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Abstract

This technical report consists of three short papers on Monte Carlo Markov chain

inference. The first paper, "How many iterations in the Gibbs sampler?," proposes an

easily implemented method for determining the total number of iterations required to

estimate probabilities and quantiles of the posterior distribution, and also the number

of initial iterations that should be discarded to allow for "burn-in".

The second paper discusses model determination via predictive distributions. The

paper advocates the standard Bayesian procedure that uses Bayes factors, and points

out that this can be implemented quite easily using sampling-based methods.

The third paper discusses issues in spatial statistics that use sampling-based meth

ods. in the Bayesian image restoration approach are discussed: the

modeling of spatial dependence, allowing for model uncertainty, the improper poste

rior distributions that arise in hierarchical modeling, and the modeling of local

aepenuence between counts it cannot be assumed observations are in

true rates.



How Many Iterations in the Gibbs Sampler?

Adrian E. Raftery

University of Washington *

Steven Lewis

University of Washington

April, 1991

Abstract

When the Gibbs sampler is used to estimate posterior distributions (Gelfand and

Smith, 1990), the question of how many iterations are required is central to its imple

mentation. When interest focuses on quantiles of functionals of the posterior distribu

tion, we describe an easily-implemented method for determining the total number of

iterations required, and also the number of initial iterations that should be discarded

to allow for "burn-in", The method uses only the Gibbs iterates themselves, and does

not, for example, require external specification of characteristics of the posterior den

sity, the method is described for the situation where one long run is generated,

areifeyel'alruns from. different startingip9illts.

M . ~ k : o v chain Monte Carlo schemes other than the

method is applied to several different posterior distributions, These include

a mtl!tival'iat:enorrnaJ. posterior distributi()n with independent parameters, a bimodal

"cigaJr-sJllal>edl" multivariate normal distribution in ten dimensions, and

cOlnp.lex 19()-dimellilio][lal posterior distribution arisingin spatial statistics, In

be achieved with 5,000 it

can frequently be reduced to less than 1,000 if the posterior tails

However, there are when



1 Introduction

was presented

WorksJlop on Bavesian Computation

worse

more rormar argument

The Gibbs sampler was introduced by Geman and Geman (1984) as a of simulating

high-dimensional complex distributions arising image restoration. The method consists

of iteratively simulating from the conditional distribution of one component of the random

vector to be simulated given the current values of the other components. Each complete cycle

through the components of the vector constitutes one step in a Markov chain whose stationary

distribution is, under suitable conditions, the distribution to be simulated. Gelfand and

Smith (1990) pointed out that the algorithm may also be used to simulate from posterior

distributions, and hence may be used to solve standard statistical problems.

The Gibbs sampler can be extremely computationally demanding, even for relatively

small-scale statistical problems, and hence it is important to know how many iterations are

required to achieve the desired level of accuracy. Here we describe and investigate a simple

method for doing this, first briefly mentioned in Raftery and Banfield (1991).

We focus on the situation where there is a single long run of the Gibbs sampler, as

practiced by Geman and Geman (1984) and Besag, York and Mollie (1991), for example"

Gelfand and Smith (1990) have instead adopted the following alogithm: (i) choose a starting

point; (ii) run the Gibbs sampler for T iterations and store only the last iterate; (iii) return

to (i). The choicebet'vVeenthetwowaysQfimplemel1ting the algorithm has not been settled,

and was the subject of considerable debate and controversy at the recent Workshop on

Bayesian Computation via Stochastic Simulation in Columbus, Ohio in February, 1991.

Intuitive considerations suggest that one longrun may well be more efficient. A heuristic

argument for this might run as follows. Consider the following two ways of obtaining S values

simulated from the posterior distribution. of Tth

value in a single long run of length N =ST. The second way is that of Gelfand and Smith

(1990). In first way, the starting point for every subsequence of length T is closer to a

draw from the stationary distribution than the corresponding point the second

the user. first a least, no

cnscussion at



essence of their IS we know, in the case of any individual problem,

wnetner a run has that combining results of runs

an assessment of the undenlymg uncertainty,

They illustrate their argument by showing that in the Ising model convergence can be quite

slow, This example refers to the 1O,OOO-dimensional binary state-space {-I, 1po,ooo, and

is thus untypical of the parameter spaces that arise in typical statistical problems, but it

should nevertheless be taken seriously, Here we suggest that combining internal information

from a partial run with properties Markov chains may provide an alternative way of

solving the problem, without sacrificing the appealing simplicity of using a single long run.

In particular, Markov chain theory provides results not just about ergodicity, but also about

the (geometric) rate ofconvergence to the stationary distribution, and the distribution of

sample means. However, the method can. easily be used when there are several runs from

different starting points.

2 The Method

We consider the specific problem of calculating particular quantiles of the posterior distribu

tion of a function U of the parameter O. We formulate the problem as follows. Suppose that

we wantto estimate P[U:S u IyJtowithin ±r with probabilitys, where U isa function of

O. We will find the approximate number of iterations required to do this when the correct

answer is q. For example, if q = .025, r = .005 and s = .95, this corresponds to requiring that

the cumulative distribution function of the .025 quantile be estimated to within ±.005 with

probability .95. This might be a reasonable requirement if, roughly speaking, we wanted

sampler for aninitiallvI iterations that we discard, and then for a further N iterations

Typical choices in the literature are A1 = 1,000, N = 10,000

iJV':'g,;:;;, York Mollie 1991). Our problem is to determine M; N, and k,

store use all N iterates, and

of which we

and k=

IS derived

it is not a Markov Neverthetess, it



be approximately a Markov chain for k sufficiently large.

No formal proof of this is presented here, but it does seem intuitively plausible. Here

a data-based method, described below, is used to assess whether assumption provides

a reasonable approximation for the case at hand. A proof might go something as follows.

