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Abstract: The image of expressway asphalt pavement crack disease obtained by a three-dimensional
line scan laser is easily affected by external factors such as uneven illumination distribution, en-
vironmental noise, occlusion shadow, and foreign bodies on the pavement. To locate and extract
cracks accurately and efficiently, this article proposes a three-stage asphalt pavement crack location
and segmentation method based on traditional digital image processing technology and deep learn-
ing methods. In the first stage of this method, the guided filtering and Retinex methods are used
to preprocess the asphalt pavement crack image. The processed image removes redundant noise
information and improves the brightness. At the information entropy level, it is 63% higher than
the unpreprocessed image. In the second stage, the newly proposed YOLO-SAMT target detection
model is used to locate the crack diseases in asphalt pavement. The model is 5.42 percentage points
higher than the original YOLOv7 model on mAP@0.5, which enhances the recognition and location
ability of crack diseases and reduces the calculation amount for the extraction of crack contour in the
next stage. In the third stage, the improved k-means clustering algorithm is used to extract cracks.
Compared with the traditional k-means clustering algorithm, this method improves the accuracy
by 7.34 percentage points, the true rate by 6.57 percentage points, and the false positive rate by
18.32 percentage points to better extract the crack contour. To sum up, the method proposed in this
article improves the quality of the pavement disease image, enhances the ability to identify and locate
cracks, reduces the amount of calculation, improves the accuracy of crack contour extraction, and
provides a new solution for highway crack inspection.

Keywords: digital image processing technology; asphalt pavement crack; deep learning; guided
filter; Retinex; YOLOv7; attention mechanism

1. Introduction

At present, according to different detection objects, pavement disease detection tech-
nology can be divided into two kinds. The first is laser displacement detection technology,
which mainly takes pavement deformation diseases as the detection object. Through three-
dimensional processing, relevant index data are obtained, and then the damage degree of
pavement rutting, subsidence, and other diseases are evaluated. The other is the more com-
monly used digital image detection technology. It mainly takes pavement crack disease as
the detection object, collects high-definition image data of the pavement through shooting,
and then uses image processing and other methods to obtain relevant information such as
pavement cracks.

Different from the detection of pavement deformation, the demand for pavement crack
detection is large, which is more common in pavement quality detection and maintenance
management. When the pavement structure enters the early stage of degradation, pavement
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cracks are formed. If pavement cracks continue to develop, the damage degree of the
pavement will be further aggravated. Before the 1970s, the traditional pavement crack
detection methods involved manual detection: not only the need to record the length,
width, and severity of the crack, but also the need to draw the crack location map. In
addition, limited by the experience of pavement crack detection personnel, the test results
are also susceptible to subjective impact. With the development of digital image technology
and computer technology, there is more and more research on the automatic detection of
pavement cracks, especially in the fields of image enhancement, image segmentation, and
image recognition of pavement cracks.

In the image preprocessing algorithm, the image enhancement algorithm plays a very
important role. The image enhancement algorithm highlights the useful information in the
image while removing the unimportant information in the image. The image enhancement
algorithm can not only improve the visual effect of the image but also make the subsequent
image processing work more convenient. When the vehicle-mounted camera is used to
obtain the road image, factors such as uneven illumination distribution, environmental
noise, occlusion shadows, and foreign bodies on the road will affect the quality of the road
image and interfere with the information extraction of subsequent road disease images.
Therefore, in the road image preprocessing stage, image enhancement processing must be
carried out to eliminate the influence of interference factors.

To eliminate the influence of different interference factors on pavement crack image
quality, many scholars have done relevant research. For example, for uneven illumination
distribution, Cheng H D et al. subtracted the original road surface image from the blurred
image after low-pass filtering to obtain an image difference [1]. This not only eliminates the
impact of light changes on the pavement crack image but also retains the crack information,
to some extent, reducing the tire traces, white lines on the pavement, and other noise.
For the influence of environmental noise in pavement crack images, Zuo Y et al. also
proposed new methods from different angles. For example, Zuo Y et al. added the wavelet
decomposition algorithm to the pavement crack image enhancement method [2]. The
algorithm decomposes the pavement image, then reduces the noise of each scale, and
finally achieves the purpose of reducing the noise in the pavement crack image. In addition,
many researchers have also applied fuzzy logic (FL) to pavement crack image enhancement
methods. For example, Bhutani K R et al. proposed a pavement crack image enhancement
method based on FL through experiments [3].

To extract the characteristics of pavement crack images more conveniently, image
segmentation is also needed based on image enhancement. Image segmentation divides
the image into several specified regions according to the characteristics of different regions
in the image. For pavement crack images, the image can be divided into the background
region and the crack region. At present, segmentation algorithms based on threshold, edge
detection, region, and FL are commonly used image segmentation algorithms.

Threshold segmentation is an algorithm for image segmentation by setting a threshold,
which is mostly used in the field of image segmentation. However, there are still many
problems in determining the threshold for different images. Therefore, relevant scholars
have also done a lot of research on pavement crack images. For example, Kirschke K et al.
divided the image into multiple sub-blocks and used the gray histogram to perform thresh-
old segmentation of pavement crack images [4], but the accuracy was general. Combining
morphology and maximum entropy, Oliveira H et al. performed dynamic threshold seg-
mentation on pavement crack images [5]; on the other hand, Cheng et al. proposed two
threshold segmentation algorithms for pavement crack images based on FL and sample
space. One method is to obtain the global threshold by FL, then binarize the image differ-
ence obtained by subtracting the mask image from the original image, and finally realize
the segmentation [6]. Another method is to determine the threshold by reducing the sample
space and interpolation, using the mean and variance of pixel gray to achieve real-time
threshold segmentation [7]. The segmentation results of these two methods are still in-
sufficient, the false detection rate is high, and there are isolated noise points on the edge
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of the crack. At the same time, the active contour model (ACM) has good segmentation
accuracy, so it is often used in the field of image segmentation. However, when dealing
with images with uneven intensity and more noise, the method will be extremely unstable.
In addition, the calculation process of most existing ACMs is complex, which makes it
time-consuming and inefficient. Ge et al. proposed an active contour approach driven by
adaptive local pre-fitting energy function based on Jeffreys divergence (APFJD) for image
segmentation. Although the calculation process of the model is also very complicated, Ge
designed a pre-fitting function calculated before the iteration process, which reduces a lot of
calculation time and improves the segmentation accuracy. Intensity inhomogeneity brings
great difficulties to image segmentation [8]. Weng proposed an additive bias correction
(ABC) model based on intensity inhomogeneity. Compared with the traditional image seg-
mentation model, this model has stronger robustness, faster speed, and higher accuracy [9].
Ge et al. proposed a hybrid active contour model driven by pre-fitting energy with an
adaptive edge indicator function and an adaptive sign function. The key idea of employing
the pre-fitting energy is to define two pre-fitting functions to calculate mean intensities of
two sub-regions separated from the selected local region based on pre-calculated median
intensity of the selected local region before the curve evolves, which saves a huge amount
of computation cost [10].

