation now, covering a distance of 527.2
kilometers (327.6 miles). During the past decade, the average
daily passenger �ow has increased dramatically to about 10
million riders. �erefore, the operation and management of
the rail transit system, especially real-time operation, is very
important.

During peak hours, pedestrian congestion happens fre-
quently. For safe and e
cient purposes, the real-time

passenger �ows, especially predicted �ows during the next
several time intervals, are key issues for real-time intelligent
operation of the rail transit system. However, with the past
and current passenger �ows detected easily, the future �ows
are not straightforward. �erefore, the passenger �ow fore-
cast method based on statistical data is rather meritorious.

Most recently, Sun et al. [1] proposed a nonparametric
regression method to forecast passenger �ow at subway
transfer stations. Except for this, the literature review shows
that very few researches have focused directly on short-term
rail transit passenger �ow prediction. However, short-term
tra
c �ow forecasting has been studied extensively with
Intelligent Transportation Systems (ITS) and many practical
models have been developed from these studies. With just
di�erent input data entered into these models, some of those
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achievements can be used to forecast rail transit passenger
�ow easily.

Existing tra
c �ow forecast models cover a wide range
consisting of Historical Average (HA), Autoregressive Inte-
grated Moving Average (ARIMA), Neural Network (NN),
Kalman 	ltering (KF), nonparametric regression (NR), chaos
theory, Support Vector Machine (SVM), and others. �e HA
model uses a simple time-series method [2], which is rarely
in use now. Ahmed and Cook [3] put forward an ARIMA
model to forecast freeway tra
c �ows, andWilliams et al. [4]
further developed it to seasonal case and compared it with
an Exponential SmoothingMethod (ESM).Many researchers
formulatedNN-based predictionmodels and obtained rather
satisfying results such as Smith and Demetsky [5], Florio
and Mussone [6], Zhang et al. [7], Dougherty et al. [8],
Park and Rilett [9], and Vlahogianni et al. [10]. Kalman
	ltering is a kind of recursive state forecast method with
high e
ciency that has also been widely used in short-term
tra
c �ow prediction, for example, Okutani and Stephanedes
[11], Cathey and Dailey [12], and Shekhar and Williams [13].
As a nonlinear regression method, the NR model is rather
applicable to uncertain and dynamic systems, just like real-
time transportation systems. Pioneering work on the NR
method can be found in Yakowitz [14] and Karlsson and
Yakowitz [15], and some scholars further developed them for
tra
c �ow forecast, for instance, Davis andNihan [16], Smith
andDemetsky [17], Oswald et al. [18], Smith et al. [19], Qi and
Smith [20], and Kindzerske and Ni [21]. Huang et al. [22],
Lu and Wang [23], Meng and Peng [24], Xue and Shi [25],
and Pang and Zhao [26] applied chaos theory in the tra
c
�ow prediction and obtained acceptable results. SVM is a
new statisticalmachine-learningmethod [27] which has been
proved to have stronger learning and generalization abilities
than the NN model. SVM has also been used in the 	eld of
tra
c �ow forecast such as Ren et al. [28], Wu et al. [29], and
Wang et al. [30].

Generally, the above methods can be classi	ed into statis-
tical and arti	cial intelligence models. Smith and Demetsky
[17] and Smith et al. [19] compared some of these models and
proposed that no single method was universally accepted as
the best one.�erefore, based on existing singlemodels, some
combinedmethods have been developed and one of the most
e�ective approaches is the Bayesian combined model. Zheng
et al. [31], Dong et al. [32], Jiao et al. [33], and Jiao et al. [34]
have proved its e�ectiveness.

More recently, some researches proposed newmodels for
multistep prediction [35] and large-scale road network fore-
cast [36]. �e latter employed cloud computing techniques
for large-scale network applications.

Among all the above short-term tra
c �ow forecast
models, the Kalman 	ltering method is very e
cient due
to its recursive attribute and is rather convenient for use
in rail transit passenger �ow predictions. However, existing
researches have proved that the traditional KF methods are
not accurate and stable enough for on-line applications.
�erefore, this paper will revise the traditional KF methods
and propose three revised models.