The process {Zt} is ergodic and, if the underlying Markov chain is 4>-mixing in the sense of

Billingsley (1968), which will often be a direct consequence of the construction, then {Zt}

is also 4>-mixing with the same rate. Thus the maximum difference between P[Z?) = io I
zl~~ = it, z t ~ ] and p[Zlk

) = io I zl~~ = ill eventually declines exponentially as a function

of k, and so {Zlk
) } is arbitrarily close to being a first-order Markov chain in that sense, for

k sufficiently large.

In what follows, we draw on standard results for two-state Markov chains; see, for ex

ample, Cox and Miller (1965). Assuming that {Zt(k)} is indeed a Markov chain, we now

determine M = mk, the number of "burn-in" iterations, to be discarded. Let

p=(l-a a )
13 1-13

be the transition matrix for {ZIk)}. The equilibrium distribution is then 1r - (1rO,1rl) 

(a + 13)-1(13, a), and the i-step transition matrix is

p
l

= (;~ ;:) + a ~ 13 (~f3 -f3
a),

where ,.\ = (1- a - 13). Suppose that we require that P [ Z ~ ) = i I Z~k) = j} be within e of 1ri

for i, j = 0, L If eo = (1,0) and el = (0,1), then P [ Z ~ ) = i I ZJk) = j] = e.P'"; and so the

requirement becomes

,.\m < e(af3)
- max(a, 13) ,

which holds when

m = tn" = ~lo~g~~E;~

Thus M = m*k.

=1
n

IS

satrsned if

mean q

-r:5

we note

n



where <.p(.) is the standard normal cumulative distribution function. Thus we have N = ku",

To determine k, we form the series {Z?)} for k = 1,2,. . .. each k, we compare

first-order Markov chain with second-order Markov chain model, and choose the

smallest value of k for which the first-order model is preferred. We compare the models by

first recasting them as (dosed-form) log-linear models for a 23 table (Bishop, Fienberg and

Holland, 1975), and then using the BIe criterion, G2 -2 log n, where G2 is the likelihood ratio

test statistic. This was introduced by Schwarz (1978) in another context and generalized to

log-linear models by Raftery (1986); it provides an approximation to twice the logarithm of

the Bayes factor for the second-order model. One could also use a non-Bayesian test, but

the choice of significance level is problemmatic in the presence of large samples of the size

that arise routinely with the Gibbs sampler.

To implement the method, we run the sampler for an initial number of iterations, Nmi n ,

and use this run to determine the number of additional runs required, as above. The proce

dure can be iterated, in that once the indicated number of iterations has been run, we may

apply the method again to the entire run, reestimating a and {3 to determine more precisely

if the number of iterations produced was in fact adequate. To determine Nmi n , we note that

the required N will be minimized if successive values of {Zt} are independent, in which case

M = 0, k = 1 and

wer relates to accuracy on

\..U.LUUJ."""J. "'" distribution tunctron at the quantile,

rIS

a quantile ramer

1
N = Nmin = <'p-

1 (2"(1+ s))2q(1 - q)jr2.

For example, when q = .025, r = .005 and s = .95, we have Nmin = 3, 748.

We also note that the user is not required to use only every kth iterate; if all the iterates

are used the method proposed here will be conservative-in the sense of possibly overestimating

the number of iterations required. On the other hand, in the majority of cases that we have

examined, the preferred value of k was, in fact, 1. Also, storage considerations often point

to the desirability of storing only a portion of the iterates if this is reasonable.

The user needs to give only the required precision, as specified by the four quantities q,

r, sand e. Of these, far the most sensitive to r, since ex: ,-2.
be more natural to preCISIOn m the error



Table 1: Maximum nercent error in the estimated .025 quantile

r J.'V,. Percent error

(s=.95) N(O,l) t 4 Cauchy

.0025 14982 2 4 11

.005 3748 5 8 25

.0075 1665 8 13 43

.01 936 11 19 67

.0125 600 14 26 101

.015 416 19 37 150

.02 234 31 65 402

Suppose we regard a 14% error as acceptable, corresponding to an estimated .975 quantile

of up to 2.24 in the normal distribution, compared with the true value of 1.96. Then, if we

knew p(U I y) to have light, normal-like, tails, Table 1 suggests that r = .0125 would be

sufficiently small. However, with the heavier-tailed t4 distribution, r = .0075 is required

to achieve the same accuracy, while for the very heavy-tailed Cauchy, r = .003 is required,

corresponding to Nr.ni.n ~ 10,000.

This suggests that if we are not sure in advance how heavy the posterior tail is, r = 0005

is a reasonably safe choice (even for the Cauchy<it is not catastrophic). It also suggests that

the present method could be refined by using the initial set of Gibbs iterates to esttmate

the asymptotic rate of decay of the posterior tail nonparametrically with methods

those of Hall (1982), and then choosing r in light of the estimate, perhaps by referring to

r-distribution with the appropriate degrees of freedom. At.'first sight it might <appear

suspect that this would not be a real solution, and that the problem would reappear

the results were transformed back to scale on which quantity of actual interest

measured.

3 Examples

now

results are "lhn,vJn



Table 2: .I.U:::;::;Ul'ul:> for the five examples

Example M k N F(F-I(.025))

1. Indep. normal pars. 3 1 3,914 .023

2. Bimodal 4 1 4,256 .028

3. Cigar 36 3 26,916 .025

4. Spatial UI 3 1 4,052 .024

5. Spatial smoothness 40 2 24,346 -

requirements, not shown here, were qualitatively. similar.

Example 1: Multivariate normal distribution with independent parameters

In this simulated example the method gave k = 1, a very small number of burn-in iterations

(M = 3), and a value of N which is only slightly larger than the theoretical minimum (3,914

as against 3,748). Also, the result is within the specified bounds. While this is very much

as one would expect, it is also a reassuring check on the performance of the method.