In the crack image segmentation method based on edge detection, the morphological
method is more common. For example, through morphological, Sobel, and other methods,
Tanaka et al. successfully segmented the pavement crack image, but the adaptability is
poor and cannot segment small cracks [11].

At present, due to the lack of unified and open-source pavement crack image samples
and determined algorithm evaluation criteria, the research on pavement crack image recog-
nition algorithms by relevant scholars varies from region to region, and the universality is
not strong. In addition, there are few studies on how to evaluate the degree of pavement
crack damage. The use of image processing methods to identify pavement crack images
is more traditional and classic. For example, Huang Z et al. preprocessed and detected
pavement crack images with gray image edge detection, threshold classification, Sobel
filtering, and the Otsu method [12]. Mathavan S et al. used the Gabor filter for pavement
crack image recognition. Through the convolution of the filter and the preprocessed image,
the binary output image is generated by thresholding, and then the generated binary image
is combined to output the identified crack image [13]. The recognition effect of these two
methods is general and the efficiency is not high. SONG Hong-xun et al. studied crack
image recognition algorithms from the perspective of ridge edge detection. In terms of
noise elimination, the multi-scale reduction of image data and threshold processing are
combined to smooth the image while enhancing the cracks [14].

Wavelet transform can also be used as a means of crack location. The wavelet transform
of mode shapes is widely used for the localization of cracks in beams and structures [15–18].
Wavelet transforms have excellent properties to extract the localized information in the of
measurement noise [19]. Kumar and Singh [20] used the continuous wavelet transform
(CWT) to locate the crack in a beam. Nigam and Singh [21] used discrete wavelet transform
to detect the crack in a beam. Kumar et al. [22] studied the selection of suitable mother
wavelets and the corresponding vanishing moments for the efficient localization of cracks.

At the same time, some famous scholars have used advanced mathematical methods to
locate and detect cracks. Ramnivas Kumar et al. proposed a variance-based crack detection
and localization method in beams [23]. Sara Nasiri et al. used data-driven technology to
predict the fatigue of metals, composites, and 3D-printed parts [24].

With the increasing mileage of expressways at home and abroad, the existing means
of using digital image processing technology to identify cracks have been unable to meet
the needs of daily road inspection. At the same time, intelligent detection algorithms based
on artificial intelligence and machine learning and deep learning have developed rapidly
and have made good progress in the field of pavement crack identification [25].
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Recently, damage in a cracked beam was detected by FL technique [26]. In fact, the
FL approach is used to find the location and depth of cracks on a cantilever beam. On the
fuzzy mechanics in crack detection, researchers used the FL control method, which is used
in their previous research [27,28].

At present, many experts and scholars have carried out research on pavement crack
image recognition through neural networks. For example, in the field of traditional machine
learning, Oliveria et al. designed a classifier to classify pavement crack images using
training methods [29].

In addition, in the field of deep learning, Lee B J et al. designed three neural network
algorithms based on image grayscale, histogram, and neighbor points to automatically
classify and recognize pavement crack images. The results show that the neural network
algorithm based on neighbor points has a better recognition effect [30]. A convolutional
neural network can improve performance by improving its structure. Zhang et al. de-
signed CrackNet based on a convolutional neural network to identify asphalt pavement
cracks. Compared with other network structures, the pooling layer of each output in
this network structure is not reduced to ensure the quality of the image [31]. Compared
with the crack recognition method based on machine learning, CrackNet has obvious
advantages in accuracy. Han et al. [32] developed a semantic segmentation network that
can reach the pixel level. Li et al. [33] proposed a feature fusion network based on Faster
R-CNN to detect cracks on the arc top of alpine tunnels. Ju Huyan et al. [34] proposed
a new feature fusion network for crack detection in complex backgrounds. In addition,
Malini et al. [35] used a series of regularization methods to improve the performance of
convolutional neural network models. Cha et al. [36] calculated the defect characteris-
tics of concrete cracks based on machine vision and deep learning network architecture.
Mogalapalli et al. [37] solved various image classification tasks based on quantum transfer
learning. Pang et al. [38] proposed a new crack extraction method to solve the problem of
noise and brightness in the image. Sekar et al. [39] identified and located fractures based
on region of interest and global average pooling operation. The above methods based on
convolutional neural network and deep learning have surpassed the traditional digital
image processing methods in the speed of recognizing crack diseases, but their accuracy
has not met the industrial demand.

The main contributions of this article are as follows:

(1) This article proposes a new image preprocessing method based on guided filtering and
Retinex. Compared with traditional digital image detection technology, this method
can eliminate the influence of uneven illumination distribution, environmental noise,
occlusion shadow, and other external factors on image quality.

(2) To reduce the amount of calculation and extract the crack features in a targeted manner,
this article proposes an improved target detection algorithm based on the parameter-
free attention module SimAM and Transformer. The purpose of the algorithm is
to accurately locate the area where the cracks exist in the image, thus, reducing
redundant calculations for the next crack contour feature extraction. Compared with
the existing convolutional neural network and deep learning methods, this algorithm
enhances the accuracy of frame selection for the crack target area.

(3) In this article, the traditional k-means clustering algorithm is improved. The image
noise is eliminated with Gaussian filtering, and the image pixel value is optimized so
that the crack contour can be extracted more accurately.

The overall processing flow of this article is shown in Figure 1.
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2. Materials and Methods

In this study, the overall framework of the proposed method is mainly composed
of the following steps: (1) image preprocessing, (2) crack disease location, and (3) crack
contour extraction. A flow chart summarizing the process is presented in Figure 2.
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As shown in Figure 2, this article is mainly divided into three stages to process the
image data containing crack diseases. In the first stage, the image data is preprocessed by
guided filtering and Retinex. This method first uses a two-dimensional discrete wavelet
transform to denoise and compress the image, then uses the method of combining guided
filtering with MSRCR to process the low frequency coefficients of wavelet, and finally uses
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soft threshold filtering to process the high frequency coefficients of the wavelet. In the
second stage, the improved target detection model YOLO-SAMT is used to locate the crack
disease. The target detection algorithm combines the non-parametric attention mechanism
SimAM and Transformer, which can quickly locate the cracks in batches. At the same
time, the located crack image data is cropped to remove redundant data for the next stage
of crack extraction; in the third stage, a new crack contour extraction algorithm based
on k-means clustering algorithm proposed in this article is used to accurately extract the
crack contour.

