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Textural features are one of the most important types of useful information contained in images. In practice, these features are
commonly masked by noise. Relatively little attention has been paid to texture preserving properties of noise attenuation methods.
This stimulates solving the following tasks: (1) to analyze the texture preservation properties of various filters; and (2) to design
image processing methods capable to preserve texture features well and to effectively reduce noise. This paper deals with exam-
ining texture feature preserving properties of different filters. The study is performed for a set of texture samples and different
noise variances. The locally adaptive three-state schemes are proposed for which texture is considered as a particular class. For
“detection” of texture regions, several classifiers are proposed and analyzed. As shown, an appropriate trade-off of the designed
filter properties is provided. This is demonstrated quantitatively for artificial test images and is confirmed visually for real-life
images.
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1. INTRODUCTION

Texture features are widely used in image analysis and recog-
nition [1]. This relates to remote sensing applications includ-
ing microwave, optical, infrared, and multispectral where
texture plays an important role in desired scene-type detec-
tion and localization, image classification, object discrimi-
nation and terrain delimitation, and so forth [2, 3, 4, 5].

The same concerns modern techniques of color image analy-
sis, segmentation, and image retrieval from data bases [6, 7].

However, remote sensing images acquired from airborne
or spaceborne carriers as well as images registered by video
cameras and other sensors are commonly corrupted by noise.
For optical and infrared images it is commonly assumed that
the dominant noise is additive and its probability density
function (pdf) is close to Gaussian [8]. For microwave radar
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imagery the prevailing influence of multiplicative noise is
typical and its pdf can be either close to Gaussian or essen-
tially non-Gaussian depending upon the radar type and its
characteristics [2, 5, 9, 10, 11]. This noise is commonly rather
intensive and clearly observed visually in microwave images.

Noise presence causes problems in information retrieval
from grey-scale and color images as well as from radar re-
mote sensing data. Noise masks texture, distorts the textural
feature parameter estimates obtained from noisy data, makes
it more complex to solve the tasks of texture region detection,
identification, discrimination, and so forth.

Because of noise, image filtering is a generally used op-
eration in remote sensing data processing. It serves the goals
of image enhancement, denoising and, as a result, improve-
ment of data interpretation, classification, segmentation, and
sensed terrain (scene) parameter estimation [9, 10, 11]. Al-
though a large number of books and papers deal with image
filtering, not many of them pay particular attention to tex-
ture preservation. To name a few, we mention the papers of
Yunhan et al. [10], Aiazzi et al. [12], as well as the book of
Perry et al. [13] (see also references therein). Preliminary re-
sults of the current paper have been published in [14, 15].
The analysis here is more thorough and extended in many
respects, one of the most important of which is additionally
studied additive noise case.

The paper [10] contains the performance comparison for
a rather limited set of filters although it clearly demonstrates
the difference in texture preservation for such typical scan-
ning window filters as the standard mean and median [8],
the local statistic Lee [16], and the sigma [17] filters. The two
latter ones are shown [10] to preserve texture well enough.
The conclusions given in [10] coincide with the ones pre-
sented in our work [14], where the modified sigma filter [18]
is also considered.

The paper [12] deals with multitemporal remote sensing
data and their applications. Similarly to the data presented
in [11, 19], Aiazzi et al. underlines that small local variations
of true image values that correspond to radar cross-section
variations induced by local heterogeneity of surface back-
scattering should be preserved after image filtering; and these
variations can be considered as texture.

Many other papers relating to image filtering either
mainly deal with mosaic images or consider the texture in
images under study as edges, details, and their neighbor-
hoods (see, e.g., [20, 21, 22]). Although some concentration
of details and some texture can visually have similar appear-
ance, they, as it will be shown below, are not the same in the
sense of filter performance assessment and filter selection. Si-
multaneously, texture and noise are also not the same from
the viewpoint of local spatial correlation properties. Perry et
al. [13] stress that “the textures usually have noise-like ap-
pearance although they are distinctly different from noise in
that there exists certain discernible patterns within them.”
Here we can also add that while texture contains useful in-
formation the noise does not.

Recall that texture features are not the only class of use-
ful information to be retrieved from images. For efficient fil-
tering, it is also desirable to considerably suppress noise in

image homogeneous (smooth) regions and to preserve edges
and details. From these viewpoints, effective image process-
ing can be provided by hard-switching locally adaptive filters
[20, 21, 22, 23, 24]. The simplest versions of such filters that
can be referred to as two-component or two-state ones [22]
consist of a so-called noise suppressing filter (the standard
mean, Wilcoxon, α-trimmed, etc. [8, 20, 22]) and a detail
preserving filter (the local statistic Lee [16], the standard or
modified sigma filters [17, 18], etc.).

The two-state locally adaptive filter (LAF) output is as-
signed to the output of either noise suppressing filter (NSF)
or detail preserving filter (DPF). This hard switching is per-
formed according to the results of comparing the local activ-
ity indicator (LAI) to the predetermined threshold. As LAI,
the local statistical parameters like local variance, quasirange,
trimmed local variance, and so forth, calculated for given
scanning window, are used [20, 22]. If the dominant type of
noise is multiplicative, then these local statistic parameters
are to be normalized [20, 22, 23].

For two-state LAFs many image texture regions are clas-
sified to “locally active areas” and, thus, they are processed
by the detail preserving filter (DPF). In general, DPFs [16,
17, 18] preserve texture features not badly [10, 14]. However,
they are not the best choice for processing texture regions.
Thus, three problems arise. First, what is the best filter in the
sense of texture feature preservation? Second, if there exists
such a filter and it is not the same as the best DPF, then, can
this filter be incorporated in the structure of the locally adap-
tive hard switching filters? The third question is how to detect
and localize the texture regions?

In this sense, one should keep in mind that our inten-
tion is not to detect one or few particular texture types as in
some applications [3, 4] but to localize the areas with differ-
ent types of texture characterized by various statistical and/or
spatial correlation parameters.

It is worth noting here that more sophisticated versions
of locally adaptive filters (with larger number of used com-
ponent filters and with more complex methods of analysis of
image local behavior) [24, 25] are unable to effectively solve
the above-mentioned problems since (a) the first question
has not been answered there anyway; (b) texture has not been
considered as particular class and it could not be so. The rea-
son is that image “local analysis” has been performed in the
scanning window of size 5 × 5 pixels [24, 25]. At the same
time, texture elements generally have larger size and, thus,
the sliding windows used in texture analysis and parameter
estimation commonly have the size 12× 12 or 16× 16 pixels
[3].

These were the reasons for our decision to modify the
hard switching two-state locally adaptive filter to the three-
state one [14, 15]. The proposed filter had the states corre-
sponding to the three classes: image homogeneous regions,
edges and details, and texture regions. The local statistic Lee
filter [16] was proposed in [14] for application in texture re-
gions. It performed quite well, but later it has been shown
that the local statistic Lee filter was not the best choice [15].
DCT-based filter performs considerably better [15]. This will
be confirmed in Section 3.
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It stems from the theory of hard-switching locally adap-
tive filters [20, 22, 24] that their performance depends upon
the selection of component filters. Therefore, for a three-state
LAF under design, its performance should depend upon se-
lection of NSF, DPF, and texture preserving filter (TPF). The
properties of hard-switching LAFs also depend upon the reli-
ability of image pixel preclassification, that is, their referring
to the corresponding classes.

Such preclassification should successfully solve this task
for different levels (variances) and types of noise. We suppose
that noise type is either known a priori or predetermined
using the corresponding methods, for example, those ones
proposed by Carton-Vandecandelaere et al. [26]. Then, the
statistical parameters of noise can also be estimated [27, 28].
They can be also known a priori. After this, it becomes possi-
ble to separately consider the cases of dominant influence of
multiplicative or additive noise, and this is done in Sections 4
and 5, respectively. Numerical simulation data are presented
in Sections 3, 4, and 5 while real image processing examples
are given in Section 6.