Example 2: A bimodal posterior distribution

Here we sirnulated,using the Gibbs sampler, from a mixture of two bivariate normal distri

butions, namely
1 1
2BV N (p,1,E) + 2BVN(P,z, 1:,),

where P,I = (-l,l)T, P,z = (l,O)T and

.9 ·i)·

IS vv 1."li.i.i.i.of can

The joint distribution is quite strongly brmoaat, although the marginal distributions of

two are not. of



Example 3: A cigar in ten dimensions

In order to investigate the effect of high posterior correlations between parameters, we

the Gibbs sampler to simulate from a Hl-dimensional multivariate normal posterior distribu

tion where each component had zero mean and unit variance, and all the pairwise correlations

were equal to .9. This is a highly correlated distribution, where the first principal component

(proportional to the mean of the parameters) accounts for 91%of the variance; the posterior

distribution is concentrated about a thin "cigar" in lfl-space. Note that this is a very poor

parameterization for the Gibbs sampler.

The first 1,000 simulated values of the first parameter are shown in Figure 2. The results

of applying the method are strikingly different from what we saw before. The amount of

burn-in is no longer negligible, although it is not huge (M = 36). The dependency structure

of the binary sequence is more complicated than before, leading to k = 3, and the level of

dependency is high, so that the required N is very large, at 26,916. After that number of

iterations, the result was accurate. This phenomenon seems to be due to the high level of

dependency in the sequence, and not primarily to the sampler being slow to converge to the

desired distribution.

It is of interest to consider the situation after 6,700 iterations; this is a large number, but

substantially less than the prescribed 27,000. By that point, diagnostics based on changes

ia.cumulative estimates suggest the Gibbs sampler to have converged. However, after 6,700

iterations, 1- F(P-l(.975)) = .045, compared to the true value of .025, which is well outside

the prescribed tolerance, and the empirical .975 quantile was 2.22 instead of 1.96. However,

the present method indicated clearly that the number of iterations was insufficient to achieve

the desired accuracy.

illustrates the importance of parameterization for the Gibbs sampler

(see also Wakefield, 1991). A parameterization that leads to a highly correlated posterior

distribution like the one considered this example is a very poor one for the Gibbs sam-

pler, and to It seems likely that even a

to at a five-fold the required llUJ.J..UJ'C:;J.

Example 4: An 190-dimensional posterior distribution from spatial statistics

a disease



corresponding observed number of cases. They assumed Yi to have a Poisson distribution

with mean Ciex" where Ci is number assuming constant risk. They let Xi = Ui+Vi

where the Ui have substantial spatial structure represented by the joint density

where i '" j denotes the fact that zones i and j are contiguous and r;, is a spatial smoothness

parameter. The Vi are assumed to be generated by Gaussian white noise with parameter >..

The main aim is to find the posterior distribution of Xi, but other features of the underlying

mechanism may also be of interest.

Here we show only the result for Ul for thyroid cancer deaths in 94 departements of

France; the results for the other Ui and for the Vi are similar. The Gibbs sampler here

involves 190 parameters: the 94 ui's, the 94 vi's, r;, and >.. The first 1,000 iterations are

shown in Figure 3. The result is very similar to that for Examples 1 and 2. The number in

the last column was obtained by running the Gibbs sampler for a total of 11,000 iterations,

and treating the value obtained from this complete run as the "true" value.

Example 5: The spatial smoothness parameter

We now consider separately the spatial smoothness parameter r;, from Example 4. The first

1,000 Gibbs iterations are shown in Figure 4. The results are quite different from those

for Ul, and are somewhat similar to those for Example 3. The dependency structure in the

induced binary sequence is complex, leading to k = 2, and the dependency is high, leading to

N = 24,346. The amount of burn-in, however, while not negligible, is fairly small (lv! = 40).

It was not feasible to determine the correct aJ1swerinthis case.

While the difficulty with Example 3 could probably be resolved by appropriate reparam

eterization, the problem here seems more fundamental. Here the problem is due to the fact

that r;, sometimes "stuck" close to zero hundred iterations at a This is

because a of r;,

escape it a rare event.

a dirterent variation on Metropohs dynamics



4 Discussion

Of

'tTlp'ur,,'r! as determining

iterations IS reausncauy

our I I l t ~ L - l l O U

We have proposed a method for how many iterations are necessary in the Gibbs

sampler. This is easy to implement and does not require anything beyond an initial run from

the sampler itself. It appears to give encouraging results in several examples. However, much

more thorough investigation is required for various kinds of difficult posterior distributions.

For "nice" posterior distributions, the examples suggest that accuracy at the level speci

fied for illustration in this paper can be achieved by running the sampler for 5,000 iterations

and using all the iterates. However, when the posterior is not "nice", the required number

can be very much greater. Example 3 suggests that poor parameterization can be one reason

for massive inefficiency of the Gibbs sampler, and that even simple-minded reparameteri

zation may have the potential to lead to substantial savings. Problems may also arise in

hierarchical models where the Gibbs sampler sometimes has a tendency to get "stuck"; this

is illustrated in Example 5.

Our experience suggests that the present method diagnoses such problems fairly welL

When the prescribed number of iterations is much larger than Nrnin , there seem to be two

ways to proceed. One is simply to run the sampler for the specified number of iterations; this

seems the best course when iterates are computationally inexpensive. Otherwise it may well

be worthwhile to reparameterize or to use a different Markov chain Monte Carlo scheme.

It has been common practice when running the Gibbs sampler to throw away a substantial

number of initial iterations, often on the order of 1,000. Our results here suggest that

this may not usually be necessary, and indeed, will often be quite wasteful. This is not

too surprising given the geometric rate of convergence of Markov chains to the stationary

distribution. ·When large numbers of iterp,tionswere required, this was due to the high level

of dependence between successive .iteratesrather than to the failure ofthe Gibbs sampler to

COIIVerl2'e initially.