2.1. Asphalt Pavement Image Enhancement Method

At present, the enhancement methods for crack images mainly include the following:
the first method is the histogram equalization method, which can directly enhance the
contrast of the image and bring about changes in the senses; the second method is the
Retinex algorithm. The current Retinex algorithm includes SSR [40], MSRCR [41], SRIE [42],
LIME [43] and other methods. The third method uses Gaussian filtering [44–46], bilateral
filtering [47], guided filtering [48] and other methods to filter and denoise crack images.
Histogram equalization has a good image enhancement effect. It can also be seen from the
implementation algorithm that the main advantage is that it can automatically enhance
the contrast of the entire image, but the specific enhancement effect is not easy to control,
and only the histogram of the global equalization processing can be obtained. However, in
actual operation scenarios, it is often necessary to process the local features of the image, so
this method is not universal. The Retinex algorithm can better preserve the details of the
image, and the processed image has moderate brightness and high contrast, but the image
is prone to halo in the case of uneven lighting, resulting in blurred images. The biggest
advantage of guided filtering is that it can use a linear function to calculate the output
value of pixels, while bilateral filtering needs to consider factors such as the geometric
characteristics and intensity of pixels. When processing larger images, the amount of
computation will increase significantly.

Considering the advantages and disadvantages of the above-preprocessing methods,
this paper proposes a new image enhancement method based on the Retinex algorithm
and guided filtering based on wavelet transform. This method enhances the contrast of
the image, overcomes the problem of loss of details after image enhancement, makes the
optimized image clearer, and provides a rich database for subsequent disease identification
and localization.

2.1.1. Two-Dimensional Discrete Wavelet Transform

Two-dimensional discrete wavelet transform can denoise and compress images. Given
scale function λ and wavelet function σ, one two-dimensional scale function and three
two-dimensional wavelet functions can be combined [49]. The two-dimensional scale
function is shown in Equation (1) As shown, the three two-dimensional wavelet functions
are shown in Equations (2)–(4)

λ(x, y) = λ(x)λ(y) (1)

σH(x, y) = σ(x)λ(y) (2)

σV(x, y) = σ(x)λ(y) (3)

σD(x, y) = σ(x)σ(y) (4)

These wavelets measure the changes in grayscale in different directions in the image:
σH(x, y) represents the change of gray value along a column (such as a horizontal edge),
σV(x, y) represents the change of gray value along a row (such as a vertical edge), and
σD(x, y) represents the change of gray value along the diagonal.

The flow chart of the two-dimensional wavelet transform of the image is shown in
Figure 3:
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The horizontal parameters of the original image O, which are low-frequency compo-
nent L and high-frequency component H, can be obtained by performing one-dimensional
wavelet transform on each row of the image; then, a one-dimensional wavelet transform is
performed on each column of the transformed image O (L,H), and the parameters in the
horizontal and vertical directions of the original image can be obtained; that is, the low-
frequency component LL and the high-frequency component HH. At the same time, the
high-frequency component LH and the low-frequency component HL can be obtained in
the cross direction. HH represents the horizontal and vertical high-frequency components,
indicating the details of the diagonal direction. LH represents horizontal low-frequency and
vertical high-frequency parameters that indicate detailed information in the vertical direc-
tion. HL represents the horizontal high-frequency and vertical low-frequency parameters,
which indicate the horizontal detail information.

2.1.2. Processing Method of Wavelet Low-Frequency Coefficients

In Section 2.1.1, the original image is subjected to a two-dimensional wavelet trans-
form operation to obtain the corresponding low-frequency coefficients and high-frequency
coefficients. To be able to perform multi-scale analysis of the image, the low-frequency
coefficients of the wavelet need to be processed. Different from the general image, the edge
feature details of the pavement crack image are retained and are key. To better extract the
information of the crack, we use the guided filter to process the image [50]. The guided
filter can be used as an edge smoothing operator like a bilateral filter, but it has a better
effect near the edge. In addition, regardless of the kernel size and intensity range, the
guided filter has a fast and non-approximate linear time algorithm.

However, while processing the low-frequency coefficients of the wavelet, the problem
of color distortion of the image becomes more and more prominent. To solve this problem,
we select the MSRCR algorithm to restore the image color. MSRCR is based on MSR, by
adding a color recovery factor to solve the problem of image distortion. We combine it with
guided filtering to create a color restoration algorithm based on guided filtering theory.
The implementation formula of the algorithm is shown in Equation (5):

RMSRCRi (x, y)′ = ak
(
G · RMSRCRi (x, y) + O

)
+ bk (5)

where RMSRCRi (x, y)′ is the output image, RMSRCRi (x, y) is the input image, G is the gain,
O is the bias, and a and b are the two constants of the function when the center of the image
is k.

2.1.3. Wavelet High-Frequency Coefficient Soft Threshold Filtering Processing

The wavelet high-frequency coefficients decomposed in the previous stage contain
some edge information, noise information, and other details of our image, and the use of
threshold filtering can often effectively remove excess noise.

Our common threshold filtering methods are divided into soft threshold filtering,
hard threshold filtering, and half-threshold filtering. Among them, the advantage of
hard threshold filtering is that the signal-to-noise ratio is high, but the processed images
are often seriously distorted; soft threshold filtering can smooth the image details and
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effectively improve the distortion; half-threshold filtering has the best smoothing effect,
but the amount of calculation is large. To sum up, we employ soft threshold filtering to
deal with wavelet high-frequency coefficients.

The expression of soft threshold filtering is shown in Equation (6).

GT =

{
[sgn(g)](|g| − T), |g| ≥ T
0, |g| < T

(6)

where GT is the processed high-frequency coefficient, g is the high-frequency coefficient, T
is the threshold, T =

√
2 log2(l)∂, l is the signal length, and ∂ is the noise variance.

2.1.4. Experimental Results and Analysis

To verify the practicability of the image enhancement method proposed in this section,
a comparative experiment on image processing of asphalt pavement cracks was carried
out; algorithms such as SSR, AutoMSRCR, OpenCV, Matlab, Gimp, MSR, MSRCP, and
MSRCR were selected; and the images proposed in this section were respectively selected.
The processing methods are compared, and the schematic diagram of various algorithms
processing crack disease images is shown in Figure 4.

As a qualitative evaluation index, information entropy is often used in the evaluation
of image quality. The higher the information entropy [51], the better the image quality, and
more information can be obtained from the image. Its expression is shown in Equation (7).