2. IMAGE/NOISE MODELS

The noise characteristics of remote sensing (RS) and other
kinds of images depend upon different factors [22]. Never-
theless, the simplified universal one-channel RS image model
can be represented as follows:

Ii j =







µi j · I
true
i j + ni j with probability 1− Pimp,

Aimp with probability Pimp,
(1)

where Ii j is the i jth noisy image sample value, I true
i j is the true

image value for the i jth sample, µi j is a stochastic variable
that denotes multiplicative noise (with 〈µ〉 = 1 and the rel-
ative variance σ2

µ ), ni j is the additive noise component with

zero mean and variance σ2
n . Aimp is a value of an image pixel

corrupted by impulse spike (or burst) that can be encoun-
tered in image sample with probability Pimp.

Further, we consider impulse-free images since all im-
pulse noise and bursts can be removed at the preliminary
stage of RS image processing. This can be done using the pre-
processing methods proposed by us in [29, 30].

As was mentioned in the Introduction, in this paper we
consider two basic cases: the dominant influence of multi-
plicative (speckle) or additive noise. The situation where an
image is corrupted by the former type of noise is considered
in this paper in more detail compared to [15].

Multiplicative noise is typical for radar and ultrasound
imaging systems [22]. The noise characteristics in radar im-
ages depend upon several factors like system type (synthetic
aperture radar (SAR) or side look aperture radar (SLAR))
and SAR parameters (one-look or multilook, etc.). The sim-
plified radar image models commonly take into account the
multiplicative noise only, and can be described as follows
[22]:

Ii j = I true
i j · µi j . (2)

For the simplified model (2) the influence of radar point
spread function and additive noise is neglected. In most real
cases µi j can be considered as having invariable properties
for an entire radar image (σ2

µ = Const). Typical values of σ2
µ

are of the order 0.004, . . . , 0.02 for SLAR images and slightly
larger for multilook SAR images [22].

The basic attention in this paper is paid to the case when
the image is formed by SLAR or by multilook SAR with
rather large number of looks. Therefore, it can be supposed
that the multiplicative noise pdf is close to Gaussian [22].
However, it is demonstrated in Section 6 that the proposed
approach is also applicable to processing radar images cor-
rupted by nonsymmetric pdf speckle (SARs) if the corre-
sponding prefiltering of such images has been carried out.

Another important aspect that we try to stress in this pa-
per is the case of prevailing additive noise. For example, for a
wide class of optical images the simplified observation model
is [8]

Ii j = I true
i j + ni j . (3)

Additive noise ni j is supposed Gaussian and this assump-
tion is valid for many practical applications [8, 9, 13]. Also,
assume additive noise variance σ2

n is a constant value for en-
tire image (σ2

n = Const).
In our simulations we consider i.i.d. (spatially uncorre-

lated) multiplicative and additive noise. Although this is not
always true in practice (especially, for radar imaging), this
paper is only the first step in design of efficient texture pre-
serving techniques and, thus, we restricted ourselves consid-
ering i.i.d. noise with planning to study spatially correlated
noise cases in future.

3. STUDY OF TEXTURE FEATURE PRESERVATION
BY DIFFERENT FILTERS

We first perform property analysis of different filters in the
sense of texture preservation. Thorough study of such prop-
erties for a very wide variety of filters is impossible because
of several reasons. First, texture can be characterized and
described in different ways using various sets and combi-
nations of parameters [1, 31, 32, 33]. Really, many differ-
ent approaches involving random Gaussian and Markov field
models, fractals, orthogonal transforms, and so forth, are ap-
plied to texture modeling nowadays (see [34] and references
therein). Second, while analyzing texture feature preserving
performance of filters one should keep in mind what will be
the further goal of prefiltered image processing (e.g., texture
discrimination, parameter evaluation, etc.) and what tech-
nique will be applied. Since we do not know the goal of fur-
ther image processing in advance, it has been decided to con-
sider several typical characteristics and parameters of differ-
ent texture regions for noise-free images, noisy ones, and the
images after filtering.

In particular, quite often the higher-order statistics (mo-
ments) of texture region pdf estimations are used [1, 31,
32]. Thus, below we analyze the texture region mean, the
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Figure 1: The noise-free test image (256 × 256) with four texture
regions.

variance σ2, the skewness ξ, and the kurtosis ψ (nor-
malized σ2 was used and it was calculated as σ2 =

(1/|Gtext|)
∑

i j∈Gtext
(Ii j − IGtext )

2
/(IGtext )

2, where IGtext denotes
the local mean determined for entire texture region Gtext,
|Gtext| is the number of pixels that belong to this region).
Note that the noise present in an image can rather consid-
erably change these statistics in comparison to the noise-free
texture (see data presented in Figure 2). Another approach
assumes the analysis of spatial spectrum or correlation char-
acteristics [1, 5, 33] that are connected with cooccurrence
matrix-based methods for texture recognition. So, we also
consider the basic parameters of spatial autocorrelation func-
tion (ACF) like the main lobe width, maximal side lobe level,
its visual appearance, and so forth. Besides, some people are
more used to analyze the filter performance in terms of mean
square error (MSE) or peak signal-to-noise ratio (PSNR) al-
though these are not the best criterions from the viewpoint
of processed image quality evaluation [13]. Nevertheless, the
integral and local PSNR values have been calculated for en-
tire test image in Figure 1 and for its fragments.

Analysis has been performed for the four types of tex-
ture that had rather different properties. The first texture
type is an intensive medium-grain texture (rectangular shape
fragment in the left-top part of the test noise-free image in
Figure 1, this texture is called “Cement”). The second type
called “Linen” is nonintensive small-grain texture (the circu-
lar shape fragment in the right-top part). The third sample of
texture “Bread” is the large rectangular object in left-bottom
part, it can be classified as medium-intensity medium-
grain texture. Finally, the fourth texture sample (large-circle
shape fragment in the right-bottom part, called “Cracks”)
can be classified as medium-intensity large-grain texture.
As seen from Figure 1, beside the aforementioned texture re-
gions (TR), the test image also contains homogeneous re-
gions (HR) and edge/detail neighborhood regions (EDNR).

The study of texture feature preserving properties has
been performed for a rather wide set of different filters that
belong to NSF and DPF classes. As representatives of NSF
class, the standard mean (mean), median (median), and the
Lpq-NSF also called the sum-rank filter (sum.rank) [22, 23]
have been exploited. The set of the considered DPFs has in-
cluded the following filters. First, the standard sigma (Sigma)

[17], the local statistic Lee (Lee) [16], the center-weighted
median (CWMF) [8] with different weights, and the FIR
median hybrid filters (modification 3L+ [35]) (FMHF) have
been studied. For the two latter filters the scanning window
was 5× 5, whilst for the standard sigma and Lee filters it var-
ied from 3 × 3 to 9 × 9 pixels. Second, the modified sigma
filters (MSF) have been exploited for the cases of dominant
multiplicative [18] and additive [36] noise. Their scanning
window size also varied. Besides, for the standard and mod-
ified sigma filters as well as for the local statistic Lee filter,
we used as the input parameters not only the true values of
σ2
µ (or σ2

n) but also slightly smaller and larger values (they
are presented in Table 1). Third, we have also analyzed the
filtering method based on spatially invariant discrete cosine
transform (DCT) [37, 38].

Typically, the transform-based methods are intended for
application in additive Gaussian noise environment [37, 38,
39]. However, recently there were quite many attempts to
modify these methods to make them applicable to process-
ing the images corrupted by multiplicative (even speckle)
noise [37, 38, 40]. One of the possibilities is to apply
at the first stage the direct logarithmic transform Ihi j =

[a logb(Ii j)], where a and b are some parameters, [·] denotes
the rounding-off operation. Our investigations have shown
that if an original radar image is represented as 8-bit 2D data
array, the best choice to get 8-bit image representation af-
ter direct homomorphic transform and to ensure minimal
distortions due to rounding-off errors is to use a = 8.39
and b = 1.2. Then, the spatially invariant DCT filtering is
to be applied followed by the corresponding inverse homo-
morphic transform. After the aforementioned direct homo-
morphic transform, Gaussian multiplicative noise in original
radar image converts to additive quasi-Gaussian noise with
variance σ2

add recalculated as σ2
add = a2σ2

µ /(ln b)2.
The hard-threshold DCT-based filtering presumes

assigning zero values to those DCT spectral coefficients that
do not exceed the predetermined threshold. This threshold
is commonly set proportional to noise standard deviation
where the recommendations are to use the factors within
the limits from 2 to 4 [39]. According to the results we have
obtained by analyzing several textures and noise variances,
our recommendation is to set the threshold tDCT twice
larger than the noise standard deviation σadd. Note that if
the noise in an image is additive, then the operations of
direct and inverse homomorphic transform are unnecessary,
and tDCT = 2σn. The scanning window size for DCT-based
filtering was 8 × 8 pixels although for the 16 × 16 window
the filter performance was almost the same.