To predict passenger �ow accurately and e
ciently, one
key feature of the paper is to introduce some error calibration

measures or new state variables into classical models and to
construct some revised KF forecast models. �e second key
feature is to integrate some stable methods and formulate an
innovative KF predictionmodel with good accuracy, stability,
and robustness.

�is paper consists of six sections. Following the Intro-
duction, the basic KF model is described in the second
section, including its state transition and measurement
equations. �ree revised KF models are formulated in the
third section, including the KF model based on the error
correction coe
cient (KF-ECC), the KF model based on
Historical Deviation (KF-HD), and the KF model based
on the Bayesian combination and nonparametric regression
(KF-BCNR). Solution algorithms for the NR model, KF
model, and Bayesian combination model are designed in the
fourth section, respectively. Prediction results using practical
statistical passenger �ow data are reported and analyzed
in the 	�h section. Conclusions and some future research
directions are summarized in the last section.

2. Basic Kalman Filtering Model

�e KF model is a kind of state space method consisting of
three important parts: state variable, state transition equation,
and measurement equation.

In the rail transit passenger �ow prediction, the short-
term passenger �ow to be forecasted is taken as the state
variable directly. In this paper, we employ the passenger �ow
at the station. Using�(�) to denote the passenger �ow during
time interval � at a station, the state transition equation and
measurement equation are formulated as follows:

Q (�) = Q (� − 1) + W (�) , (1)

H (�) = M (�) ∗ Q (�) + e (�) , (2)

where Q(�) is column vector form of passenger �ow �(�)
and, accordingly, Q(� − 1) is the column vector of �(� − 1);
W(�) is Gauss white noise vector with mean value 0 and
covariance matrixD��� and hereD is a constant semipositive
matrix and ��� is the Kronecker delta; that is, ��� = {1, � =�; 0, otherwise}; H(�) is column vector form of measure-
ments and here the Historical Average passenger �ow during
the same time interval � is taken as the measurement; M(�)
is measurement matrix and here it equals the identity matrix
in the passenger �ow prediction; that is, it can be neglected
in the formulation; e(�) is column vector form of detection
errors withmean value 0 and covariancematrixR��� and here
R is a constant semipositive matrix similar to D.

Equations (1) and (2) constitute the basic KF model
together. Existing researches have proved that the basic form
of KF is rather e
cient due to its recursive attribute. However,
the accuracy is not satisfying.�erefore, we further formulate
some revised KF models to improve the prediction accuracy.

3. Three Revised Kalman Filtering Models

3.1. 
e Revised KF Model Based on Error Correction Coef-
�cient. Since the historical passenger �ow data could be



Mathematical Problems in Engineering 3

collected easily, we can conveniently track the trend of
the �ow changes. �e basic KF model in (1) and (2) has
been employed in historical cases, and the errors between
historical forecast and historical detection are thus obtained.
Based on characteristics of such errors, we introduce an error
correction coe
cient into the measurement equation:

H (�) = �Q (�) + e (�) , (3)

where � is the error correction coe
cient based on historical
forecasting deviations. Here, measurement matrix M(�) is
neglected, because it is an identity matrix in nature.

�e error correction coe
cient � varies under di�erent
conditions. It is closely correlated to the historical forecasting
errors. In detail, it grows with the increase of historical errors,
and we can obtain it by the historical data 	tting procedures.

During weekdays, rail transit passenger �ows usually
change frommorning peak hours to nonpeak hours and then
to evening peak hours. �erefore, some similar characteris-
tics in the historical forecasting errors are observed. Statistical
analyses prove that it can 	t a quadratic parabola function:

� = 	� − 
�2, (4)

where 
 and 	 are parameters to be estimated from the data
	tting procedures.

Equations (1), (3), and (4) constitute the revised KF-ECC
model together.

