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Abstract 

In this paper, we have considered the problem of three-stage sample surveys. The problem of a three stage 

multivariate stratified sample survey has been formulated as a non-linear stochastic programming problem 

by considering survey cost and the variances as random variables. The stochastic programming problem 

has been converted into equivalent deterministic form using Chance constraint programming and modified 

E-model.  
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Introduction 

The analysis of two-stage stratified sampling designs is well defined in the sampling 

literature. In two-stage stratified sampling designs the total population is subdivided into 

a number of strata and then two-stage stratified sampling procedure is applied for taking 

the samples. The two- stage stratified sampling designs generally specifies two- stages of 

selection: primary sampling units (PSUs) at the first stage and sub samples from each 

PSUs at second stage as a secondary sampling units (SSUs) units. The methods to obtain 

the optimum allocations of sampling units to each stage are readily available. Showkat et 

al. (2011) has used the geometric programming approach in multivariate two-stage 

sampling design for obtaining optimum sample sizes of each stage.     

 

In the three–stage stratified sampling design the process of sub sampling of the 

population under study can be carried out by dividing the given population into a number 

of strata,  instead of enumerating them completely. The use of three stage sampling 
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designs generally specifies three stages of selection: primary sampling units (PSUs) at the 

first stage, sub samples from each PSUs at second stage as secondary sampling units 

(SSUs) units and again sub samples from SSUs at third stage as tertiary sampling units 

(TSUs).  For instance, in surveys to estimate crop production in India (Sukhatme, 1947), 

the village is a convenient sampling unit. Within a village, only some of the fields 

growing the crop in question are selected, so that the field is a sub-unit. When a field is 

selected, only certain parts of it are cut for the determination of yield per acre; thus the 

sub unit itself is sampled. Here we have to find the optimal sample sizes n, m and p for 

all the three stages with the minimum cost. The problem of optimum allocation in two-

stage and three-stage sample surveys is described in standard text book on sampling such 

as W.G. Cochran (1977). Recently Shafiullah et at. (2013) has worked on three-stage 

sample surveys and applied geometric programming approach for finding optimum 

sample sizes of each stage.     

 

In many real-life situations the decision makers have to optimize their objectives which 

they have decided under certain conditions. The parameters on which the decision makers 

have to optimize their objectives are not always certain. The mathematical programming 

problem which deals with the theory and methods of the unknown parameters where the 

variables are considered as random is called stochastic programming problem. Stochastic 

programming plays very important role for modeling optimization problems.  Uncertainty 

is the root of the stochastic programming. The main target of using stochastic 

programming is for finding such solution where the feasibility occurs for all data and 

optimal in some cases. The stochastic programming is discussed by many authors in their 

text books such as Prékopa (1995), Charnes and Cooper (1959). 

 

The stochastic programming approach is applied by many researchers in the field sample 

surveys. Some of them are Ali et al. (2011), Khan et al. (2011, 2012), Bakhshi et al. 

(2010), Javed et al. (2009), Kozak (2006), Diaz-Garcia and Tapia (2007), Diaz-Garcia 

and Cortez (2006, 2008) and many more. 

 

In this paper, we have formulated the three-stage sample surveys problem as a stochastic 

programming problem. In three-stage sample surveys problem, we have considered that 

sampling variance and stratum costs has normally distributed random variable. The 

stochastic formulation of the problem has been converted into equivalent deterministic 

form by using chance constrained programming and modified E- model respectively.  

2.   Formulation of the problem in Three -Stage Stratified Sample Surveys  

The population is considered to be a heterogeneous population; it is turned into a 

homogeneous population by dividing it into L homogeneous stratum. Let       strata have  

   population such that    ∑   
 
   . Now, primary stage units (PSU) are selected from 

each strata taking into consideration the sizes to be constant within a stratum but may 

differ from stratum to stratum. As, is the case of third stage unit (TSU), an SSU is 

selected from PSU and further, a TSU is selected from SSU such that the      stratum 

contains    PSUs with    SSUs having    TSUs. Also, their corresponding sample sizes 

are                         with equal probability and without replacement at each 

stage. 
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Let the value in the population of     TSU in the     SSU in     PSU of     strata be     
   

such that                                             . 

 

Below are some of the usual notations that refer to     strata, 

Sample mean of TSU that were selected, 

 ̅  
   ∑

    
 

  

  
    . 

Population mean of TSU that were selected, 
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An unbiased estimate of population mean,    , per TSU may be written as 

    ∑(
       

 

∑       
 
   

,

 

   

 ∑   
  

   

 

where    
      

∑       
 
   

 is the relative size of the stratum in terms of the TSU’s.  

 

It is known that for stratified random sampling, WOR, with  
 

as the unbiased estimator 

of population mean    , the sampling variance is given by 
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 are the sample fraction at various stage and its 

estimated variance ignoring the fps is given by 
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Now, if the travel cost may be ignored, the total cost of survey can be written in the linear 

form given below 

    ∑(                       )

 

   

 

where 

         

  is the overall cost of sampling. 

   is the fixed cost in survey. 

    is the cost of obtaining information from the sampled FSU from the     stratum. 

    is the cost of obtaining information from the sampled SSU from the     stratum. 

    is the cost of obtaining information from the sampled TSU from the     stratum. 

 

In practice,     is likely to be larger than     and     is likely to be larger than    . 

Hence, a unit increase in    increases the cost much more as compared to a unit increase 

in    similarly, a unit increase in    is much more compared to a unit increase in    . 