As can be predicted and follows from previous analysis
[10, 14, 15], all filters referred to NSF class severely degrade
texture features. All NSFs radically change the variance σ2,
the skewness ξ, and the kurtosis ψ with respect to the ini-
tial values for the corresponding fragments of the noise-free
test image (see Figure 2). If NSF scanning window size in-
creases (see the plots for the mean, median, and sum-rank
filters in Figure 2), the differences between original values of
σ2, ξ, and ψ (original) and their estimates obtained for pro-
cessed images, as a rule, increase.
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Figure 2: Diagrams of statistical characteristics (vertical axis): (a), (d) the relative local variance, (b), (e) the skewness, and (c), (f) the
kurtosis of the textural fragment in the right bottom part ((a) , (b), and (c)) and in the left bottom part ((d), (e), and (f)) of the test image
(Figure 1) corrupted by Gaussian multiplicative noise (σ2

µ = 0.005) depending on the square sliding window side size (horizontal axis).

Besides, the image texture regions processing by NSF
leads to a considerable change in basic characteristics of 2D
ACF (compare the ACF in Figure 3a to ACFs in Figures 3c,
3d, and 3e; also compare the ACF in Figure 4a to the ACF
in Figure 4c). In particular, after processing by NSF the ACF
main lobe becomes wider; the side lobes are substantially
smeared, and so forth. The destructive influence of NSF ap-
plication on texture regions will be also clearly seen from the
data presented in Table 2 for the 7 × 7 Lpq-filter where in
the rightmost column the values of local MSE and PSNR are
given for all texture regions of the test image (in aggregate).
Note that all aforementioned effects have been observed for
both multiplicative noise variances σ2

µ = 0.005 and σ2
µ =

0.012 and for all four considered textures.
In turn, the filters referring to the class of DPFs per-

form texture feature preservation much better than any NSF.

After DPF application the values σ2, ξ, and ψ usually become
closer to initial values for noise-free texture regions than they
were for noisy images. The effect of scanning window size for
DPFs is also not as crucial as for NSFs. This is clearly seen for
the standard sigma and Lee filters used as examples of DPFs
in Figure 2. Besides, as seen in Figures 3f, 3g, and 3h, the 2D
ACFs are much closer to the ACF in Figure 3a than the ACFs
for outputs of NSFs (Figures 3c, 3d, and 3e). The analysis of
2D ACFs in Figures 4d and 4e also shows that they are much
more similar to the ACF in Figure 4a than the ACF for the
median filter output (Figure 4c).

For the DCT-based filter for the texture region Cracks,
the obtained σ2, ξ, and ψ are equal to 0.035, −0.144, and
−0.56, respectively. Comparing them to the data presented
in Figure 2, we can assure that they are quite close to orig-
inal ones and approximately at the same level as for the
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3: Two-dimensional grey-scale representation of 64× 64 ACFs for the left-bottom texture fragment of (a) the noise-free test image,
(b) the test image corrupted by Gaussian multiplicative noise (σ2

µ = 0.005), and the same image processed by (c) 7 × 7 mean, (d) 7 × 7
median, (e) 7 × 7 Lpq, (f) 7 × 7 Sigma, (g) 7 × 7 local statistic Lee, and (h) 8 × 8 DCT-based filters. (The dynamic diapasons of 2D-ACFs
representation are identically corrected for better visual perception.)

local statistic Lee filter. It is also seen from analysis of ACFs
in Figures 3h and 4f that the DCT-based filter practically does
not distort the 2D ACF of texture samples.

The analysis and comparisons performed above have
been done for particular textures and for given values of σ2

µ .
In order to prove that the obtained dependencies and con-
clusions are valid for different textures and noise properties,
we consider additional simulation data.

As another possible approach, the comparison of texture
preserving properties of filters has been also performed using
the plots of texture region skewness and kurtosis represented
as the corresponding points on plane (see Figure 5). This fig-
ure shows few examples for both σ2

µ = 0.005 and σ2
µ = 0.012

that correspond to typical levels of multiplicative noise in
SLAR images.

Numerical results for one more texture sample (right
top) that have not been shown in Figure 5 can be found in
Table 1.

The obtained plots allow to analyze in what degree the
skewness and kurtosis are changed after (due to) filtering and
to compare the obtained values to original (noise-free) ones.
As seen, the considered Lee and DCT filters that belong to
DPF class do not change the higher-order statistics too much.
For some types of textures practically ideal preservation of
texture higher-order statistics is provided by one group of
filters. An example is the high-contrast left-top texture (see
Figures 5c and 5f) for which the DCT-based and the 5×5 and
7 × 7 local statistic Lee produce practically “perfect match.”
However, it can be seen that in many cases the FMHF and

sometimes CWMF (with the central weight 11) provide good
results as well. Nevertheless, their PSNR results (see Table 1)
are far from the best.

Additional data that characterize texture feature preserv-
ing properties of different filters for the four considered tex-
ture types are presented in Table 1 for σ2

µ = 0.005 and σ2
µ =

0.012 cases.
As seen, in aggregate, the best results have been provided

by the local statistic Lee (5 × 5 and 7 × 7) and the proposed
version of the DCT-based technique. For them the values of
skewness and kurtosis for all four textures differ from the
true values by no more than 0.2 (see also Figure 5) while for
other filters like MSF or CWMF radical changes of these tex-
ture features have been observed. Besides, the Lee and DCT-
based filters produce PSNRs that are the largest among all
considered filters (i.e., the corresponding values of MSE are
the smallest) for all four textures. Note, that the best results
are provided by an 8 × 8 or 9 × 9 DCT filter. Since the ad-
vantage of the latter is not essential, the use of more com-
putationally attractive 8 × 8 DCT variant is preferable. The
preponderance of DCT filter is also clearly demonstrated by
visual filtering results of texture samples in Figure 6.

Excellent texture preserving properties of the DCT-based
filter can be easily explained and they stem from princi-
ples of transform-based filtering [38, 39]. If the processed
texture has some specific spatial spectral harmonics, then
with high probability they will remain unchanged (since they
exceed the hard threshold) after assigning zero values to
some percentage of spectral coefficients which, most likely,
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Figure 4: Three-dimensional representation of the right-upper texture fragment ACF (32 × 32): (a) noise-free, (b) corrupted by Gaussian
multiplicative noise with σ2

µ = 0.012, and after processing the image by (c) the 5× 5 median filter, (d) the 5× 5 modified sigma filter, (e) the
5× 5 local statistic Lee filter, and (f) the 8× 8 DCT-based filter.

correspond to noise. Thus, the texture, irrespective of its spa-
tial spectral characteristics, is preserved well and noise is ef-
fectively suppressed.

The data presented in Table 1 one more time underlines
the problems of texture region filtering. For some textures
like the right-bottom and right-top ones the 4–6 dB PSNR
increasing is provided by the best filters and the application
of all the considered filters leads to PSNR improving. At the
same time, for the left-top texture, practically no improve-
ment is ensured even by the best filters. Moreover, the ap-
plication of some filters results in even considerable decreas-
ing of PSNR. This takes place, for instance, for the CWMF
(see Table 1).