3.2. 
e Revised KF Model Based on Historical Deviation.
Since the rail transit passenger �ow �uctuates dramatically
and the magnitude is rather large, the forecasting process
of KF model using passenger volume as a state variable
directly is not very stable. Further analyses of passenger �ows
show that the deviation between real-time volume and the
corresponding historical data is fairly smooth [37].�erefore,
the above-mentioned deviation is introduced into the KF
model as the revised state variable to improve the accuracy
and stability of the prediction. �e revised KF-HD model is
formulated as follows:

Q (�) − H (�) = [Q (� − 1) − H (� − 1)] + W (�) , (5)

Q
� (�) − H (�) = [Q (�) − H (�)] + e (�) , (6)

where Q
�(�) is the column vector form of historical pas-

senger �ow ��(�) in the same time interval � and the
same weekday during the last week. �e most important

issue is that Q�(�) is di�erent from H(�); that is, Q�(�) is
corresponding to the same weekday in the previous week,
whileH(�) is the average value of the historical data.

Equations (5) and (6) together constitute the revised KF-
HD model, which is a basic KF formulation except for the
state variable in a deviation form. Since Q

�(�) and H(�)
are available from statistical data, one can get the real-time
passenger �owQ(�) easily.
3.3. 
e Revised KF Model Based on Bayesian Combination
and Nonparametric Regression. Existing researches [31–34]

have proved the e�ectiveness of Bayesian combined approach
in tra
c �ow forecasting. It is a weighted average method in
fact, as shown below:

� (�) = ∑
�∈�

�� (�) × �� (�) ,  = {KF,NR} , (7)

where KF is the result from the KF model, NR is the result
from the NR model, and �� is the weight of the KF or the NR
model.

As stated before, the NR model is fairly applicable to
uncertain and dynamic transportation systems, and many
literatures have demonstrated its accuracy. �erefore, we
introduce the NRmethod into the Bayesian combinedmodel
to further improve the prediction e�ects. Here, the �-nearest
neighbor nonparametric regression (�NNNR) method is
employed.

From (7), we can 	nd out that, in the Bayesian combina-
tion framework, KFmodel orNRmodelmay be strengthened
or weakened by adjusting the weight ��. If we set �KF to zero,
the KF model will be neglected from the combination. �e
same result will be derived for the NR model if we set �NR

to zero. Actually, both weights will be adjusted dynamically
according to the forecasting errors of two single models.
�e detailed adjustment mechanism will be illustrated in
Section 4.

We further take the NR prediction as the control variable
and introduce it into the KF model. Meanwhile, we combine
the NR result in interval � with the KF result in interval � −1 through Bayesian combination method and integrate them
into the state transition equation of theKFmodel.�e revised
formulation is shown below:

Q (�) = �KF (�) ⋅ QKF (� − 1) + �NR (�) ⋅ QNR (�)
+ W (�) , (8)

where QKF(�) and QNR(�) are the column vector forms of�KF(�) and �NR(�), respectively, and other symbols are the
same as before. �e item �NR(�) ⋅ QNR(�) is the control
variable of the state transition equation; that is, it re�ects the
contributions of NR model to the 	nal prediction results.

Equations (8) and (2) constitute the revised KF-BCNR
together. �e main purpose of this revised KF model is to
introduce more historical information and accurate results
into the forecast process and to improve the accuracy and
stability of the prediction.

Based on the adjusted algorithm of Bayesian weights
and the results of the NR model, we can 	nally obtain the
forecasted passenger �ows.

4. Algorithms

4.1. Nonparametric Regression Algorithm. �e NR algorithm
mainly consists of 	ve steps: the preparation of historical
data, the generation of sample database, the de	nition of
state vector, the searching of �-nearest neighbors, and the
prediction function. �e general algorithm �ow is shown in
Figure 1.
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Figure 1: General �ow of the NR algorithm.

Detailed algorithm is described as follows.

Step 1 (preparation of historical data). All historical detected
data are prepared for the NR algorithm in this paper.

Step 2 (generation of the sample database). �e prepared
historical data are summarized into the sample database,
which keeps updatingwith the forecast process and integrates
both real-time data and historical data. �e quality of the
sample database greatly in�uences the performance of theNR
model.

Step 3 (de	nition of state vector). Rail transit passenger �ows
are di�erent from link tra
c volumes; that is, there are no
upstream or downstream links. However, when forecasting
the station, some other stations near it will in�uence the
arrival and distribution characteristics of its passenger �ow.
�erefore, we introduce the correlation analysis between
target station and other stations. �e number of correlative
stations is determined by the correlation coe
cient �AB.
Meanwhile, the state vector should include the passenger
volumes of previous � intervals of the target station, where � is
determined by the autocorrelation coe
cient �� with rank �.