H(p) = −
255

∑
i=0

pi log2 pi (7)

where pi represents the probability of occurrence of the i-th gray level. The information
entropy of various algorithms for processing crack disease images is shown in Table 1.

Sensors 2022, 22, x FOR PEER REVIEW 8 of 31 
 

 

Where ( ),
iMSRCRR x y ′  is the output image, ( ),

iMSRCRR x y  is the input image, G  is the 
gain, O  is the bias, and a  and b  are the two constants of the function when the center 
of the image is k. 

2.1.3. Wavelet High-Frequency Coefficient Soft Threshold Filtering Processing 
The wavelet high-frequency coefficients decomposed in the previous stage contain 

some edge information, noise information, and other details of our image, and the use of 
threshold filtering can often effectively remove excess noise. 

Our common threshold filtering methods are divided into soft threshold filtering, 
hard threshold filtering, and half-threshold filtering. Among them, the advantage of 
hard threshold filtering is that the signal-to-noise ratio is high, but the processed images 
are often seriously distorted; soft threshold filtering can smooth the image details and ef-
fectively improve the distortion; half-threshold filtering has the best smoothing effect, 
but the amount of calculation is large. To sum up, we employ soft threshold filtering to 
deal with wavelet high-frequency coefficients. 

The expression of soft threshold filtering is shown in Equation (6). 

( ) ( )sgn ,

0,T

g g T g T
G

g T

  − ≥ = 
<

 (6) 

where TG  is the processed high-frequency coefficient, g  is the high-frequency co-

efficient, T  is the threshold, ( )22 logT l= ∂ , l  is the signal length, and ∂  is the noise 
variance 

2.1.4. Experimental Results and Analysis 
To verify the practicability of the image enhancement method proposed in this sec-

tion, a comparative experiment on image processing of asphalt pavement cracks was 
carried out; algorithms such as SSR, AutoMSRCR, OpenCV, Matlab, Gimp, MSR, 
MSRCP, and MSRCR were selected; and the images proposed in this section were re-
spectively selected. The processing methods are compared, and the schematic diagram 
of various algorithms processing crack disease images is shown in Figure 4. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4. Cont.



Sensors 2022, 22, 8459 9 of 31Sensors 2022, 22, x FOR PEER REVIEW 9 of 31 
 

 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

 
(j) 

Figure 4. The results of various algorithms for crack disease image processing. (a) Original image, 
(b) SSR, (c) AutoMSRCR, (d) OpenCV, (e) MATLAB, (f) Gimp, (g) MSR, (h) MSRCP, (i) MSRCR, 
(j) method proposed in this paper. 

As a qualitative evaluation index, information entropy is often used in the evalua-
tion of image quality. The higher the information entropy [51], the better the image qual-
ity, and more information can be obtained from the image. Its expression is shown in 
Equation (7). 

( )
255

2
0

logi i
i

H p p p
=

= −  (7) 

where ip  represents the probability of occurrence of the i-th gray level. The information 
entropy of various algorithms for processing crack disease images is shown in Table 1. 

Table 1. Information entropy of crack defect images processed by various algorithms. 

Method Information Entropy 
Original images 5.2525 

OpenCV 5.1995 
Gimp 5.4451 

MSRCR 5.5761 
SSR 5.6237 
MSR 5.6700 

Matlab 6.9788 
MSRCP 7.5275 

Figure 4. The results of various algorithms for crack disease image processing. (a) Original image,
(b) SSR, (c) AutoMSRCR, (d) OpenCV, (e) MATLAB, (f) Gimp, (g) MSR, (h) MSRCP, (i) MSRCR,
(j) method proposed in this paper.

Table 1. Information entropy of crack defect images processed by various algorithms.

Method Information Entropy

Original images 5.2525
OpenCV 5.1995

Gimp 5.4451
MSRCR 5.5761

SSR 5.6237
MSR 5.6700

Matlab 6.9788
MSRCP 7.5275

AutoMSRCR 7.6704
Ours 7.9835

The traditional image enhancement methods focus on adjusting the color or brightness
of the image but ignore image denoising. The method proposed in this article firstly
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performs the two-dimensional discrete wavelet transform on the image to obtain the low-
frequency and high-frequency coefficients of the wavelet. For the processing of wavelet
low-frequency coefficients, this article uses the method of combining guided filtering with
the MSRCR algorithm to extract multi-scale information of the image while preserving the
color of the image. For the processing of wavelet high-frequency coefficients, this article
selects soft threshold filtering for denoising. From Table 1, the information entropy of
the crack disease image processed by this method is higher than that of other common
algorithms, which quantitatively proves the superiority of the image processing algorithm
in the proposed method.

2.2. Crack Disease Location Based on Improved YOLOv7
2.2.1. YOLOv7 Network Architecture

The YOLO series of target detection algorithms are faster and more accurate than
synchronous algorithms [52–55]. In 2022, YOLOv7 was formally applied to target detec-
tion [56]. Based on image processing of asphalt pavement crack disease, this paper uses
YOLOv7 to further locate cracks. The network structure diagram of YOLOv7 is shown in
Figure 5.
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1. Input terminal

The preprocessing method of YOLOv7 is similar to YOLOv5, such as the mosaic
method, adaptive anchor box, and adaptive image scaling.

In the network training stage, YOLOv7 uses the Mosaic data enhancement method,
which is improved with the CutMix data enhancement method. CutMix uses only two
images, while Mosaic’s data enhancement method uses four images that are randomly
scaled, cropped, and arranged. This enhancement method can combine several images
into one image, which greatly improves the training speed of the network and reduces the
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memory requirement of the model, while increasing the diversity of the dataset, and also
increases the detection accuracy of the network.

2. Backbone

The backbone layer of YOLOv7 is shown in Figure 6. It is composed of several Bconv
layers, E-ELAN layers, and MP layers. The BConv layer consists of the convolution layer,
BN layer, and activation function. The schematic diagram of the BConv layer is shown in
Figure 7.
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Bconv modules of different colors represent convolution layers of different kernels (k
represents the length and width of the kernel, s represents stride, o represents outchannel,
i represents inchannel, where o = i represents outchannel = inchannel; o 6= i represents
outchannel has no correlation with inchannel). The first BConv module is a convolution
module with k = 1 and s = 1, the second BConv module is a convolution module with
k = 3 and s = 1, and the third BConv module is a convolution module with k = 3 and
s = 2. The above Bconv modules with different colors mainly distinguish k and s, and do
not distinguish the input and output channels.

Extended-ELAN based on ELAN is proposed in YOLOv7. The shortest and longest
path of the gradient is controlled by an efficient long-range attention network so that
the deep network can learn and converge more efficiently. The E-ELAN proposed by
YOLOv7 uses methods such as expanding, shuffling, and merging cardinality to improve
the learning ability of the network without destroying the original gradient path.