The aggregate PSNR and MSE values calculated for all
four texture regions together are given in Table 2 in the right-
most column. Due to the DCT-based filter application, the
PSNR values have been improved (increased) by 4-5 dB. The
PSNRs for the DCT-based technique are, at least, by 1− 2 dB
better than for any other DPF for both σ2

µ = 0.005 and

σ2
µ = 0.012.

The final argument that gives additional information to
quantitative analysis performed above is visual analysis of
texture processing. The visual analysis still remains the key
factor from which one can make conclusions concerning

filter quality and conceive the entire explicit numerical re-
sults for the considered filters.

The visual results of processing the considered texture
samples by some of the studied DPFs are presented in
Figure 6. As can be seen, the 5×5 CWMF with the central el-
ement weight 11 that provides the best PSNR results among
CWMFs does not show good enough texture preservation
(Figure 6c); besides, rather intensive residual noise is notice-
able. The FMHF that retains high-order statistics well pos-
sesses, probably, the worst noise suppression among the stud-
ied techniques (see Figure 6d). This fact is also confirmed
by the corresponding PSNR values that are rather low (see
Table 1). Among sigma filters, the application of MSF even if
scanning window is rather small (5× 5) results in noticeable
detail smearing (Figure 6f) compared to its conventional ver-
sion (Figure 6e). For the latter case, noise reduction is not ap-
propriate. Nevertheless, from Figure 6f one can see the MSF
tendency to emphasize the edges of small homogeneous ob-
ject that is very useful in such class of tasks.

The best overall ability to preserve texture simultaneously
with noise suppression is provided by local statistic Lee filter
(Figure 6g) and DCT-based filter (Figure 6h).

All this shows that the DCT-based filtering can be
very useful for texture feature preservation and it can be
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Figure 5: Joint graphical representation of kurtosis and skewness for original and noisy textures and these textures are processed by dif-
ferent detail preserving filters: (a), (d) left-bottom, (b), (e) right-bottom, and (c), (f) left-top textures in Figure 1, corrupted by Gaussian
multiplicative noise: (a), (b), (c) with σ2

µ = 0.005 and (d), (e), (f) with σ2
µ = 0.012.

recommended as the best component filter for the three-state
locally adaptive hard-switching scheme under design.

As can also be seen from Table 2, the DCT-based fil-
tering does not outperform the 7 × 7 Lpq-filter in image

homogeneous regions. In turn, the Lpq-filter produces se-
vere distortions in texture regions. In edge/detail regions and
their neighborhoods the best local MSE and PSNR values are
provided by the modified sigma filter. This allows expect-
ing that if the image homogeneous regions, the edge/detail
neighborhoods, and the texture regions would be reliably
classified, the locally adaptive hard-switching filtering could
ensure the desirable trade-off of image processing proper-
ties.

4. PROPOSED THREE-STATE LOCALLY ADAPTIVE
FILTER FOR MULTIPLICATIVE NOISE CASE

Recall that the two-state locally adaptive filter output is de-
fined as [20, 22, 23]

I
f
i j =











INSF
i j , S2 st

i j = 1,

IDPF
i j , S2 st

i j = 2,
S2 st
i j = S1thr

i j =











1, ϑi j ≤ ϑt ,

2, ϑi j > ϑt,
(4)

where INSF
i j , IDPF

i j are the outputs of the used NSF and

DPF, respectively; S1thr
i j denotes the one-threshold preclassi-

fier (PC) used in this case as the two-state PC (S2 st
i j ), ϑi j is

the LAI value, ϑt defines the threshold. If ϑi j ≤ ϑt , the pixel
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Table 1: Comparative quantitative results of application of different DPFs to four texture samples corrupted by multiplicative Gaussian
noise with σ2

µ = 0.005 and σ2
µ = 0.012.

Left-top Left-bottom Right-bottom Right-top
texture (Cement) texture (Bread) texture (Cracks) texture (Linen)

PSNR MSE σ2 PSNR MSE σ2 PSNR MSE σ2 PSNR MSE σ2 k γ

Noise-free — — 0.463 — — 0.020 — — 0.027 — — 0.007 0.154 0.236

Noisy (σ2
µ = 0.005) 29.01 81.67 0.463 28.47 92.32 0.026 26.09 159.88 0.030 27.2 123.93 0.012 0.259 0.194

Sigma 5× 5 28.41 93.89 0.458 29.99 65.13 0.019 28.9 83.75 0.024 29.1 79.93 0.006 0.239 2.293

Sigma 7× 7 28.46 92.62 0.457 29.9 66.5 0.018 28.44 93.23 0.023 29.13 79.51 0.005 0.302 2.698

MSF 5× 5 26.59 142.5 0.449 29.68 70.09 0.016 29.33 75.86 0.022 28.3 96.29 0.003 0.366 7.728

MSF 7× 7 26.98 130.4 0.445 29.58 71.61 0.014 28.5 91.96 0.021 28.49 92.09 0.003 0.717 8.593

FMHF 5× 5 24.84 213.4 0.420 29.48 73.36 0.021 27.22 123.42 0.027 28.47 92.79 0.007 0.235 −0.595

CWMF 5× 5 (w = 7) 15.44 1857 0.224 29.09 80.16 0.013 28.93 83.17 0.021 27.74 109.37 0.002 0.606 0.361

CWMF 5× 5 (w = 9) 16.94 1315 0.268 29.49 73.07 0.014 28.83 85.15 0.022 28.11 100.58 0.003 0.509 −0.057

CWMF 5× 5 (w = 11) 18.45 930.2 0.310 29.72 69.33 0.016 28.52 91.41 0.023 28.36 94.91 0.003 0.429 −0.338

Lee 5× 5 28.99 82.01 0.452 30.07 64.05 0.020 28.79 85.86 0.025 29.17 78.66 0.006 0.32 0.455

Lee 7× 7 28.98 82.27 0.450 29.87 66.96 0.020 28.21 98.16 0.024 29.14 79.21 0.006 0.319 0.422

DCT 7× 7 29.02 81.49 0.464 31.4 47.06 0.018 31.98 41.25 0.023 30.82 53.84 0.004 0.316 0.344

DCT 8× 8 29.05 81.01 0.463 31.47 46.47 0.018 31.76 43.38 0.023 31 51.63 0.004 0.329 0.193

DCT 9× 9 29 81.87 0.464 31.46 48.08 0.018 32.02 40.86 0.024 31.01 51.59 0.004 0.29 0.181

Noisy (σ2
µ = 0.012) 25.08 201.9 0.472 24.92 209.6 0.036 22.55 361.3 0.036 23.6 284 0.019 0.329 0.224

Sigma 5× 5 24.45 233.2 0.455 27.85 106.8 0.022 26.59 142.8 0.026 26,78 136.5 0.006 0.079 1.625

Sigma 7× 7 24.51 230.4 0.451 27.68 111.1 0.020 26.23 155 0.025 26.93 131.8 0.005 −0.036 1.473

MSF 5× 5 22.85 337.7 0.440 28.06 101.7 0.015 27.92 104.9 0.022 26.66 140.3 0.002 −0.098 1.762

MSF 7× 7 23.04 323.2 0.431 27.75 109.2 0.014 27.05 128.3 0.020 26.99 130.1 0.002 0.158 0.335

FMHF 5× 5 23.13 316.6 0.423 26.6 142.2 0.027 24.19 247.8 0.032 25.61 178.8 0.011 0.203 −0.503

CWMF 5× 5 (w = 7) 15.29 1922 0.220 28.15 99.64 0.015 27.37 119.2 0.024 26.99 130 0.003 0.094 −0.325

CWMF 5× 5 (w = 9) 16.65 1406 0.264 28.14 99.82 0.017 26.79 136.1 0.025 26.97 130.6 0.004 0.130 −0.469

CWMF 5× 5 (w = 11) 18.06 1017 0.307 27.94 104.6 0.019 26.15 157.8 0.027 26.78 136.7 0.006 0.169 −0.487

Lee 5× 5 25.16 198.2 0.443 28.13 100.1 0.021 27.23 123 0.024 27.24 122.7 0.006 0.423 1.112

Lee 7× 7 25.09 201.4 0.439 27.87 106.3 0.020 26.57 143.2 0.023 27.23 123 0.005 0.487 1.049

DCT 7× 7 25.14 199 0.471 29.68 69.99 0.017 29.48 73.34 0.023 28.74 86.9 0.003 0.486 0.806

DCT 8× 8 25.14 199.3 0.471 29.76 68.70 0.018 29.48 73.26 0.023 28.9 83.7 0.003 0.488 0.729

DCT 9× 9 25.16 198.2 0.471 29.68 69.95 0.017 29.65 70.50 0.023 28.99 82.1 0.003 0.389 0.444

corresponds to a locally passive area to be processed by NSF,
and if ϑi j > ϑt , it belongs to a locally active area to be filtered
by DPF.