Using {�A

1 , . . . , �A

� } to denote the time-series of passenger
volumes during consequent � intervals of station A and{�B

1 , . . . , �B

� } to indicate the time-series of passenger volumes
during consequent � intervals of station B, the correlation
coe
cient between stations A and B is formulated as

�AB = ∑�	=1 (�A
	 − �A) (�B

	 − �B)
√∑�	=1 (�A

	 − �A)2∑�	=1 (�B
	 − �B)2 , (9)

where �A is the average of time-series {�A

1 , . . . , �A

� } and �B

is the average of time-series {�B

1 , . . . , �B

� }.
For the autocorrelation coe
cient, we decompose the

time-series of passenger volumes of the target station,{�1, . . . , ��}, into some subsequences with � − � elements, that
is, {�1, . . . , ��+1}, {�2, . . . , ��+2} ⋅ ⋅ ⋅ {��−�, . . . , ��}, and then the
autocorrelation coe
cient is formulated as

�� = ∑�−�	=1 (�	 − �	) (�	+� − �	+�)
√∑�−�	=1 (�	 − �	)2∑�−�	=1 (�	+� − �	+�)2

. (10)

Here, �	 means the average of time-series of {�	, . . .,�	+�}.

Step 4 (searching of �-nearest neighbor). �-nearest neigh-
bor search is to choose �-nearest data similar to current state
vector and to predict the result of the next time interval based
on the selected neighbors.

Euclidean distance is employed as the index to determine
the �-nearest neighbor; that is,

�
= √ �∑
�=1

[�� (�) − ��� (�)]2 + �∑
�=0

[� (� − �) − �� (� − �)]2, (11)

where  is the set of other stations correlated to the target
station; ��(�) is the passenger volume of station � during

interval �;��� (�) is the historical data corresponding to��(�);�(� − �) is the passenger �ow of the target station during

interval � − �; ��(� − �) is the historical data corresponding
to �(� − �); � is the Euclidean distance.

Step 5 (prediction function). �e prediction function is pre-
sented as in the following equation:

� (� + 1) = 
∑
�=1

1/��� �� (�) , (12)

where � is the number of the most similar data serials, that
is, the �-nearest neighbors; � = ∑
�=1(1/��).

Using the above 	ve steps, we can implement the NR
algorithm and obtain the prediction results from the NR
model.�e above algorithm is coded usingM language of the
MATLAB platform.

4.2. 
e Sequential Kalman Filtering Algorithm. For the
purpose of accuracy and e
ciency, a sequential KF algorithm
is employed to solve three revised KF models, which is
illustrated in detail in our previous work [38].�is algorithm
is also coded through the M language of the MATLAB
so�ware.

4.3. Bayesian Combination Algorithm. �e key issue of Baye-
sian combination is weight of each submodel, which is
decided logically according to the error comparisons of two
single forecast methods.

Based on the historical prediction results and corre-
sponding historical detection data, we can obtain the forecast
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errors of the KF and the NR models, respectively. Here,
the mean absolute percentage error (MAPE) is employed to
denote forecast errors, as below:

MAPE = ∑�	=1 (     �̃ (�) − � (�)     /� (�))� × 100%, (13)

where �̃(�) is the forecasted passenger �ow during interval�, �(�) is the corresponding actual value, and � is the total
number of time intervals.

Furthermore, we denote the historical MAPE of KF and
NRmodels by "#KF and "#NR, respectively.�e prior prob-
abilities of choosing KF and NR models are then presented
as

Pr (#KF) = {{{
1 − "#KF, ("#KF < 1)
0, ("#KF ≥ 1) ,

Pr (#NR) = {{{
1 − "#NR, ("#NR < 1)
0, ("#NR ≥ 1) ,

(14)

where Pr(⋅) denotes a choice probability function; Pr(#KF)
is the prior probability of choosing the KF model; Pr(#NR)
is the prior probability of choosing the NR model. �ese
two prior probabilities re�ect the in�uences of historical
forecasting errors.