Thus, we suspect that, for typical statistical problems, the uncertainty due to the initial

Gelman Rubin with their methods will be a relativetv



specifically, if there are be R runs from different starting then

run should have NR-I M iterations, the M are two

methods could be our approach of

required iterations, and using the method of Gelman and Rubin (1991), both as a further

check for convergence, and also to incorporate uncertainty about the starting point.

It has also been common practice to use only every 10th or 20th iterate and to discard

the rest. The results here also suggest that in many cases this is rather prolifigate, Indeed,

in the "nice" cases, the dependency between successive iterates is weak and it makes sense

to use them all, even when storage is an issue.

An alternative approach to determining the number of literations starts by viewing the

sequence of Gibbs iterates as a standard time series (e.g. Geyer, 1991; Geweke, 1991; Hills

and Smith, 1991). If the quantity of interest is the mean of a function of the series, then the

variance of such a mean is equal to the spectrum of the corresponding series at zero, which

can be estimated using standard spectral methods. This requires the user to specify both a

spectral window and a window width, and the estimate of the spectrum at zero can be quite

sensitive to these choices.

Obtaining posterior quantiles defining Bayesian confidence intervals is often a key goal

of an analysis. When this is the case, the present method exploits the natural simplification

that arises from the implieddichotpmization.Thus it avoids the need to specify quantities

other than the required precision (such as spectral window widths), it yields a simple estimate

of the number of "burn-in" estimations, and it provides a practical lower bound, Nmi n , on

the number of iterations that is known before the Gibbs sampler starts running.

It may be argued that often all that is required is a posterior mean and standard deviation,

and that these/are not quantiles. If this is indeed the .case, and there is really no interest

in the shape of the posterior distribution, then there may well be little point in running the

Gibbs sampler at all, as cheaper methods are frequently available for posterior means

standard deviations. However, mean and standard deviation are often used to

provide a summary of the In a robust measure tocanon,

as may to mean as a deseriptrve measure

posterior IS it

posterior mean or minus

posterier stanaara deviation 18 as amedran is a quaatiie,

two posterior ::iLd'UU,dd.\

seems

ootammg an approximate connaence lT1tb"T'V::l.l



more robust measure than the posterior standard deviation, such as a scaled version

inter-quartile range; again this is defined by quantiles. Thus, appropriate summaries

posterior distribution are often defined in of quantiles, even when at first

that a mean-like quantity is required.

One important message is that the required number of iterations can be dramatically

different for different problems, and even for different quantities of interest within the same

problem. Thus, it seems unwise to rely on a single "rule of thumb", and it would seem

be important to use some method, such as the one proposed here, to determine

of iterations that are needed for the problem at hand.
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Figure 3 - Spatial example: u1
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Discussion of "Model determination using

predictive distributions with implementations via

sampling-based methods", by A.E.Gelfand,
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1 Introduction and summary

the arguments against

model probabilities.

It is a pleasure to congratulate the authors on an interesting and important paper that

points out how sampling-based methods can make Bayesian diagnostics for model checking

routinely available. Bayesian diagnostics are often similar to frequentist ones, but they have

the great advantage of being systemmatically available through the predictive distribution,

even for complex models. This is in contrast with frequentist diagnostics, which have to be

developed from scratch for each new class of models, often requiring considerable ingenuity.

The interpretation of Bayesian diagnostics is somewhat glossed over by the authors, however.

I •am ullconvinced by

standard Bayesian procedure, namely that based on posterior

results indicate that posterior model probabilities can be readily

the standard is based

on sense.

2 Bayesian diagnostics for model checking

sampuna... oaseo methods can to



great advantage of Bayesian diagnostics is that they are available quite generally from

predictive distribution, unlike their frequentist counterparts, which can require considerable

ingenuity for each new class of models.

The authors have, however, rather glossed over the interpretation of their diagnostics.

For example, in the nonlinear regression example, they conclude that points 11 and 14 are

troublesome but that, an told, both models provide an adequate fit. What is the basis for

this conclusion? Nothing is suggested beyond eyeballing the results, but there are certainly

more precise criteria implicitly at work here, and they should be made explicit.

I would suggest that diagnostics not be used to reject the current model, but rather

to guide the search for better models by indicating the direction of search, or the way in

which the current model is inadequate. If this leads to the specification of an alternative

model, then the current model can be compared with alternative one using the posterior

odds ratio (or posterior expected utilities if these can be specified); the current model will

not be rejected unless the alternative one is decisively preferred. You don't abandon a model

unless you have a better one in hand.

Even viewing diagnostics this way, as an exploratory tool rather than as a basis for

inference, we still need some yardstick to calibrate our inspection of the results. Here it does

seem that frequentist calculations are useful, and I suspect that such calculations implicitly

underly the authors' interpretation of the results in their Table 2.

3 Model comparison: In support of the standard Bayesian

procedure

The standard Ba.yesian procedure isgiveri by the authors' equation and amounts to

basing inference on the posterior model probabilities. They raise two objections to this

procedure, which I will now briefly discuss.

3.1 "Bartlett's paradox"



data set, can set large enough that data zero. Some prior information

is almost available that will prior variance /2, and it is always important

to investigate ofp(Ml IY) to changes in /2. In practice, p(Ml I Y) tends

to be rather insensitive to changes in /2 over a wide range (see, e.g., Raftery, 1988). Thus,

Bartlett's paradox seems to me to suggest that the use of highly diffuse priors is not a good

idea for model comparison.

It may be objected that it is desirable to have a "reference" procedure for model compari

son. However, in my applied experience, reasonable proper priors are often readily accepted,

especially when backed up with a serious sensitivity analysis; the likelihood is often the more

controversial part of the analysis.