We now briefly consider the most typical LAIs. For mul-
tiplicative noise case they are the relative local variance (RLV)
and the normalized quasirange (NQ) [20] derived as follows:

σ2
ri j =

i+(N−1)/2
∑

k=i−(N−1)/2

j+(N−1)/2
∑

l= j−(N−1)/2

(

Ikl − I i j
)2

(

m2 − 1
)

I
2
i j

,

Qni j =
I

(p)
i j − I

(q)
i j

I
(p)
i j + I

(q)
i j

,

(5)

where I i j=
∑i+(N−1)/2

k=i−(N−1)/2

∑ j+(N−1)/2
l= j−(N−1)/2 Ikl/m

2 is the local mean,

N = m ×m denotes the scanning window size, I
(p)
i j and I

(q)
i j

are the pth- and qth-order statistics determined for the i jth
scanning window position, p+q = N+1. In our experiments
we used p ≈ 0.76N and q ≈ 0.24N .

Numerical simulation results for two versions of the two-
state LAF (based on RLV and NQ used as ϑi j in (4)) are
presented in Table 2 (two-state switching scheme). The two
component filters (NSF and DPF) were the 7 × 7 Lpq-filter

[20, 23] (for which the output was calculated as I
Lpq

i j = (I
(p)
i j +

I
(q)
i j )/2, p ≈ 0.8N and q ≈ 0.2N , p+ q = N + 1) and the 7× 7

MSF [18].
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(e) (f)

(g) (h)

Figure 6: Visual representation of filtering results of four texture samples corrupted by (a) multiplicative noise σ2
µ = 0.012, and (b) by

different DPFs: (c) the 5× 5 CWMF with the central element weight 11, (d) the FMHF, (e) the 5× 5 sigma filter, (f) the 5× 5 MSF, (g) the
5× 5 local statistic Lee filter, and (h) the 8× 8 DCT-based filter.

As seen, the aggregate MSE and PSNR calculated for en-
tire image are improved only a little in comparison to the
7 × 7 modified sigma filter. However, the improvement in
image homogeneous regions due to application of the 7 × 7
Lpq-filter to them is of about 1 dB. The local MSE and PSNR
in edge/detail and texture areas are practically the same as
for the modified sigma filter since this filter is mostly used
for processing the image in these areas.

The output of this two-state LAF applied to the noisy im-
age in Figure 7a is presented in Figure 7b. Efficient noise sup-
pression in HRs and good edge/detail preservation are ob-
served. But the texture in texture regions (TRs) is distorted
(compare the images in Figures 7b and 1).

We consider the possibilities to get around these short-
comings by developing three-state LAFs. In general, the

three-state locally adaptive filter can be defined as

I
f
i j =























INSF
i j , S3 st

i j = 1,

IDPF
i j , S3 st

i j = 2,

ITPF
i j , S3 st

i j = 3,

(6)

where now, opposite to (4), the PC (S3 st
i j ) can get three

values—1, 2, and 3. The latter corresponds to the case of the
given pixel classification as belonging to TR for which the
texture preserving filter (TPF) is applied (its output is de-
noted as ITPF

i j ).
Recall that our task in three-state hard-switching LAF de-

sign is to detect and localize the regions with different types
of texture. Therefore, only the features common for various



Locally Adaptive Texture Preserving Filter 1195

Table 2: Aggregate and local MSE and PSNR values for nonadaptive and locally adaptive filters for the test image in Figure 1 containing four
texture fragments. The multiplicative Gaussian noise with σ2

µ = 0.005 and with σ2
µ = 0.012 has been added to this image (see Figure 7a).

The component filters for LAF (σ2
µ = 0.005)\[σ2

µ = 0.012]:

Entire image
Homogeneous

regions
Edge

neighborhoods
Texture
regionsHR—sum-rank filter 7× 7 (q = 12, p = 38);

TR—DCT-filter (tDCT = 8)\[tDCT = 13];

EDNR—MSF 7× 7 (σ2
r = 0.005)\[σ2

r = 0.012] PSNR MSE PSNR MSE PSNR MSE PSNR MSE

Corrupted by multiplicative Gaussian noise with σ2
µ = 0.005 29.23 77.56 30.05 64.22 29.32 76.02 27.2 123.88

Sum-rank filter 7× 7 21.9 419.73 45.84 1.7 18.57 904.7 19.57 717.57

Sigma-filter 7× 7 (σ2
r = 0.005) 33.9 26.5 37.72 10.99 34.36 23.85 28.98 82.18

Sigma-filter 7× 7 (σ2
r = 0.007) 34.57 22.69 39.84 6.75 35.1 20.11 29.12 79.61

Sigma-filter 5× 5 (σ2
r = 0.005) 33.72 27.62 36.94 13.16 34.02 25.8 29.2 78.16

Sigma-filter 5× 5 (σ2
r = 0.007) 34.48 23.17 38.79 8.59 34.8 21.52 29.46 73.7

Modified sigma-filter 7× 7 (σ2
r = 0.005) 34.83 21.37 44.16 2.5 35.58 18.01 28.62 89.43

Lee filter 7× 7 (σ2
r = 0.007) 32.07 40.36 36.56 14.37 30.2 62.09 29.26 77.11

Lee filter 5× 5 (σ2
r = 0.008) 32.82 33.96 37.18 12.46 31.12 50.25 29.81 67.99

DCT (tDCT = 8) 34.3 24.19 41.59 4.51 31.93 41.68 31.16 49.78

2-state switching RLV (ϑt = 0.0063) 34.9 21.07 45.69 1.76 35.58 18.01 28.59 89.89

scheme NQ (ϑt = 0.07) 34.84 21.33 44.36 2.38 35.57 18.03 28.61 89.51

3
-s

ta
te

sw
it

ch
in

g

sc
h

em
e

2-
threshold

RLV (ϑt1 = 0.0068; ϑt2 = 0.015) 35.45 18.54 45.54 1.82 34.94 20.83 29.84 67.44

NQ (ϑt1 = 0.07; ϑt2 = 0.17) 35.01 20.5 45.65 1.77 33.7 27.74 29.99 65.2

Iterative
RLV (ϑt1 = 0.006; [TTR(%) = 74%; M = 2.6m]) 35.55 18.14 44.77 2.17 33.91 26.41 31 51.69

NQ (ϑt1 = 0.11; [TTR(%) = 61%; M = 2.5m]) 36 16.32 45.16 1.98 34.84 21.33 31.01 51.66

CPC1 36.45 14.74 45.37 1.89 35.95 16.51 30.95 52.27

CPC2 36.37 15 45.78 1.72 36.02 16.25 30.72 55.11

Corrupted by multiplicative Gaussian noise with σ2
µ = 0.012 25.62 178.39 26.43 147.97 25.69 175.46 23.62 282.74

Sum-rank filter 7× 7 22.05 405.27 42.17 3.94 18.8 857.18 19.55 720.8

Sigma-filter 7× 7 (σ2
r = 0.012) 30.71 55.22 33.75 27.42 30.7 55.35 26.53 144.54

Sigma-filter 7× 7 (σ2
r = 0.022) 31.81 42.88 37.21 12.36 31.6 45.03 26.78 136.56

Sigma-filter 5× 5 (σ2
r = 0.012) 30.52 57.72 33.04 32.27 30.51 57.87 26.69 139.4

Sigma-filter 5× 5 (σ2
r = 0.025) 31.93 41.7 36.6 14.23 31.7 44.01 27.16 125.2

Modified sigma-filter 7× 7 (σ2
r = 0.012) 32.26 38.64 40.51 5.79 32.16 39.58 26.6 142.43