To further incorporate the in�uences of current forecast-
ing errors, we denote the currentMAPE of the KF and theNR

models by "KF and "NR, respectively. One must know that
the current MAPEs are obtained based on the previous 	ve
time intervals; that is, they keep updating with the prediction
process:

Pr (* | #KF) = {{{
1 − "KF, ("KF < 1)
0, ("KF ≥ 1) ,

Pr (* | #NR) = {{{
1 − "NR, ("NR < 1)
0, ("NR ≥ 1) ,

(15)

where Pr(* | #KF) and Pr(* | #NR) are the probabilities
generating forecast * using the KF and the NR models, re-
spectively.

�en, the posterior probabilities [33, 34] are formulated
as

Pr (#KF | *) = Pr (* | #KF)Pr (#KF)
Pr (*) ,

Pr (#NR | *) = Pr (* | #NR)Pr (#NR)
Pr (*) ,

Pr (*) = Pr (* | #KF)Pr (#KF)
+ Pr (* | #NR)Pr (#NR) ,

(16)

where Pr(#KF | *) and Pr(#NR | *) are posterior probabili-
ties of the KF and the NR models, respectively.

Based on (16), we 	nally obtain the weights of the KF and
the NR models, as below:�KF

= Pr (* | #KF)Pr (#KF)
Pr (* | #KF)Pr (#KF) + Pr (* | #NR)Pr (#NR) ,

�NR

= Pr (* | #NR)Pr (#NR)
Pr (* | #KF)Pr (#KF) + Pr (* | #NR)Pr (#NR) .

(17)

Equations (7), (8), and (17) are integrated collectively as
the revised KF-BCNR model.

5. Case Study

We collected the bus Smart Card Data (SCD) of line 13 of
Beijing in the whole month of November 2013 and extracted
the passenger volumes of 15 stations in every minute from
such SCD information for a case study. According to the
uni	ed numbering rules of Beijing rail transit system, these 15
stations are named 21, 23, 25, 27, 29, 33, 35, 37, 39, 41, 43, 45, 47,
49, and 51, respectively.�e operation period of line 13 is from
4:55 a.m. to 23:50 p.m. For application purpose, original data
were aggregated to 	ve minutes. �erefore, we totally have
228 time intervals. Passenger �ows of station number 25 on
November 28 (�ursday) were taken as the prediction target.

Using the above data, we implemented the KF model, the
NR model, and the three proposed revised KF models and
derived the prediction results of all 	ve models, respectively.

5.1. Analyses of the NR Model. �e state vectors are decided
based on the correlation coe
cient �AB and the autocorre-
lation coe
cient ��, which are from time-series of passenger
volumes of the target station and nearby stations, as shown
in (9) and (10). Results show that the correlation coe
cients
between target station 25 and stations 21, 23, 27, and 49
all exceed 0.9; however, station 49 is excluded due to the
relatively long distance from the target station. �erefore,
the passenger �ows of stations 21, 23, and 27 are taken as
components of the state vector. Meanwhile, comparisons of
the autocorrelation coe
cients of the target station show that�� is the biggest (0.86) when � equals 2.

�e �-nearest neighbors are further determined by
several forecasting experiments. Besides MAPE, three other
evaluation indices are also employed to analyze the prediction
errors, as below:

(1) MPE (mean percentage error):

MPE = ∑�	=1 ((�̃ (�) − � (�)) /� (�))� × 100%. (18)

(2) RMSE (root mean square error):

RMSE = √ ∑�	=1 [�̃ (�) − � (�)]2� . (19)
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(3) NRMS (normalized root mean square error):

NRMS = √� ∑�	=1 [�̃ (�) − � (�)]2
∑�	=1 � (�) × 100%. (20)

Other symbols in (18) to (20) are the same as above.
�e error statistics of MAPE, MPE, RMSE, and NRMS in

case of di�erent � are summarized in Table 1.
From Table 1, one can 	nd out that the general perfor-

mance is the bestwhile� equals 2.�erefore,� is determined
as 2 in the �-nearest neighbor nonparametric regression
model.