3.2 The more serious criticism

The authors write:

"A more serious criticism is that, in doing practical model fitting, we doubt that

anyone including Bayesians would select models in this fashion [i.e. using the

standard Bayesian procedure - AER.] One doesn't really believe that any of the

proposed models are correct whence attaching a prior probability to an individ

ual model's correctness seems silly. Moreover the selection process is typically

evolutionary. Initially a few models (sometimes, in fact, a single one) are con

sidered. These are examined and modified with comparisons often made in pairs

until a satisfactory (in terms of both parsimony and performance) but one would

certainly not say 'best' choice is made."

sense.aooptea para,dIJlCIn, or collection

a coueeuon

Attaching a prior probability a model-is not any sillier than science as traditionally

practiced. Most of science is an attempt to find a model that predicts the observations to

date well; it does not to found such a thing or "correct

means essentially condi-

Of course, if one not so conamon,

success argues



of M j , is (predictive) probability of data the model and so is preciserv

right quantity for theory defined by lvlj •

Consider, for example, question of whether smoking causes lung cancer, and suppose

that the currently accepted way of addressing this issue is within the framework of the logistic

regression model, 10git(Pr[lung cancer]) = ,1[smokes) ;3Tz , where x is a vector of control

variables. Conditionally on this framework (or "paradigm"), the issue becomes a comparison

of the two models M1 : , = 0 and M 2 : , > O. Then a scientist's natural language statement

"I am 90% sure that smoking causes lung cancer" is equivalent, given the framework, to

the statement that p(Md = 0.1 and p(M2 ) = 0.9. This does seem to make sense even if,

unconditionally on the framework, p(Mt} p(Nf2 ) = o.
Of course, the natural language statement itself can be viewed as not being about "truth",

but rather about future data and trends in scientific opinion. It might mean, for example, "I

am 90% sure that future data will be better predicted by lv12 than by M," , or "I am 90% sure

that within T years the belief that smoking causes lung cancer will be generally accepted";

note that the latter two statements can be given standard betting interpretations. For an

example where scientists might attach substantial prior probability to the smaller ("null")

model, consider cold fusion.

The authors describe the standard Bayesian procedure as a model selection procedure,

but it is considerably richer than that. When comparingtwo models that genuinely represent

rival scientific hypotheses, the posterior odds ratio provides a summary of the evidence for

one model against the other; unless the evidence is very strong, one model will not necessarily

be selected.

Often, however, model form is not the object of primary scientific interest. The authors

did not say what the main scientific-question was in their growth curve example, but I suspect

that it was not the choice between the two models that they considered. If interest focuses

instead on some other quantity, 6, as the next observation, or the asvmntote.

setecuon is a false and IS to account

an nnmediate

J
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If posterior probability of one of the models is close to unity, or if the posterior

distribution of L\ is almost same for models that account for most of the posterior

probability, then p(L\ IY) may be approximated by conditioning on a single model, namely

by p(L\ I Y, M i ) for some i. This seems to be the main situation in which model selection,

as such, is a valid exercise. The "evolutionary" process to which the authors refer is

reality an informal search method for finding the main models that contribute to the sum

in equation (1), and in this sense may be viewed as an approximation to the full (standard)

Bayesian procedure. Clearer recognition of this might lead to more satisfactory model search

strategies.

4 The standard Bayesian procedure and sampling

based methods

The key quantity for the implementation of the standard Bayesian procedure is the marginal

likelihood, f(Y I M j) = f f(Y I OJ,X,l\;fj)7r(Oj)dO j. The authors say that the Gibbs sam

pler does not readily produce an estimator of f(Y I M j ) . However, Newton and Raftery

(1991) have recently pointed out the existence of a simple and general such estimator. They

show that, given a sample from the posterior, the marginal likelihood may be (simulation

consistently) estimated by the harmonic mean of the associated likelihood values. This result

applies no matter how the sample was obtained, whether directly using the analytic form

of the posterior, by importance sampling, the Gibbs sampler, the SIR algorithm or the

weighted likelihood bootstrap. There can be stability problems with this estimator, and

slight modifications that avoid these are discussed in the cited reference.

The standard Bayesianprocedure isapredictive approach since-the marginal likelihood

can be written
n

f(Y I M j) = II f(Yr. I y r
-

I
, M j),

r=I

(2)

1) observations,

conoiuonar densities on the rrznt-nanc

ssanaara tlaveslan procedure IS a "prequential

n l ' ( ~ U 1 J " t " ' Q an alternative

same
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also even if the are permuted.

even if not impose a natural ordering on observations, "prequential

obtained by sampling set of all permutations of observations

and averaging over diagnostics based on the conditional densities on the right-hand side of

equation (2).

If one replaces the conditional densities on the right-hand side of equation (2) by densities

conditional on all the observations except the rth one, one obtains the quantity that the

authors denote by D4 = n~=l d4r • This could be called a "pseudo-marginal likelihood" , by

analogy with the pseudo-likelihood concept introduced by Besag (1975). Using D4 rather

than f(Y I 111j) is similar to using the pseudo-likelihood rather than the likelihood when

the latter is available, which does not seem to be a very good choice. As an argument in

favor of D 4 , however, the authors point out that with improper priors D4 is defined whereas

f(Y I Mj) is not. This strikes me as a disadvantage of improper priors rather than of the

standard marginal likelihood.

I will attempt to summarize the various analogies and equivalences discussed in the

following table.

Prequential analysis Cross-validation

Likelihood Pseudo-likelihood

Marginal likelihood "Pseudo-marginal

(J(Y IM j ) ) likelihood" (D4 )

Posterior model probability/ Fixed-level significance

Bayes factor test

BIC (Schwarz, 1978) AIC, c,

difference can

Entries in the same column· are regarded as being related, either by being motivated

by same approach or by being asymptotically equivalent. Entires in the same row are

"'''''l''t:.rl as to the same task or concept. I prefer the entries in the left

authors seem to incline to the entries
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1 Introduction

It is a pleasure to congratulate Julian Besag, Jeremy York and Annie Mollie on a superb

paper that will surely take its place as yet another of Julian Besag's greatest hits, and as a

first hit for the other two authors!