Lee filter 7× 7 (σ2
r = 0.017) 29.96 65.7 37.55 11.44 27.32 120.65 27.28 121.65

Lee filter 5× 5 (σ2
r = 0.018) 30.66 55.9 36.98 13.04 28.33 95.62 27.79 108.06

DCT (tDCT = 13) 31.4 47.08 39.31 7.63 28.71 87.57 28.76 86.58

2-state switching RLV (ϑt = 0.015) 32.3 38.32 41.34 4.78 32.16 39.55 26.56 143.73

scheme NQ (ϑt = 0.12) 32.29 38.41 41.02 5.14 32.16 39.57 26.58 143.09

3
-s

ta
te

sw
it

ch
in

g

sc
h

em
e

2-
threshold

RLV (ϑt1 = 0.014; ϑt2 = 0.036) 32.77 34.37 41.14 5.01 31.7 43.92 27.78 108.32

NQ (ϑt1 = 0.12; ϑt2 = 0.3) 32.67 35.14 40.49 5.81 31.37 47.4 28 103.16

Iterative
RLV (ϑt1 = 0.014; [TTR(%) = 77%; M = 2.6m]) 32.5 36.57 40.59 5.67 30.53 57.54 28.55 90.76

NQ (ϑt1 = 0.135; [TTR(%) = 69%; M = 2.6m]) 32.81 34.05 41.29 4.84 31.4 47.13 28.14 99.85

CPC1 32.9 33.36 41.42 4.69 31.29 48.33 28.43 93.31

CPC2 33.44 29.47 41.92 4.18 32.72 34.74 28.15 99.54

texture types can be exploited. Such features can be verbally
described as follows. Texture is mostly slight (not very inten-
sive) spatial variations of the image true values in the regions
of the size not less than ten to ten pixels (although the first

assumption is not absolutely true for intensive texture like
for the first, upper-left texture fragment of the test image).
Therefore, the texture detectors should be suited (sensitive)
for such kind of variations. Taking into account that noise
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(a) (b) (c)

(d) (e) (f)

Figure 7: Examples of the test image (Figure 1) processing: (a) the test image corrupted by multiplicative Gaussian noise with σ2
µ = 0.012,

(b) the output of the two-state hard-switching LAF, (c) the result of two-threshold preclassification (7), (d) the “CPC1” classification map,
(e) the “CPC2” classification map, and (f) the output of the three-state hard-switching LAF processing according to the CPC2 map.

is present in images, we can also give quantitative definition
of texture—for images corrupted by multiplicative noise in
texture regions, σ2 should be comparable or larger than σ2

µ .

One simple idea [14] is to apply for calculation of S3 st
i j =

S2 thr
i j the two-threshold scheme like

S2 thr
i j = 1 if ϑi j ≤ ϑt1,

S2 thr
i j = 2 if ϑt1 < ϑi j ≤ ϑt2,

S2 thr
i j = 3 if ϑi j > ϑt2,

(7)

where ϑt1 and ϑt2 are the thresholds.
However, the results of such preclassification application

are not appropriate [14] since the texture has not been de-
tected well enough. As seen in Figure 7c, more than half of
the left-bottom texture region is classified as edge/detail ar-
eas and intensive texture region (left-top) is fully classified as
edge/detail areas; in this map grey color shows detected TRs,
black color corresponds to the pixels classified as HR, white
ones relate to EDNRs. Other texture regions are also classi-
fied not correctly enough. The reason is the empiric selection
of the thresholds ϑt1 and ϑt2. They are set as ϑt1 ≈ 1.3σ2

µ and

ϑt2 ≈ 3σ2
µ for the RLV (5) used as LAI, and ϑt1 ≈ 0.05 + 0.6σµ

and ϑt2 ≈ 0.05 + 2σµ for the NQ (5). The drawbacks of this
approach to texture detection also deal with the fact that it in
no way takes into account the property of texture to occupy
rather large spatial areas.

However, even for this, not perfect three-state LAF the
aggregate and the local texture MSE and PSNR have im-
proved in comparison to the two-state LAF (see the corre-
sponding data in Table 2). The basic reason for this is that
DCT-based filter has been applied, at least, to some frag-
ments of texture regions.

Another proposed method for TR detection and local-
ization implies using spatial properties of texture, that is, its
property to “cover” some space. For more complicated and
efficient PCs with three states S3 st

i j we have proposed [14] to
apply the iterative approach for which the PC map is formed
as

S3 st
i j =















S2t(LAI)
i j , ξH

i j ≤ TTR(%),

3, ξHi j > TTR(%),

where ξHi j =ξ1t(LAI)
i j =





(M−1)/2
∑

k,l=−(M−1)/2

S1t(LAI)
i+k, j+l−1

M2



 · 100%,

(8)
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where ξ2t(LAI)
i j is the two-threshold LAI value (calculated us-

ing (5) and (7)), ξHi j is the heterogeneity indicator expressed
in percent for M × M window. The value of M in the it-
erative procedure (8) should be approximately 2.5 times
larger than the scanning window side size m for the ini-
tial stage of LAI calculation (5) for which m was set equal
to 7. TTR(%) is the threshold value of heterogeneity per-
centage indicator. As ξHi j in case of iterative approach, the

one-threshold ξ1t(LAI)
i j was used. It is calculated using one-

threshold LAI S1t(LAI)
i j (S1t(LAI)

i j = 1 if Qi j > ϑ and S1t(LAI)
i j = 0

if Qi j ≤ ϑ) in M ×M window. As LAI in (8), the same LAI
was used, either RLV or NQ. The optimal threshold TTR(%)
was about 60–80%. This simple approach was tested earlier
in [14].

The numerical simulation results for this approach are
presented in Table 2 and marked as “iterative.” Due to
better preclassification of TRs, the three-state LAF perfor-
mance has been again improved in comparison to the two-
threshold three-state hard-switching LAF. Texture preserva-
tion has become almost the same as for the DCT-based fil-
ter.

A little bit more complex and efficient approach to form-
ing the PC with three states S3 st

i j for more accurate TR de-
tection and localization proposed [15] is to apply the com-
bined iterative approach where the PC map {SCmb

i j } is formed
as

S3 st
i j = SCmb

i j =















S2t(RLV)
i j , ξHi j ≤ TTR(%),

3, ξHi j > TTR(%),

where ξHi j =ξ1t(NQ)
i j =





(M−1)/2
∑

k,l=−(M−1)/2

S1t(NQ)
i+k, j+l−1

M2



 · 100%.

(9)

As can be seen the fixed scheme of combined exploiting

the S2t(RLV)
i j (calculated using (5) and (7)) and S1t(NQ)

i j (see (7))

is used in this case. Recall that in this case ξ1t(NQ)
i j is calculated

for only one threshold (S1t(NQ)
i j = 1 if Qi j > ϑ and S1t(NQ)

i j = 0
if Qi j ≤ ϑ). So this PC has got the name of combined PC
1 (CPC1). The recommendation concerning M and TTR(%)
values are the same as for iterative procedure (8).

Numerical simulation results for this approach (see
Table 2) marked as “CPC1” show noticeable improvement of
edge neighborhoods region filtering. However, the misclas-
sifications are observed in the areas of many small-sized ob-
jects concentration (Figure 7d) and this is the drawback of
this preclassification method. This drawback deals with the
fact that it is very difficult to discriminate the areas of detail
concentration and texture fragments.

To get rid of these drawbacks the combined PC 2 (CPC2)

was proposed. This approach assumes using the ξ2t(NQ)
i j as

heterogeneity indicator ξHi j instead of ξ1t(NQ)
i j used by CPC1.