Sensors 2022, 22, 8459 12 of 31

In terms of structure, E-ELAN only changes the architecture of the block itself but does
not change the architecture of the transition layer. It uses group convolution to expand
the channel and cardinality of the computing block and applies the same group to all
computing blocks of the computing layer parameters and the number of channels. It then
perform the following operations on the feature map output by each computing block:
randomly scramble the g group parameters set by the feature map into g groups, and then
connect them. Currently, the number of channels in each set of feature maps is the same as
the number of channels in the original architecture. Finally, add the feature maps of the g
group to merge the cardinality.

The E-ELAN layer is also composed of different convolutions, as shown in Figure 8:
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The length and width of the input and output of the entire E-ELAN layer are unchanged,
and o = 2i on the channel, where 2i is spliced by the outputs of the four Bconv layers.

MP layer is shown in Figure 9. Its input and output channels are the same. The
output length and width are half of the input length and width. The upper branch first
halves the length and width by max pooling, and then halves the channel by BConv. The
lower branch halves the channel through the first BConv, then halves the length and width
through the second Bconv, and then merges the upper and lower branches to get the
corresponding output.
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3. Head

The head part of YOLOv7 is like the previous YOLOv4 and YOLOv5. The difference is
that the CSP module in YOLOv5 is replaced by the E-ELAN module, and the downsampling
module is changed to the MPConv layer. The entire head layer is composed of SPPCPC
layers, several BConv layers, several MPConv layers, several Catconv layers, and RepVGG
block layers that output three heads subsequently. A schematic diagram of the Head part
of YOLOv7 is shown in Figure 10.

The SPPCSPC layer is a module obtained by using the pyramid pooling operation and
the CSP structure. It still contains many branches. Its total input will be divided into three
segments in different branches. The output information is concat. A schematic diagram of
the SPPCSPC layer is shown in Figure 11.

The operation of the Catconv layer is the same as that of the E-ELAN layer, which also
allows deeper networks to learn and converge more efficiently. A schematic diagram of the
Catconv layer is shown in Figure 12.
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The structure of the REP layer is not the same during training and deployment. During
training, the REP layer adds a 1 × 1 convolution branch based on the 3 × 3 convolution. If
the input and output channels and the dimensions of h and w are the same, a BN branch
is added, and then the three branches are added for output; when deploying, to facilitate
deployment, the parameters of the branch will be re-parameterized and then allocated to
the main branch, and the 3 × 3 main branch convolution output will be taken. A schematic
diagram of the structure of the REP layer is shown in Figure 13.

2.2.2. Non-Parametric Attention Module

Sun Yat-Sen University proposed the conceptually simple and very effective attention
module SimAM [57], which, unlike other attention modules, does not require additional
parameters to compute 3D attention weights. This makes its predictions extremely efficient.
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Figure 13. REP layer diagram.

Existing attention mechanism modules such as BAM and CBAM combine spatial
attention and channel attention in parallel or series, respectively. However, attention is
usually a collaborative way of working, not simply cobbled together in parallel or serially.
Therefore, it is particularly important to unify the weights of the attention of the two
mechanisms. Figure 14a represents the channel attention mechanism, which represents
1D attention, which treats different channels differently and treats all positions equally,
and Figure 14b represents the spatial attention mechanism, which represents 2D attention,
which pays attention to different positions. All channels are treated equally. Figure 14c
represents the 3D attention mechanism, which can unify the weights of the channel and
spatial attention.
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Figure 14. Comparison of the implementation process of different attention mechanisms.

In the implementation of the attention mechanism, the role of each neuron needs to be
considered. In neuroscience, neurons that are rich in information tend to be particularly
active. Moreover, such neurons usually inhibit surrounding neurons. To find such active
neurons, the concept of the energy function is proposed, and the expression of the energy
function is shown in Equation (8).

eδ(wδ, bδ, y, oi) =
(
yδ − δ̂

)2
+ 1/(M− 1)

M−1

∑
i=1

(yo − ôi)
2 (8)

where δ and oi refer to active neurons and other neurons between the single channel
whose input feature is X = RC×H×W , δ̂ = wδδ + bδ and ôi = wδoi + bδ are the linear
transformation relationship between δ and oi, i is the index in the spatial dimension, and
M is the number of neurons on this channel. This calculation method is M = H ×W, and
wδ and bδ refer to the weight coefficient and bias coefficient of the transformation.

When this equation takes its minimum value, δ̂ is equal to yδ, and all other ôi are equal
to yo, where yδ and yo are two different values.

Minimize the equation to obtain the linear relationship between the corresponding
active neuron and other neurons. To simplify the calculation, binary labels are used for yδ
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and yo, and a regularization method is added to the equation. The expression of the final
energy function is shown in Equation (9).

eδ(wδ, bδ, y, oi) = 1/(M− 1)
M−1

∑
i=1

(−1− (wδoi + bδ))
2 + (1− (wδδ + bδ))

2 + λwδ
2 (9)

In theory, each channel has the M = H×W energy function. The solution of the above
equation is shown in Equation (10).

wδ = −
2(δ− uδ)

(δ− uδ)
2 + 2σ2

δ + 2λ
bδ = −

1
2
(δ + uδ)wδ (10)

Among these, uδ =
1

M−1 ∑ M−1
i=1 oi, and σ2

δ = 1
M−1 ∑ M−1

i=1 (oi − uδ)
2
; therefore, the mini-

mum energy solution can be represented by Equation (11).

e∗δ =
4
(
σ̂2 + λ

)
(δ− û)2 + 2σ̂2 + 2λ

(11)

The above equation means that the lower the energy, the more differentiated the
neuron from the surrounding neurons, and the higher the degree of importance.

To verify whether the performance of the SimAM attention mechanism helps to im-
prove the performance of the model, SE, CBAM, GC, ECA, and SRM attention mechanisms
were selected for the control group to conduct a comparative experiment with SimAM, and
the performance of YOLOv7 with different attention mechanisms was added. For example,
see Table 2.

Table 2. Performance comparison of YOLOv7 with different attention mechanisms.