Thus, the third component of cost function will vary from sample to sample for given   .  

 

If     is considered as a finite limit on cost and the optimum size of    ,     and    is 

required to be found so that the total survey variance can be minimized the allocation 

problem will be of the following Non Linear Programming Problem (NLPP) form with   

characteristics can be given by 
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where     
 ,     

  and     
  are the sample variances at each stage with     characteristic, 

         
 

Now, let us assume that                            to be independently normally 

distributed random variables. Further, sampling variance    
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stratum are also random variables. 
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4.  Solution Using Modified E-technique 

In objective function of Eq. 2 (i)     
      

           
  are considered random variables 

with asymptotic normal distribution. Consider the random variable    defined as (See 

Melaku, 1986) 
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Observe that,      
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Now, modified E-model technique (Garcia-2007) is applied, so that the equivalent 

deterministic objective function of NLPP (2) can be written as  
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The equivalent deterministic form of Eq. 2(i) can be obtained by using modified E-model 

as 
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3.   Solution Using Chance Constraint Programming  

The costs                 in the constraint are assumed to be normally distributive 

random variables. 
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Finally, from Eq. (4), (6) and (8) mean of objective function with random cost will be 
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Since,                
     

         
  are unknown and therefore they are replaced by 

their estimators. The estimator of   ( ) is 
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Thus finally, the allocation problem will be using assumptions made for (see Melaku 

1968) and using modified E-model (see Garcia 2007) the NLPP (3) will be formulated as 
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Lexicographic Method 

To solve the converted deterministic NLPP using lexicographic goal programming 

approach the with r characteristics arranged in lexicographic order of importance,   at the 

first stage of the solution the NLPP with      has to be obtained. Let   
 be the optimal 

value of the objective function    and      is such that       
      . 

 

At the second stage of the solution the NLPP to be solved is given by 
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Successively solving the problem at each stage, the NLPP at     stage will be given as 
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Other Allocation Methods 

A Comparative Study 

1. Proportional allocation 

The proportional 
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2. Cochran’s Allocation 

The compromise criterion of Cochran’s allocation is to average the individual 

optimum allocations of    
     

     
                        that are 

solutions to the NLPP for all the p characteristics separately. 

3. Minimizing Weighted Sum of Variances   

Khan et al. (2003) conjectured that 
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4. Sukhatme’s Allocation 

Sukhatme et al. [16] obtained the compromise allocation by minimizing the sum of 

the variances for the p characteristics under linear cost constraints. The NLPP for 

this allocation is given as 
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Simulation Study 

To illustrate the theory developed in previous section a simulation study has been done. 

Considering the population to posses two characteristics, randomized data with normal 

probabilities have been generated at each stage with total population being divided into 

four stratum. The data for simulation of three stage sampling is obtained through R-

Software.  

 

For the population of first characteristic at primary stage, normal random variables with 

specified mean and variance are generated through R-software. Later, the data is divided 

into four assumed stratum and mean variance and fourth moment are obtained for each 
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strata. The normal random variables are regenerated with different mean and standard 

deviation for second characteristic.  

 

Similarly, different populations at each stage are generated and regenerated for second 

characteristic for pre-assumed means and variances. The required data generated through 

the R-software for characteristic one and two are shown in table 1 and 2 respectively.    

Table 1:   Characteristic one i.e.     

              
     

     
     

     
     

  

1 28 120 240 101.4907 149.3986 338.1822 16744.84 76925.87 328265.00 

2 35 88 238 127.7659 144.2444 420.0881 30352.46 58804.94 454358.00 

3 25 116 256 89.4826 131.6389 434.8655 21610.17 57372.1 603104.40 

4 32 96 266 106.1326 114.8018 422.8810 23220.17 39431.28 590399.00 

Table 2:   Characteristic two i.e.     

                   
     

     
     

     
     

  

1 28 120 240 75.0717 99.2154 198.4202 10692.33 26751.71 109388.30 

2 35 88 238 78.6746 88.9380 166.7440 12815.83 31685.18 101540.80 

3 25 116 256 37.6336 101.4011 152.4509 3076.868 23863.5 78502.63 

4 32 96 266 62.6065 102.4223 188.7107 10507.18 27047.83 128872.50 

 

The per unit cost for measurement in various strata are independently normally 

distributed with assumed means and variances as shown in table below 

 (   )  (   )  (   )   
    

    
  

3 2 1 0.75 0.50 0.25 

4 3 1 1.00 0.75 0.25 

5 4 1 1.25 1.00 0.25 

6 5 1 1.50 1.25 0.25 

Results  

Trace Values and Cost from different methods are given in the form of table below 

 Lexicographic Proportional Cochran 

Weighted 

Average Sum 

of Variances 

Sukhatme 

            1.0669 1.1086 1.08645 1.0669 1.0669 

Cost 9954.429 9109.81 9387.852 9954.429 9954.429 

Conclusions  

This paper has provided comprehensive study of an optimum allocation in three-stage 

multivariate stratified sample surveys with costs and the variances as random parameters. 

The problem is formulated as a non-linear stochastic programming problem by 

considering survey cost and the variances as random variables. The stochastic problem of 
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three-stage multivariate stratified sample surveys is converted into equivalent 

deterministic form by using Chance constraint programming and modified E-model. 

Furthermore the researchers can use these formulations for obtaining optimum allocation 

for three-stage sample surveys whenever their costs are needed to be optimized with a 

limitation on variance.  
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