For CPC2 the parameter ξ2t(NQ)
i j is calculated based on two-

threshold LAI S2t(NQ)
i j as follows:

ξ2t(NQ)
i j =





(M−1)/2
∑

k,l=−(M−1)/2

χi j
M2



 · 100%,

where χi j =















1, S2t(NQ)
i j = 3,

0, S2t(NQ)
i j = 1 or 2.

(10)

The CPC2 permits to avoid misclassifications in places
of small detail concentration. CPC2 also better than CPC1
localizes low-contrast textures (compare the classification
maps in Figures 7d and 7e). The only drawback of CPC2
is misclassification of very high-contrast texture (left-top) as
edge/detail region. Because of noticeable loss of PSNR in this
region (actually, the local PSNR for the left-top texture pro-
cessing for CPC1 is 29.03 compared to 26.98 for CPC2), the
three-state LAF based on CPC2 is characterized by 0.08 dB
worse PSNR for entire image than the three-state LAF based
on CPC1 (for σ2

µ = 0.005). Nevertheless, since such char-
acteristics as very high contrasts are not very typical for tex-
tures, we can consider the CPC2 classification as conceptually
more correct. Moreover, even despite aforementioned mis-
classifications, the three-state LAF based on CPC2 ensures
noticeable PNSR increasing compared to that one based on
CPC1 in the case of larger multiplicative noise variance (see
data in Table 2 for σ2

µ = 0.012).

For CPC2 we recommend to use the following thresh-
olds: for RLV set ϑt1 ≈ 1.3σ2

µ , ϑt2 ≈ 1.9σ2
µ ; for NQ use

ϑt1 ≈ 0.05 + 0.9σµ, ϑt2 ≈ 0.05 + 2.5σµ. The value M in (9),
(10) for CPC2 should be approximately 3 times larger than
m; the optimal threshold TTR(%) is about 45–55%.

Despite of aforementioned misclassification, the quan-
titative results for the three-state LAFs based on combined
preclassification procedures are either the best or very close
to the best reachable according to the aggregate and all lo-
cal MSE and PSNR criteria (see Table 2). The main advan-
tage of combined PCs is that the basic objective, that is,
good preservation of texture features, has been attained si-
multaneously with effective noise reduction in image HRs
and appropriate edge/detail preservation. This fact is illus-
trated in Figure 8 where visual processing results compari-
son for three-component LAF with CPC2 and its compo-
nent filters are presented. As can be seen, each of compo-
nent filters possesses its own advantages: the Lpq-filter pro-
duces the highest noise suppression in homogeneous regions
(Figure 8b), the MSF ensures very good noise suppression
with detail preservation in edge/detail regions (Figure 8c),
the DCT filter provides good noise suppression with detail
preservation in texture region (Figure 8d). At the same time
these images shows the drawbacks of component filters. The
proposed three-state LAF with CPC2 provides the opportu-
nity to combine efficiently the component filter advantages
and eliminate their drawbacks (Figure 8e).



1198 EURASIP Journal on Applied Signal Processing

(a) (b) (c) (d) (e)

Figure 8: The visual results of processing the test image (Figure 1) fragment by component filters and their final nonlinear composition: (a)
the test image fragment corrupted by multiplicative Gaussian noise with σ2

µ = 0.012, (b) the output of 7× 7 Lpq filter, (c) the output of 7× 7
MSF filter, (d) the output of 8× 8 DCT filter, and (e) the output of the three-state hard-switching LAF.

The full-output test image for the three-state LAF based
on CPC2 is presented in Figure 7f. Obviously, the consider-
ably better texture preservation is ensured compared to the
image in Figure 7b.

5. THREE-STATE LOCALLY ADAPTIVE FILTER
FOR ADDITIVE NOISE CASE

We now consider the simulation results obtained for domi-
nant influence of additive noise (image model (2)). Two vari-
ance values σ2

n = 100 and σ2
n = 200 have been considered.

For additive noise case, as LAIs we used the local variance
and quasirange defined as

σ2
li j =

i+(N−1)/2
∑

k=i−(N−1)/2

j+(N−1)/2
∑

l= j−(N−1)/2

(

Ikl − I i j
)2

m2 − 1
,

Qli j = I
(p)
i j − I

(q)
i j ,

(11)

where N = m ×m = 7 × 7 and, as in previous experiments,
p ≈ 0.76N and q ≈ 0.24N .

A more narrow set of component filters has been studied,
namely the Lpq noise suppressing filter, the standard sigma
filter and the MSF for additive noise [36], and the DCT-based
filter version for additive noise [38]. Exact values of addi-
tive noise variance have been used as input parameters of the
standard and modified sigma filters.

As earlier, the Lpq-NSF and the MSF [36] have been used
as components of two-state hard-switching LAF, the thresh-
olds have been set according to recommendations given in
[20]. The same filters plus the DCT-based filter have been in
the staff of three-state LAF. Besides, below we consider only
one, the best, version of preclassifier, namely, the CPC2. The
recommended values of the thresholds for additive noise case
are the following: for local variance (11) set ϑt1 ≈ 1.7σ2

n ,
ϑt2 ≈ 1.9σ2

n ; and for quasirange (11) apply ϑt1 ≈ 2.4σn,

ϑt2 ≈ 4.5σn. Other settings of the preclassification algorithm
parameters are M ≈ 3m; TTR(%) is about 45–55%.

The obtained simulation data for the test image in
Figure 1 corrupted by additive noise are presented in Table 3.
Its analysis shows that the basic tendencies and dependencies
earlier observed for multiplicative noise case (see Section 4)
are the same. Again, the 7 × 7 Lpq-NSF is the best for HR
processing while the 7×7 MSF preserves edges and details in
the best manner. The DCT-based filtering produces the most
efficient processing of TRs although the benefit due to its ap-
plication depends upon the texture type.

In turn, the proposed three-state LAF provides the max-
imal PSNR for entire image as well as the local PSNRs that
are the best or, at least, approach to the best reachable values.
Clearly, the three-state LAF outperforms the two-state one,
and the basic difference in their performance is observed for
texture regions. As the result, the difference of about 1 dB is
observed for PSNRs evaluated for entire image.

The test image fragment corrupted by additive noise with
σ2
n = 200 is presented in Figure 9a. If DCT-based filtering

is applied to entire image, one obtains the image repre-
sented in Figure 9b. Similarly to multiplicative noise case
(see Figure 8), the basic drawback of the DCT-based filter is
observed in the neighborhoods of high-contrast edges and
small-sized objects where ringing artifacts are rather clearly
seen. Besides, residual fluctuations are visible in image ho-
mogeneous regions. These shortcomings are got around in
the case of the three-state LAF application (see Figure 9c).

In addition, the simulations for the typical optical test
image “Barbara” corrupted by Gaussian additive noise with
σ2
n = 100 have been performed and presented in frag-

mentary form in Figure 10. The noisy image is represented
in Figure 10a and the proposed three-state LAF output
(Figure 10c) can be compared to the two-state LAF output
(Figure 10b). As can be seen, the texture-related areas (e.g.,
those that belong to face and chair back areas) are pro-
cessed by the three-state LAF with higher quality (Figure 10c)
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Table 3: Aggregate and local PSNR values for nonadaptive and locally adaptive filters for the test image in Figure 1. The additive Gaussian
noise with σ2

n = 100 and with σ2
n = 200 has been added to this image (Figure 8a).