Network/Index Precision Recall mAP@0.5 Parameters GFLOPS Speed-GPU Weight

Baseline 81.43 84.37 83.74 7,114,785 16.5 1.7 14.2
Baseline + SE 81.77 84.39 83.88 7,456,849 16.7 1.7 14.3

Baseline + CBAM 81.74 84.37 83.87 7,385,126 16.7 1.7 14.5
Baseline + GC 81.94 85.11 84.13 7,456,878 16.6 1.7 14.3

Baseline + ECA 82.10 85.77 84.79 7,998,452 16.9 1.5 14.9
Baseline + SRM 81.93 85.12 84.12 7,336,542 16.5 1.7 14.5

Baseline + SimAM 85.79 87.96 86.69 7,124,568 16.5 1.7 14.2

To show the performance of YOLOv7 combined with SimAM attention mechanism
more intuitively, this article combines the actual test results to make an intuitive display,
and the actual test results are shown in Figure 15.

2.2.3. Transformer

In 2017, the Transformer model with attention operation as the core was first proposed
to provide a new deep network architecture for processing sequence features [58]. At
present, Transformer has been successfully used in computer vision and other fields. The
core of the Transformer model is the multi-head self-attention mechanism. The attention
mechanism assigns high weight to high-value information, which is essentially an efficient
allocation of information processing resources. Its adaptive attention weight distribution
reflects the correlation between output data and input sequence features. A trainable neural
network based on Transformer can complete the recognition task by building an encoder
and a decoder.
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In this paper, the Transformer encoder is constructed as the core of the classifier.
The Transformer encoder is composed of N identical sub-modules (Transformer Block)
stacked. As shown in the figure, the sub-module contains a multi-head attention layer
(Multi-Head Attention) and a feedforward neural network. Layer (Feed-Forward Network)
has two main parts: the introduction of residual connection (Residual Connection) and layer
normalization (Layer Normalization, LN) to prevent gradient degradation and accelerate
algorithm convergence.

Compared with the traditional bottleneck block module, the Transformer encoder has
a more powerful ability to collect information. Each Transformer encoder contains two
parts: the first part is the multi-head attention layer, the second part is the MLP, and the
Transformer encoder improves the ability to capture different raw information. A schematic
diagram of the Transformer encoder is shown in Figure 16.
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To verify whether the performance of adding the transformer encoder to the YOLOv7
network structure is improved, a set of ablation experiments were conducted, respectively,
for the unimproved YOLOv7 network, the YOLOv7 network with the addition of the
attention mechanism SimAM, and the addition of both the attention mechanism SimAM
and the Transformer encoding. The YOLOv7 network of the device is used to verify
Precision, Recall, and mAP@0.5. The results of the ablation experiments are shown in
Table 3.

Table 3. Ablation experimental results.

Network/Index Precision Recall mAP@0.5 Parameters GFLOPS Speed-GPU

Baseline 81.43 84.37 83.74 7,114,785 16.5 1.7
Baseline + SimAM 85.79 87.96 86.69 7,124,568 16.5 1.7

Baseline + SimAM + Transformer 87.99 88.11 88.06 7,139,546 16.5 1.7

To show the performance of YOLOv7 combined with Transformer more intuitively,
this paper combines the actual test results for intuitive presentation. The actual test results
are shown in Figure 17.
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2.2.4. Loss Function

The loss function needs to use traditional indicators such as distance, shape, and IoU
in the process of calculating the mismatch between the real frame and the model predicted
frame in the image. In addition, the direction of matching between the real frame and
the predicted frame also needs to be matched, within consideration. None of the loss
functions proposed and used so far consider the problem of orientation matching between
the desired ground-truth box and the predicted box. Loss functions include IoU, GIoU [59],
DIoU [60], CIoU [61], etc. In SIoU [62], the addition of this metric can greatly help the
training convergence process and effect. To minimize distance-related variables, SIoU will
predict as close as possible along the X or Y direction.

To verify whether the SIoU loss function is improved compared with other loss func-
tions after combining with YOLOv7, multiple sets of control experiments were conducted.
The results of the control experiments are shown in Table 4.

Table 4. Performance comparison of different loss functions.

Network/Loss mAP@0.5

Baseline + SimAM + Transformer + GIoU 88.12
Baseline + SimAM + Transformer + DIoU 88.34
Baseline + SimAM + Transformer + CIoU 88.03
Baseline + SimAM + Transformer + SIoU 89.16

To show the performance of YOLOv7 in combination with different loss functions
more intuitively, this paper combines the actual test results for intuitive display. The actual
test results are shown in Figure 18.
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2.2.5. YOLO-SAMT Network Structure

After combining the parameter-less attention module SimAM, Transformer encoder,
and SIoU loss function mentioned in the previous section, this paper proposes a new target
detection model, which we name YOLO-SAMT, where the red module represents the added
Transformer encoder, the purple module represents the added parameter-less attention
module SimAM, and finally combines the SIoU loss function on the prediction side of the
model. The network model of YOLO-SAMT is shown in Figure 19.

2.3. Crack Image Segmentation Based on Improved K-Means Clustering Algorithm

K-means [63] is used to classify the best class attribution of points by calculating the
similarity of the distance between points. The k-means algorithm minimizes the objective
function, clustering the data by separating the sample data into n classes of equal variance.

After preprocessing by guided filtering and the Retinex method, the crack target in the
image can be highlighted, and the extraction of the crack feature is regarded as the binary
classification of the image.
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The two-dimensional crack image is expanded into one-dimensional samples, and
F(x) is set as the gray value corresponding to the one-dimensional sample data point x
of the image, ui

j represents the clustering center of class j after the i-th clustering, and Ci
j

represents the region where the samples divided into class j after the i-th clustering are
located. The process of k-means clustering algorithm is as follows.

1. Initialize cluster center u0
1, u0

2, · · · , u0
k ;

2. Assume that a cluster center u is the nearest to F(x), and classify F(x) as the cluster
center. The formula of this step is shown in Equation (12).

|F(x)− u| <
∣∣∣F(x)− ui

j

∣∣∣, u ∈
{

ui
j, j = 1, 2, 3, · · · , k

}
(12)

3. As shown in Equation (13), update the clustering center ui
j, F
(

xi
j

)
is the gray value of

sample xi
j in the Ci

j region, and ni
j is the number of samples in the Ci

j region;

mi
j =

1
ni

j

ni
j

∑
0

F
(

xi
j

)
(13)

4. Calculate criterion function P of Equation (14), if P converges or end the iteration after
reaching the maximum number of iterations C. Otherwise, go to step 2.

P =
k

∑
j=1

∑
xi

j∈Ci
j

∣∣∣F(xi
j

)
− ui

j

∣∣∣2 (14)
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The initial cluster center point of k-means is randomly generated, and it is easy to
generate errors if it is affected by noise or other outliers. Therefore, the following two
methods are adopted for optimization.