They argue that many spatial statistics problems can appropriately be viewed as problems

in image restoration, and that image restoration problems are best solved by postulating a

Markov Random Field model, and then calculating the posterior distribution of the quantities

of interest using the Gibbs sampler. This is an appealing argument and the examples are

encouraging. One possible difficulty arises from the fact that the models may

same raree-scare properties as data are used to <tn<.lnr""" some

section 3

na'veslan unage restoration aeproeen it is

sampter are required, we propose



a determining this in section In section 3 we an alternative

Bayesian image restoration approach for the archeology example, based on matnemat

ical morphology. In section 4 we discuss several issues in the modeling that underlies the

Bayesian image restoration approach: the modeling of spatial dependence, allowing for model

uncertainty, the improper posterior distributions that arise in hierarchical Bayes modeling,

and the modeling of local dependence between counts when it cannot be assumed that the

Yi'S are independent given z ,

2 How many iterations in the Gibbs sampler?

The authors point out that the Bayesian image restoration approach is not yet feasible for

typical images containing 105 or 106 pixels, although it can be implemented for the problems

they consider, involving 100-300 "pixels". The main reason for this is the large number

of iterations required by the Gibbs sampler. For instance, in the disease risk example, the

authors ran the Gibbs sampler for 11,000 iterations, discarding the first 1,000, and storing

every 10th or 20th value thereafter; these numbers were fairly arbitrarily picked initially,

although they appeared to give reasonable results. As a practical matter, it would seem

desirable to run the Gibbs sampler for the smallest number of iterations necessary to attain

a required level of accuracy, and we now outline an approximate way of determining what

that is.

The validity of the Gibbs from the fact each cycle of

one a MaXKC)V

an prO'nrllr tneorem appnes x

one a
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tonowmz atgonttnn: (i) choose a run the Gibbs for T rterations

and store only last (iii) return to (i). relationship of this to

the theory seems problemmatical, and here we consider only the case of a single

long realization.

We consider the specific problem of producing results such as those in the authors' Figures

7 and 8, namely the calculation of particular quantiles of the posterior distribution of a

function of z. We formulate the problem as follows. Suppose that we want to estimate

P[U ::; u I y] to within ±r with probability 5, where U is a function of x, vVe will find

the approximate number of iterations required to do this when the correct answer is q. For

example, if q = .025, r = .005 and 5 .95, this corresponds to requiring that the cumulative

distribution function of the .025 quantile be estimated to within ±.005 with probability

.95. This might be a reasonable requirement if, roughly speaking, we wanted reported 95%

intervals to have actual posterior probability between .94 and .96. We run the Gibbs sampler

for an initial M iterations that we discard, and then for a further N iterations of which we

store every kth (in their section 4 the authors use M = 1,000, N = 10,000 and k = 10 or

20). Our problem is to determine M, N, and k.

We first calculate Ut for each iteration t, and then form Zt = b(Ut > u), where b(.) is

indicator function. {,zt} isa binaryO·J process that is derived from a Markov chain

by marginalization and truncation, but it is not itself a Markov chain. Nevertheless, it

seems in {Zt} falls off fairly rapidly with

if we

k sutllcle:atly on standard

we now determine



of "burn-in" iterations, to be discarded. Let

be the transition matrix for {Z1k
) } . The equilibrium distribution is then 1r

(0: + ,8)-1({3,0:), and the i-step transition matrix is

where A= (1 - 0: - {3). Suppose that we require that P [ Z ~ ) = i I Zgk) = j] be within e of 1ri

for i,j = 0,1. If eo = (1,0) and el = (0,1), then P [ Z ~ ) = i I Zgk) = j] = e.P'"; and so the

requirement becomes

Am < e(o: {3).
- max(0:, {3) ,

which holds when
log ( e(a+l3) )

* Dlax(a,l3)
m=m = .

log A

Thus M = m*k.

To determine N, we note that the estimate of P[U ::; u ! D] is Z~k) ~ L~=l Z?). For

n large, Z ~ ) is approximately normally distributed with mean q and variance l n ~ 2 ; ~ : I J

Thus the requirement that P[q - r ::; Z~k) ::; q +r] = s will be satisfied if

n = n* = --'--'-'---",.
{~

IS function. we

k 1, we compare



test This was introduced in another context

roz-unear models by Raftery (1986); it provides an approximation to the logarithm

the Bayes factor for the second-order model. One could also use a non-Bayesian test, but

the choice of significance level is problematic the presence of large samples.

We applied the suggested method to series of 11,000 iterations of the Gibbs sampler for

u and v for each of 12 departements based on the data of the authors' Figure 4; the Gibbs

sampler output was kindly supplied to us by Jeremy York. We first give illustrative results

with q .025, r = .005, s = .95, and e = .001. For all 24 parameters considered, k was

either 1 or 2, M was never more than 6, and N was always 9,034 or less. However, for the

spatial smoothness parameter /'i" the situation was quite different and the requirements of

the Gibbs sampler were larger: k = 5, M = 65 and N = 42,500.

The authors' Figure 6 implicitly requires that the .1 quantile of e" = eU +v be correct to

one decimal place with high probability. This implies, approximately, that for each u and v

we specify q = .1, r = .012 and s = .95, which yielded k s: 3, M s: 12 and N s: 8,300 for all

24 parameters considered. In practice, the method would be implemented by first running,

say, 1,000 iterations and then deciding on k, k! and N on the basis of those. In the present

case, this appeared to work quite well.

One conclusion is that the number ofiterations required can vary considerably depending

on what is being estimated. Here, far more iterations are required for the overall spatial

smoothness parameter If, than for at an node. does not seem

use so IS pronanrv

Indeed, it is

not

our caicuiauons never mdrcated it



etnciently, and to Bayesian u U ' ' ' ' f ' , ~ restoration feasible for problems. The

computer code used to carry out calculations is available from by

electronic at raftery@stat. washington. edu.