5.2. Prediction Results of the 
ree Revised KF Models. All
information needed in the three revised KF models is
extracted from the database. As stated before, the error
correction coe
cient � in the revised KF-ECC model is
determined by historical data 	tting procedures:

� = 0.010742� − 0.000045�2. (21)

Obviously, it is a quadratic parabola formulation.
In the revised KF-BCNR model, the historical data is

necessary for the Bayesian weights. Here, information of
November 21, the same �ursday during the previous week,
is employed to get those weights.

Prediction results of the KF, NR, revised KF-ECC, revised
KF-HD, and revised KF-BCNRmodels during the whole day
are all reported in Table 2.

From Table 2, one can 	nd out that all three revised KF
models yield better results than the traditional KF model.
In detail, introduction of the error correction coe
cient
makes the KF-ECCmodel outperform the original KFmodel.
Employment of the Historical Deviation as state variable
further improves the forecast accuracy of the KF-HD model.
Integration of Bayesian combination and NR method yields
the best performance for the KF-BCNR model. Meanwhile,
the NR model is also rather accurate; however, its e
ciency
is not very satisfying for on-line applications.

To compare the performances of traditional models and
three revised models during di�erent periods, the evaluation
indices during morning peak hours (7:00–9:00), nonpeak
hours (11:00–13:00), evening peak hours (17:00–19:00), and
the whole day (4:55–23:55) are further extracted and summa-
rized in Table 3.

Graphical illustrations of these prediction results and
errors during di�erent periods are further described in
Figures 2–9.

A further comparison of the prediction errors among all
	ve models is illustrated in Figure 10. Here, the MAPE is
employed to denote the forecasting error.

From the above predictions, one can 	nd out the follow-
ing results:

(1) All the three revised KF models are fairly accurate
for short-term rail transit passenger �ows prediction.
�e revised KF-ECC model gets better results than
the traditional KF model, due to the introduction

Table 1: Prediction error statistics of NR model.

� MAPE MPE RMSE NRMS

1 18.7% 8.2% 16.3 17.2%

2 19.7% −3.4% 10.2 12.0%

3 21.4% −8.6% 14.3 16.5%

4 24.0% 10.4% 21.5 25.2%

5 26.9% −14.9% 27.4 29.1%

Table 2: Prediction error statistics of 	ve models.

Model MAPE MPE RMSE NRMS

KF 38.8% −33.5% 52.0 60.2%

NR 19.7% −3.4% 10.2 12.0%

KF-ECC 27.8% −14.9% 33.0 38.2%

KF-HD 20.5% 7.5% 11.5 13.3%

KF-BCNR 18.1% 4.1% 10.2 11.9%

Table 3: Prediction error statistics of 	ve models during di�erent
periods.

Error indices
Models

KF NR KF-ECC KF-HD KF-BCNR

MAPE (%)

Morning peak 35.5 10.4 12.9 10.2 8.2

Nonpeak 39.7 15.7 27.2 16.4 13.4

Evening peak 36.9 3.5 23.3 6.0 4.9

Whole day 38.8 19.7 27.8 20.5 18.1

MPE (%)

Morning peak −35.5 −3.3 −8.2 4.5 0.8

Nonpeak −39.7 −9.3 −26.6 −0.8 −4.9
Evening peak −36.9 −1.6 −23.3 2.6 0.6

Whole day −33.5 −3.4 −14.9 7.5 4.1

RMSE

Morning peak 33.4 11.3 13.6 9.9 7.6

Nonpeak 16.9 8.2 12.7 7.3 6.9

Evening peak 134.9 14.0 85.1 22.5 21.1

Whole day 52.0 10.2 33.0 11.5 10.2

NRMS (%)

Morning peak 38.4 13.0 15.7 11.4 8.7

Nonpeak 44.4 21.5 33.3 19.1 18.1

Evening peak 38.8 4.0 24.5 6.5 6.1

Whole day 60.2 11.8 38.2 13.3 11.9

of the error correction coe
cient. �e revised KF-
HD model further outperforms the KF-ECC model,
because employing Historical Deviation as state vari-
able improves its accuracy. Integrating Bayesian com-
bination and the NR methods, the revised KF-BCNR
model yields the best accuracy among all three revised
KF models.