1. Gaussian filtering is used to denoise the image to eliminate the interference of image
outliers, and the filtered image is used as the initial image for extracting cracks;

2. When the image is classified into two, set k = 2, take the gray value corresponding to
the point with the most pixels in the grayscale histogram of the filtered image as u0

1,
and then calculate the point with the largest distance between the remaining sample
data F(x) and u0

1 as u0
2. The expression of u0

2 is shown in Equation (15).

u0
2 = max

{
F(x)− u0

1

}
(15)

3. Experiment Results and Discussions
3.1. Data

The data in this paper come from Fuzhou, Xiamen, Longyan, and Quanzhou in
Fujian Province. The main equipment used for data acquisition in this paper is the road
multi-function inspection vehicle and vehicle-mounted laser scanner introduced in the
United States.

As the main data acquisition equipment, the road multi-function detection vehicle
(DHDV) is composed of linear laser transmitters, line scan cameras, photoelectric encoders,
and IMUs. The intelligent detection and identification of crack diseases provide data
sources. The schematic diagram of the road multi-function detection vehicle is shown in
Figure 20.
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Figure 20. Road multi-function detection vehicle.

The main research object of this paper is various asphalt pavement cracks. The
schematic diagram of transverse cracks is shown in Figure 21a, the schematic diagram of
longitudinal cracks is shown in Figure 21b, and the schematic diagram of map cracks is
shown in Figure 21c.
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Figure 21. Diagram of crack disease sample: (a) Transverse crack; (b) Longitudinal crack;
(c) Map crack.

The disease images of highway asphalt pavement in various counties and cities in
Fujian Province were collected by DHDV, and the corresponding training set and validation
set were constructed. The distribution of different types of crack samples in the data set is
shown in Table 5.

Table 5. Distribution of training samples for each type of disease.

Data Transverse Crack Longitudinal Crack Map Crack

Training set 1380 1391 1431
Validation set 614 622 583

Total 1994 2013 2014

3.2. Experimental Environment and Parameter Settings

Before the experiment, the pavement crack dataset was divided into two parts: a
training set and a validation set according to the ratio of 7:3. The model parameters are
updated in real-time during the training process. The complexity (model parameters and
computation) of YOLO-SAMT proposed in this paper is comparable to that of Resnet50
and RepVGG-A2, and the experiments are more comparative. The hardware and software
environments required for the experiment are shown in Table 6.

Table 6. Hardware and software environment required for model training.

Surroundings Category Version

Hardware Environment Operating system Windows 10
Graphics card configuration GeForce RTX 3090Ti

Software Environment Processor configuration i7-8700 CPU
Language 3.7

Frame Pytorch
CUDA 11.1

3.3. Evaluation Indicators

Precision (Pression, P), Recall (R), and mean average precision (mAP) provide an
important reference index to evaluate the performance of the model.

By applying the evaluation index to test whether the crack disease location is accurate,
two types of image results can be obtained, including pictures with cracks and pictures
without cracks. When there are cracks in the image and the prediction result also shows
cracks, we call it TP; when there are cracks in the image and the prediction result has no
cracks, we call it FN; when there are no cracks in the image, and the prediction result shows
cracks, we call it FP; when there is no crack in the image, and the prediction result also
shows no crack, we call it TN. The above metrics are shown in Table 7.
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Table 7. Target detection model evaluation indicators.

Forecast Result Image Has Cracks There Are No Cracks in the Image

Predicted as a crack TP FP
Predict no cracks FN TN

In this study, the evaluation indicators precision rate (Precision, Pr), recall rate (Recall,
Re), and F1-score were introduced to evaluate the performance of the crack identification
and localization model and the crack segmentation model. The test image is input into the
crack detection model; the number of TP, FP, and FN of the test results of the identification
positioning model and the segmentation model is counted; and the evaluation indicators Pr,
Re, and F1-score are finally calculated. Pr represents the proportion of all predicted positive
samples that were correctly detected. Re represents the proportion of all actual positive
samples that were successfully detected. The F1-score is an evaluation index to measure
the comprehensive performance of the model. It objectively reflects the accuracy and recall
rate of the model. The larger the F1-score, the stronger the model performance. The specific
calculation formulas of the evaluation indicators are shown in Equations (16)–(18).

Pr =
TP

TP + FP
(16)

Re =
TP

TP + FN
(17)

F1− score =

(
Precision−1 + Recall−1

2

)−1

(18)

3.4. Quantitative Analysis and Evaluation of Fracture Segmentation Model

To verify whether the fracture extraction results of the proposed algorithm meet the
requirements, first of all, the real fractures extracted by the proposed algorithm are denoted
as image A, and the fracture results extracted by the proposed algorithm are denoted as
image B. Image C is obtained by performing or operating on image A and image B, and
the number of pixels with 0 pixel value in image A, image B, and image C are respectively
denoted as m(A), m(B), and m(C). The fracture feature coincidence degree is used to
describe whether the fracture feature extraction algorithm is effective. The definition of
value is shown in Equation (19).

CR =
m(C)

m(A) + m(B)−m(C)
(19)

To ensure the integrity of crack extraction, if the CR value is greater than or equal to
80%, it is regarded as correct detection; otherwise, it is regarded as false detection.

To evaluate the accuracy of the algorithm in this paper, three parameters such as
accuracy P, true rate T, and false positive rate F are used for analysis. The analysis equations
are shown in Equations (20)–(22).

P =
TP + TN

TP + FN + TN + FP
(20)

T =
TP

TP + FN
(21)

F =
FP

TN + FP
(22)

where TP is the number of images that contain cracks, and the detected cracks meet the
requirements (CR ≥ 80%); TN is the number of images whose images do not contain cracks
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and no cracks are detected at the same time; FP is number of the images that do not contain
cracks but detect cracks; and FN is the number of images that contain cracks but are not
detected, or the detection results do not meet the requirements (CR ≤ 80%).

3.5. Analysis
3.5.1. Comparative Experiments of YOLO-SAMT with Other Models

To further verify the high efficiency of the YOLO-SAMT network architecture proposed
in this paper, it is compared with other networks. These networks include the classic single-
stage object detection network, the two-stage object detection network, and the advanced
networks appearing in the references [30,31,34,35]. The training data and test data we
selected are consistent with the previous section. To discuss the standard deviation of the
results, in this section, we select three different roads to evaluate the performance of the
models obtained by each network training. These three roads are Xiarong Expressway
AK112, Shangjiao Expressway BK36, and Yonghang Expressway BK218. The number of
standard cracks in these three roads is 342, 427, and 134, respectively. The index evaluated
in this experiment is the accuracy of crack identification. After the test was completed, the
average accuracy of each model for crack identification of three roads was counted. The
test results are shown in Table 8.

Table 8. Performance comparison of different networks.