3 Using morphology to locate archeological sites: The

EP algorithm

The problems of locating archeological sites in section 3 can be regarded as one of locating

and finding the boundaries of objects in the image, in this case sites of previous activity. For

comparative purposes, we apply a different technique based on mathematical morphology,

known as the EP algorithm, that was originally developed for locating ice floes in satellite

images (Banfield and Raftery, 1989).

The EP algorithm consists of two parts: erosion and propagation. The erosion part of the

algorithm, which identifies the potential edge elements, is a standard application of ideas

in mathematical morphology (Serra, 1982). The algorithm is iterative and operates on a

binary image consisting of objects (sites of activity) on a contrasting background. At the

first iteration, if a pixel is classified as "active" and a specified subset of its neighbors is

inactive, the pixel is "deactivated" and becomes inactive. At the second iteration, the same

operation is performed on the image resulting from the first iteration, and- so on. The edge

elements consist of the pixels "deactivated" at the first iteration. The propagation part of the

algorithm track of the to which an edge pixel belongs by locally propagarmg

object as it is eroded.

ure are



om the EP algorithm
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posterior probabilities Figure 2

are well away 0 or 1, and many of are border pixels for as

serve, any spatial procedure is of doubtful value. Note the EP algorithm uses

only the naive classification, and does not, the Bayesian image restoration method,

use the full original data.

The EP algorithm has advantages and disadvantages compared to the Bayesian image

restoration method: it is much faster but yields less information. The EP algorithm involves

only about 10 iterations here..each of which consists only of small integer additions, while

the Bayesian image restoration method uses 15,000 iterations each of which involves one

exponentiation per pixel. Thus we estimate that the Gibbs iterations take at least 1,000

times, and perhaps 10,000 times as much CPU time as the EP iterations. On the other

hand, the Bayesian image restoration method does have the important property of providing

a statement of uncertainty in the form of posterior probabilities at each pixel.

However, we do wonder about the precise status of this statement of uncertainty. Markov

random field models such as that on which the analysis is based often have a substantial

probability of producing infinite one-color patches, in which case typical realizations of {p(x)}

will not resemble the true scene. This is known as the phase transition phenomenon and is

discussed, for.example,hy Besag (1986). One consequence is that the prior may be

concentrated on uniform images, and one might expect this to bias the posterior towards

too would authors' on these I J V j ' L L ~ " ' .

4 Modeling issues

4.1 Modeling the spatial dependence



rectangular array of pixels, such as the French departements. As a historical tootnote,

regularity of the administrative map of France is due to Napoleon, who laid it out in the

early nineteenth century in such a way that a man on horseback could reach any part of a

departement in a day's ride.

However, we wonder whether the specification (4.1) would be as satisfactory for much

more irregularly spaced arrays. One example is the Standard Statistical Metropolitan Areas

(SMSAs) of the United States, where the "neighbors" are dose together in the North-East,

but much further apart in the rest of the country.

An alternative but related specification has been developed in geostatistica as the basis

for the so-called "kriging" method (Journel and Huijbregts, 1978). This implements the

idea that dependence decreases with distance. The form of the dependence is described by

the semivariogram, 1(h) = !Var[u(s) - u(s +h)), where u(s) denotes the value of u at a

location s. If the covariance function, C(h), exists, then 1(h) = C(O) - C(h). If V is the

resulting covariance matrix of the u/s, and the u/s are assumed to be jointly Gaussian, then

(Ui I U_i) rv N( Ui, aD, where Ui = L-j aijUj is the best linear predictor of Ui and 0-[ is its

variance.

This may provide a more systemmatic basis for the choice of the quantities {aij}, which

playa role similar to that of the {Wij} in equation (4.1). Another feature is that when, as

in the disease risk example, data correspond to areas rather than to points, the spatial

dependence can account of this This is done by a semivariogram

pomts, as CLUUV'C. mtegratmg over areas to nT'n,u,n,,,,

even moderate n matrices,



lVl,tth.er<:m", or spherical, semivariogram,

!(1:1)3} Ihl s a

[h] > a,

then many of the entries in V will be zero, and this can be used to reduce computation

involved in calculating the {aij}. Also, most of the {aij} will be close to zero, and they

could be set to zero without bad consequences, leading to an effective set of neighbors for

each pixel, not necessarily restricted to the contiguous zones. In addition, the {aij} have

to be calculated only once for each value of ("', A) considered, remaining the same for each

iteration of the Gibbs sampler. This suggests advantage to the strategy adopted by the

authors for the archeological example, where the parameters of the prior were updated much

less frequently than the values at the individual nodes.

These are tentative and untested ideas. However, the notion that the spatial modeling

methods developed in geostatistics could be combined with the Bayesian image restoration

methods proposed in the present paper may be a potentially fruitful one.

4.2 Model uncertainty

Several modeling choices are made in the authors' examples. These include the form of

rjJ(z), namely whether it should be proportional to Z2 or to Izl, which covariates should be

included t = AO, the way the {Wij} are defined, and whether u and v should both be

present. The authors, in common with most statistical modelers, have chosen a model

drawn COIICl11Sl()llS condrnonattj on selected model.

condrtronar on
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::';uPPI)Se that m 1 models Mo, MI, ... , are being considered. In the present context,

might correspond, for example, to different choices of ¢J(')' {Wij} and covariates.

if il is a quantity of interest in the analysis, we can take account of model uncertainty quite

simply by basing inference on the unconditional posterior distribution of il,

m

p(ill y) = I:p(ill u, Mk)p(Mk I y),
k=O

(1)

where p(Mk I y) is the posterior probability of model Mi: This is a weighted average of the

posterior densities of il under each of the models individually, weighted by their posterior

probabilities. It will be well approximated by p(ill y, Mk*), i.e, by conditioning on a single

selected model Mk*, only if p(Mk* I y) ~ 1, or if the posterior distributions of il from the

models with non-negligeable posterior probability are similar.