(2) Concerning the capability of tracking the dynamic
characteristics of real-time passenger �ows, the three
revised KF models also outperform the original
KF method. Again, the revised KF-BCNR model
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Figure 2: Prediction results in morning peak hours.

7:
00

7:
10

7:
20

7:
30

7:
25

7:
35

7:
40

7:
45

7:
50

7:
55

7:
15

7:
05

8:
00

8:
10

8:
20

8:
30

8:
25

8:
35

8:
40

8:
45

8:
50

8:
55

8:
15

8:
05

Time interval

0

50

100

P
re

d
ic

ti
o

n
 e

rr
o

r 
(%

)

KF

NR

KF-ECC

KF-HD

KF-BCNR

Figure 3: Prediction errors in morning peak hours.

improved the stability signi	cantly and yields the best
result.

(3) As a nonlinear regression method, the NRmodel gets
much better results than the original KF model. It is
even more accurate than the revised KF-ECC model
in some cases. However, the revised KF-BCNR is still
the most excellent model.

(4) �e comparisons among di�erent periods show that
the prediction performance during peak hours is
much better than during nonpeak hours.�e intrinsic
reason is that the passenger volumes during peak
hours are much bigger than those during nonpeak
hours, and the �uctuations of passenger �ows during
peak hours are much weaker than those during
nonpeak hours. Moreover, the much big magnitude
of passenger volume during peak hours also reduces
some error indices, for instance, MAPE, MPE, and
NRMS, because of the sum of actual passenger �ows
in the denominator.

(5) Prediction results during evening peak hours are the
most accurate in all cases, with theMAPE at just 4.9%
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Figure 4: Prediction results in nonpeak hours.
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Figure 5: Prediction errors in nonpeak hours.

and the NRMS at just 6.1%. �e direct reason is that
the passenger volume during this period is the highest
and the most stable among all the time intervals.

(6) Evaluation indices for the whole day are not very
satisfying, because the passenger volumes during
early morning and evening are very low and unstable,
which can be seen from Figure 8. �e very big errors
corresponding to these time intervals in Figure 9 also
indicate this phenomenon. �ese speci	c passenger
�ows greatly in�uence the prediction process and
cause the increases of corresponding error indices.

Generally, all the three revised KF models are rather
accurate and stable for on-line applications, especially during
the very important peak hours.

6. Conclusions

�is paper addresses three revised Kalman 	ltering models
regarding short-term rail transit passenger �ow prediction:
the revised KF-ECC model, the revised KF-HD model, and
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Figure 6: Prediction results in evening peak hours.
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Figure 7: Prediction errors in evening peak hours.

the revised KF-BCNR model. We 	rst present a revised KF-
ECC model by introducing the historical prediction error
into the measurement equation through an error correc-
tion coe
cient. Since the original state variable �uctuates
dramatically, we further employ the deviation between real-
time passenger volume and corresponding historical data as
a new state variable and derive a revised KF-HD model. For
more accurate prediction, we integrate both the Bayesian
combination technique and the nonparametric regression
method into the traditional KF model and formulate a
revised KF-BCNR model. �e bus Smart Card Data of line
13 of Beijing during one-month period are collected for case
study. �e reported prediction results based on the practical
data indicate that all three revised models are much more
accurate and stable than traditional methods. Moreover, the
revisedKF-HDmodel outperforms theKF-ECCmethod, and
the revised KF-BCNR model yields the best performance.
Further comparisons among di�erent periods show that
predictions during peak hours are much more accurate than
those during nonpeak hours, and forecast results during
evening peak hours are the most excellent ones. Since peak
hours are more important for rail transit operation and
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Figure 8: Prediction results in the whole day.
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Figure 9: Prediction errors in the whole day.
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management, all three revised KF models proposed in this
paper are accurate and stable enough for on-line applications.

Future potential research directions mainly consist of
the following aspects. �e 	rst is to transform the three
revised KF models to a short-term tra
c �ows forecast and
to testify their applicability. �e second is to further revise
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the models and algorithms for applications in the whole rail
transit system or large-scale road networks. �e third is to
explore the inherent interrelations among dynamic passenger
volume, real-time urban travel demand, and rail network
structure and to propose more logical prediction models
based on dynamic travel demand analysis.
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