Methods F1-score(%) (Correct/Total) Average Accurate Rate
AK112 BK134 BK150

Standard / 342/342 427/427 134/134 1
Two-stage / / / / /

Faster R-CNN 75.47 251/342 301/427 75/134 0.666
Cascade R-CNN 75.99 253/342 311/427 71/134 0.666

Libra R-CNN 76.34 248/342 309/427 66/134 0.647
Grid R-CNN 76.21 261/342 300/427 61/134 0.640
Mask R-CNN 76.17 259/342 300/427 71/134 0.663

Dynamic R-CNN 76.13 250/342 303/427 77/134 0.672
One-stage / / / / /

FCOS 76.81 257/342 301/427 69/134 0.675
FreeAnchor 76.43 255/342 311/427 66/134 0.656
RepPoints 76.56 249/342 309/427 73/134 0.666

PAA 76.77 259/342 307/427 75/137 0.679
ATSS 75.14 266/342 299/427 69/134 0.664

FoveaBox 73.49 240/342 309/427 77/134 0.667
FSAF 77.14 259/342 310/427 77/134 0.686
VFNet 75.99 255/342 311/427 71/134 0.668
SSD512 75.39 251/342 299/427 81/134 0.679

RetinaNet 76.41 266/342 313/427 81/134 0.705
YOLOv3 77.87 267/342 313/427 79/134 0.701
YOLOv4 78.31 270/342 316/427 88/134 0.729
YOLOv5s 81.34 281/342 323/427 89/134 0.747

Current research / / / / /
Method [30] 77.44 283/342 333/427 91/134 0.762
Method [31] 82.63 288/342 318/427 79/134 0.726
Method [34] 84.50 281/342 316/427 88/134 0.740
Method [35] 86.50 289/342 334/427 90/134 0.766

Ours 89.43 299/342 359/427 101/134 0.823

Through the comparative experiments of different networks, taking the most repre-
sentative network as an example, the YOLO-SAMT target detection model proposed in this
paper is 13.96 percentage points higher than Faster RCNN in F1-score and 8.09 percentage
points higher than YOLOv5s. In comparison with other excellent crack detection networks,
the model proposed in this paper is 11.99 percentage points higher than the model proposed
in [30]. From the above comparison experiments, the crack location method proposed
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in this paper has greater advantages than other network models. From the actual test
results of the three test roads, the average recognition accuracy of the proposed method is
15.7 percentage points higher than that of Faster RCNN, and 7.6 percentage points higher
than that of YOLOv5s. Compared with the method proposed in [30], the proposed model
is 6.1 percentage points higher. It can be seen from the above comparative experiments
that the crack location method proposed in this paper has greater advantages than other
network models.

3.5.2. Comparative Experiment of Fracture Segmentation Model

After the YOLO-SAMT detection and positioning, the positioning area needs to be
cropped. After cropping, the improved k-means clustering algorithm is used to extract
the crack contour. To verify the superiority of the algorithm proposed in this paper, it is
compared with the original image, the guided filtering and Retinex-enhanced image, and
the traditional k-means clustering. The images generated by the algorithm are compared.
In this section, transverse cracks, longitudinal cracks, and map cracks are selected for
comparative experiments. The comparative experiments are shown in Figures 22–24.
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Figure 22. Comparative experiment of transverse crack segmentation. (a) original images, (b) image
enhanced by guided filtering and Retinex method, (c) images generated by traditional k-means
clustering algorithm, (d) ours.

In this paper, 300 crack images are experimentally verified, including 100 transverse
cracks, 100 longitudinal cracks, and 100 map cracks. Firstly, the crack features are manually
extracted from the image as the real crack extraction result, then different preprocessing
methods are used for preprocessing, then the method in this paper is used to extract cracks,
and the detection ability of different preprocessing methods is calculated as shown in
Table 9.

Table 9. Comparison of detection ability of different methods.

Method TP TN FP FN P/% T/% F/%

K-Means 231 37 9 23 89.33 86.19 19.57
Ours 269 21 3 7 96.67 92.76 1.25

It can be seen from Table 9 that the detection accuracy of the crack extraction algorithm
proposed in this paper is 96.67%, the true rate is 92.76%, and the false positive rate is only
1.25%. It is superior to other traditional image extraction algorithms.
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Figure 23. Longitudinal crack segmentation contrast experiment. (a) original images, (b) image
enhanced by guided filtering and Retinex method, (c) images generated by traditional k-means
clustering algorithm, (d) ours.
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4. Conclusions

This study combines traditional digital image processing technology and deep learning
methods to achieve accurate positioning and segmentation of asphalt pavement cracks.
Traditional digital image processing technologies such as MSR and MSRCR focus on
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adjusting the color or brightness of the image but ignore the denoising of the image. To
solve this problem, this paper first performs a two-dimensional discrete wavelet transform
on the image to obtain low-frequency coefficients and high-frequency coefficients of the
wavelet. Then the wavelet low-frequency coefficients are processed by the combination of
guided filtering and MSRCR algorithm, and the multi-scale information of the image is
extracted on the premise of retaining the image color. Then the soft threshold filtering is
used to denoise the wavelet high frequency coefficient, and the information entropy of the
picture is improved as much as possible. After the data enhancement of the image, this
paper also optimizes the target detection network, and further improves the positioning
accuracy of the model by adding the attention mechanism and improving the loss function.
When the crack disease location is completed, the corresponding image is clipped, and
the improved k-means clustering algorithm is used to extract the contour of the crack,
which greatly reduces the amount of calculation and improves the efficiency. The main
contributions of this paper to the crack detection method are as follows: (1) A new image
preprocessing method based on guided filtering and Retinex is proposed in this paper.
Compared with traditional digital image detection technology, this method can eliminate
the influence of external factors such as uneven illumination distribution, environmental
noise and occlusion shadow on image quality. (2) In order to reduce the amount of
calculation, targeted to extract the crack characteristics, this paper proposes an improved
target detection algorithm based on the non-parametric attention module SimAM and
Transformer. The purpose of this algorithm is to accurately locate the crack area in the
image. Thus, the redundant calculation is reduced for the following crack contour feature
extraction. Compared with the existing convolutional neural network and deep learning
methods, this algorithm enhances the accuracy of frame selection for crack target area.
(3) In this paper, the traditional k-means clustering algorithm has been improved through
the Gaussian filter to eliminate image noise and optimize the image pixel value, which can
provide a more accurate extraction of crack contour.

At the same time, the size of the parameters of the target detection model is also an
important factor affecting the computational efficiency of the model. Although the accuracy
of the model has been improved, the model compression still needs to be studied on a
deeper level. Future research will focus on model parameter optimization.
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