The component filters for LAF (σn = 100)\[σn = 200]: PSNR

HR—sum-rank filter; TR—DCT-filter; Entire
image HRs EDNRs

TRs (in
aggregate)

Separately for different texture regions

EDN—MSF 7× 7 (σ2
n = 100)\[σ2

n = 200] Cement Bread Linen Cracks

Corrupted with σ2
n = 100 28.15 28.15 28.12 28.23 28.76 28.19 28.25 28.13

Sum-rank filter 5× 5 (q = 8, p = 18) 23.63 41.03 20.56 20.73 11.77 26.87 26.36 28.35

Sum-rank filter 7× 7 (q = 12, p = 38) 21.97 43.83 18.67 19.58 10.68 25.31 25.81 26.61

Sigma-filter 5× 5 33.30 35.45 33.23 29.83 27.97 29.90 30.05 30.3

Sigma-filter 7× 7 33.59 36.29 33.54 29.66 28.14 29.72 30.11 29.89

Modified sigma-filter 5× 5 34.5 40.9 34.5 29.08 25.95 29.37 28.97 30.22

Modified sigma-filter 7× 7 34.72 43 34.64 29.04 26.61 29.18 29.18 29.75

DCT 8× 8 (tDCT = 20) 33.2 37.08 31.05 31.37 28.86 31.14 31.41 32.56

2-state switching scheme
RLV 34.76 43.86 34.65 29 26.61 29.13 29.09 29.73

NQ 33.04 43.87 31.03 28.75 26.61 28.82 28.41 29.64

3-state switching scheme based on CPC2 35.9 43.86 35.02 30.83 26.61 31.12 31.41 32.45

Corrupted with σ2
n = 200 25.15 25.14 25.15 25.15 25.81 25.01 25.01 25.25

Sum-rank filter 5× 5 (q = 8, p = 18) 23.57 38.13 20.57 20.66 11.73 26.72 26.12 28.09

Sum-rank filter 7× 7 (q = 12, p = 38) 22.02 40.92 18.77 19.53 10.64 25.27 25.67 26.49

Sigma-filter 5× 5 30.44 32.26 30 27.73 25.18 27.76 28.11 28.5

Sigma-filter 7× 7 30.68 33.08 30.09 27.56 25.32 27.58 28.28 28.02

Modified sigma-filter 5× 5 32.09 37.75 31.24 27.5 23.38 27.88 27.88 29.04

Modified sigma-filter 7× 7 32.17 40.04 31.1 27.27 24.03 27.48 27.94 28.14

Fast DCT 8× 8 (tDCT = 28) 30.83 34.39 28.73 29.19 26.12 29.07 29.42 30.51

2-state switching scheme
RLV 32.21 40.67 31.11 27.23 24.03 27.42 27.86 28.11

NQ 31.01 40.88 29.03 26.78 24.03 26.74 27.07 27.78

3-state switching scheme based on CPC2 32.86 40.74 31.2 28.57 24.03 28.95 29.19 30.38

compared to its two-component predecessor (Figure 10b).
The PSNR results show 2.4 dB improvement provided by the
two-state LAF and 5.3 dB improvement ensured by the three-
state hard-switching LAF. As can also be seen, the residual
noise and distortions are practically not seen in the image in
Figure 10c.

6. EXAMPLES OF THREE-STATE LAF APPLICATION
TO REAL RS IMAGES

The methods of image preclassification and processing based
on three-state locally adaptive filtering have been also studied
using real-life SLAR and SAR images. An example ofKa-band
SLAR image is presented in Figure 11. It has been obtained
by airborne radar designed and exploited by the Center of
Radiophysical Earth Sensing, Ukrainian National Academy
of Science and National Space Agency, Kharkov, Ukraine. For
this image, the estimated multiplicative noise variance was
0.005, that is, just like in simulations presented in Section 4.

Comparing the image in Figure 11a to the preclassifica-
tion map in Figure 11b, it is seen that the image fragments
that either contain obvious texture or do not have very in-
tensive local variations of radar cross section are reliably re-
ferred to TRs. At the same time, small-sized and prolonged

objects that commonly appear as lighter pixels than the sur-
rounding background or are considerably darker like the
river in the lower part of the image are also reliably iden-
tified as edge/detail neighborhoods and preserved well (see
Figure 11c).

The X-band SLAR image formed by aforementioned air-
borne multichannel radar complex is shown in Figure 12a.
The estimated multiplicative noise variance for this image
was 0.012, that is, the same as we used in our simulation
experiments (see Section 4). The modified sigma filter out-
put is represented in Figure 12b. Although the noise in HRs
is suppressed and the edges and details are preserved well
enough, the texture looks smeared and distorted. The three-
state LAF has been applied to the original image using CPC2
(Figure 12c), its output is given in Figure 12c. As seen, the
texture is preserved better in comparison to MSF while noise
suppression and edge-detail preservation are also attained.

Besides, we would like to demonstrate that the proposed
three-state LAF can be, with the corresponding preprocess-
ing, applied to SAR image processing. In [37, 41] it has been
proven that both MSF and DCT-based denoising can be suc-
cessfully applied sequentially to the local statistic Lee out-
put in the case the original pdf of speckle is essentially non-
Gaussian. The application of the Lee filter at initial stage
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(a) (b) (c)

Figure 9: Visual results of processing the test image corrupted by Gaussian noise with σ2
n = 200: (a) original noisy image, (b) the 8× 8 DCT

filter output, and (c) the result of image processing by the proposed three-component hard-switching LAF.

(a) (b) (c)

Figure 10: Visual results for processing the test image “Barbara” corrupted by (a) Gaussian noise with σ2
n = 100 (PSNR = 28.12 dB), (b) by

the two-state hard-switching LAF (PSNR = 30.58 dB), and (c) by the proposed three-component hard-switching LAF (PSNR = 33.43 dB).

results in residual speckle normalization and this is put be-
hind the idea to further use the filtering techniques suited to
Gaussian noise pdf.

An airborne L-band SAR image with σ2
µ ≈ 0.15 is rep-

resented in Figure 13a. Obviously, it is severely degraded by
speckle. All the output images (Figures 13b, 13c, and 13d)
are obtained by means of filtering procedures that presume
the aforementioned speckle normalizing preprocessing stage.
The final output images after filtering by the 7 × 7 MSF and
the two-state LAF are depicted in Figures 13b and 13c, re-
spectively. As can be seen, speckle is considerably reduced
but detail and texture information in most cases is lost. The
output of the two-state LAF (Figure 13c) is also very similar
to MSF output due to preprocessing phase and using MSF
as component filter in LAF. The only difference between the

MSF and two-state LAF outputs is that in latter case more
details are lost due to misclassifying of small contrast details
to homogeneous regions. At the same time, in Figure 13d one
can see that the use of the proposed three-state LAF allows us
to resolve the task of noise suppression and simultaneous in-
formation preservation in a rather good manner even in so
complex noise situation.

7. CONCLUSIONS

The necessity to preserve texture features in images to be fil-
tered has been underlined. Texture preserving properties of
a wide set of filters have been thoroughly studied, higher-
order statistics and 2D spatial correlation functions have
been analyzed, and traditional criteria like MSE and PSNR
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(a) (b) (c)

Figure 11: Visual example of the Ka-band SLAR image processing (σ2
µ ≈ 0.005): (a) the original image, (b) the PC map obtained by CPC2,

and (c) the output of the proposed three-state LAF.

(a) (b)

(c) (d)

Figure 12: Visual example of SLAR image processing: (a) the original image, (b) the output of 7×7 MSF, (c) the PC map obtained by CPC2,
and (d) the output of the proposed three-state LAF.

have been also taken into account. The study has been per-
formed for four textures that considerably differed from each
other. As for the result, we have shown that some filters that
can be characterized as noise suppressing severely degrade
texture. Among the filters that belong to detail preserving
class the DCT-based filter has been found the best.

Several approaches to texture detection and localization
have been considered and compared to each other. They
have demonstrated rather good performance. Due to provid-
ing reliable texture detection, it has become possible to de-
sign the three-state locally adaptive hard switching filters that
outperform known nonadaptive and locally adaptive filters.
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(a) (b)

(c) (d)

Figure 13: Real SAR image processing example: (a) the original L-band SAR image, (b) the output of MSF 7 × 7, (c) the output of two-
component hard-switching LAF, and (d) the output of three-component hard-switching LAF. All filtering is performed implying prepro-
cessing stage (see Section 6) for speckle normalization.

The reached PSNR improvement is about or more than 1–
3 dB. This benefit is gained due to better texture preservation.

The applicability of the three-state LAFs is demonstrated
for the real-life SLAR and SAR images. One optical grey scale
image processing example is also given.
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