To calculate the posterior probabilities p(M» I y) we note that

In equation (2), p(Mk) is the prior probability of Mk and

r

p(y IlVlk) Jp(y I (h, Mk)p(Ok IIVh)dOk,

(2)

(3)

where Ok is the possibly vector parameter of Mk and p(Ok I Alk ) is its prior density. In

the present context, this can be implemented by noting that x can also be included in

equation (3), yielding

=11
can

A different approach



Stetter, 1990).

implementation of the suggested approach to model uncertainty using equations (1),

(2), (4) and (5) does not seem computationally prohibitive. At most, the computation is

linear in the number of models that are fully analyzed, multiplying the required CPU time

by about 2(m +1). However, there are several possible ways of reducing this. For example,

the Gibbs sampler could be run in parallel on all:the models. Also, an initial short run of

equation (5) could be used to identify those models with substantial posterior probability,

and a longer run restricted to those models then done to evaluate p(Li. I y) more precisely.

sampler is to mclude a model indicator as an addrtional parameter

4.3 Improper posteriors in hierarchical Bayes modeling

In the authors' equation (4.5), the use of the obvious "non-informative" or scale-invariant

prior for K and '\, p(K,'\) ex: ,.;-1,\-1, leads to an improper posterior distribution. As the

authors point out, this is a common feature of Bayesian hierarchical models in general. It

arises, for example, even in the simplest normal empirical Bayes model (Morris, 1983) where

= 1, .. . N).

(6)

(7)

Then with the standard vague prior, p(J-L, V, A) ex: V-I A-I, the posterior p((}j I y) is improper.

authors mention of a neignoomcoa
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specified by equations (6) and (7). He reparameterized the model, S = V +A

S = Var(Yi I Il, S, T), and the prior P(Il, S, T) ex: S-1 leads to a proper

posterior while retaining desirable scale-invariant property of the standard prior.

By analogy, this suggests that in the present context we consider Var(Yi IU_i, «, A), which

is approximately equal to (t + :i +A) when x and Aare small and c; is large, as here. This

suggests specifying the prior in terms of a = ~ + ~ + A and T = A/a, where an overbar

denotes the average over all pixels. The natural choice is p(a, T) ex: a-I, corresponding to

p(n, A) ex: (~+ i A) -2. This is an improper prior which retains, at least roughly, the

desired scale-invariance properties, but does not exhibit the behavior near the origin that

leads to impropriety. This prior may still lead to the Markov chain defined by the Gibbs

sampler having an absorbing state, and one could multiply it by the expression in the authors'

equation (4.6) to avoid this.

4.4 Local dependence between counts

The authors' model for the disease risk example assumes that, conditionally on the true

relative risks Xi, the observed numbers of cases Yi are independent Poisson random variables,

arguing that this is usually reasonable when the disease is non-contagious and rare. If

the disease is contagious, however, it seems likely that the's will be dependent, even

conditionally on x. Even if the disease is non-contagious, it seems possible that the yi,'s

be dependent. For example, if a disease is genetically transmitted, this could lead to 1:;!J<:Ll,I<:Ll

clustering even IS COIISLi:lIlL over If dependence IS present,

example, to overstate

to account oepenuence is to



cnessooard-uae pattern, which seems unsatisfactory

it can represent;

between Poisson random variables that draws on ideas first developed in the time

We would like to suggest another possible way of representing such spatial dependence

IS

context. The mixture transition distribution (MTD) model for a stationary time series {Zt}

taking values in an arbitrary space Z is defined as follows (Raftery 1985a, 1985h; Martin

and Raftery, 1987). Suppose that (Vi, JiJli) (i 1, ... ,p) is a set of bivariate random vectors

taking values in Z .x Z,. with conditional!densities fi(V I w) with respect to some measure,

where the marginal distribution of Vi is the same as that of Wi for each i = 1, ... ,po Then

the conditional density of Zt given Zt-b' .. , Zt_p is given by

p

p(zn IZn-l"",Zn_p) = LAdi(zt IZt-i),
i=l

(8)

where I: Ai = 1. This can represent time series with arbitrary marginal distributions taking

values in arbitrary spaces; in the discrete-valued case it fits data well, is physically motivated

and is analogous in several ways to the standard autoregressive model. To specify a Poisson

time series model, all that is needed is a bivariate Poisson distribution such as that of Holgate

(1964) with mean f.l and dependence parameter (, which yields

Ji(v Iw) = f(v Iw) = (9)

f'Ol:ssc,n means are constant c·,

to rentaee a

sampter macnme can



the corresponding Peisson cumulative drstrtbution runcnon. be

I-",",,"'nr,~ cumulatrve distrrbution function corresponding to Ci we model z; as

Z ' -t - If the expected counts are very small, then this will not be quite accurate

due to the discreteness, and an exact solution may be obtained by allowing

of z; on to be stochastic.

dependence

One difficulty with this suggestion is that the conditional distributions defined in this

way do not define a valid joint distribution for the y;'s, by the Hammessley-Clifford theorem

(Besag, 1974). However, it seems likely that any joint distribution for Poisson random

variables that does satisfy the Hammersley-Clifford theorem will not allow a sufficiently

broad range of positive dependence. The MTD model suggested here may well have the right

local conditional dependence structure, while distributions that do satisfy the Hammersley

Clifford theorem will often have undesirable large-scale properties as well as unsatisfactory

local properties.

one may ask whether conditional distributions such as that specified by the MTD

model that do not satisfy the Hammersley-Clifford theorem might not, nevertheless, provide

useful operational procedures. Besag (1986) refers to this possibility, and we would appreciate

the authors' current views on it.
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