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The kagome lattice provides a fascinating playground to study geometrical frustration, topology
and strong correlations[1–13]. The newly discovered kagome metals AV3Sb5 (A=K, Rb, Cs) ex-
hibit various interesting phenomena including topological band structure[14–18], symmetry-breaking
charge density waves (CDWs)[16, 19–37] and superconductivity[14, 15, 38–41]. Nevertheless, the
nature of the symmetry breaking in the CDW phase is not yet clear, despite the fact that it is
crucial to understand whether the superconductivity is unconventional. In this work, we perform
scanning birefringence microscopy and find that six-fold rotation symmetry is broken at the onset
of the CDW transition temperature in all three compounds. Spatial imaging and angle dependence
of the birefringence show a universal three nematic domains that are 120◦ to each other. We pro-
pose staggered CDW orders with a relative π phase shift between layers as a possibility to explain
the three-state nematicity in AV3Sb5. We also perform magneto-optical Kerr effect and circular
dichroism measurements on all three compounds, and the onset of the both signals is at the CDW
transition temperature, indicating broken time-reversal symmetry and the existence of the long-
sought loop currents in the CDW phase. Our work strongly constrains the nature of the CDWs and
sheds light on possible unconventional superconductivity in AV3Sb5.

The kagome lattice has attracted tremendous research
interest for decades as the corner sharing triangular lat-
tice has inherent geometrical frustrations that host exotic
phases such as the quantum spin liquid state [1–3]. There
has been recent interest in the magnetic kagome systems
from the perspective of the topological electronic struc-
tures such as the magnetic Weyl semimetals Mn3Sn[11],
Co3Sn2S2 [42, 43] and strongly correlated flat bands in
Fe3Sn2 and FeSn [4–10]. Strong electronic correlations
without magnetism can also lead to exotic phases such
as high-Tc superconductivity, but it has been often diffi-
cult to reveal different kinds of broken symmetries. Loop
currents, originally proposed in cuprate superconduc-
tors [44], have also been predicted in the kagome lattice
[28, 45–47], but a clear evidence has been lacking.

The newly discovered kagome metals AV3Sb5 (A=K,
Rb, Cs) are recent examples of hosting charge density
waves (CDWs) below TCDW ≈ 80-100 K and supercon-
ductivity below TC ≈ 0.9-2.5 K. Different from magnetic
kagome materials, AV3Sb5 do not have a detectable local
electronic moments [48, 49], but a surprisingly large
anomalous Hall effect was reported with dominating ex-
trinsic skew scattering mechanism[50, 51]. An increase of
the muon depolarization below the CDW transition tem-
perature in zero-field µSR measurements in KV3Sb5[48]
and CsV3Sb5[49] have been interpreted as the evidence

∗Electronic address: liangwu@sas.upenn.edu

of the time-reversal symmetry (TRS) breaking, but the
onset temperature is not always at TCDW and the muon
depolarization is not directly related with the TRS-
breaking order parameter [48, 49]. Therefore, a direct
measurement of the TRS-breaking order parameter at
zero-field is urgently needed. Another major debate
in the community is whether the system has a six-fold
or two-fold rotational symmetry in the CDW phase
[20, 30, 52–56], and at what temperature the six-fold
symmetry breaks. Almost all of the experiments that
claimed the two-fold symmetry were performed at tem-
perature much below the CDW transition[20, 53, 56, 57].
Therefore, whether the two-fold symmetry is directly
related to the CDW has not been clear. In this work, we
use scanning birefringence microscopy, magneto-optical
Kerr effect, and circular dichroism to reveal that the
CDW transition temperature is the onset of six-fold
rotational symmetry breaking and TRS breaking. Our
micron-scale imaging bridges the gap between nano-scale
scanning probes and macroscopic measurements, and
provides new insight and strong constrains on the
interpretation of many results by macroscopic probes.

Three-state nematicity
AV3Sb5 (A=K, Rb, Cs) share a hexagonal crystal

structure, consisting of a kagome lattice of V atoms co-
ordinated by Sb in the V-Sb sheet stacked between the
A sheets, as shown in Fig. 1(a). Therefore, it is six-fold
rotationally symmetric in the normal state above TCDW .
In the CDW phase, the 2×2 superlattice per layer could
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form the star-of-David (SoD) or the tri-hexgonal (TrH)
pattern, which still keep the six-fold symmetry in the
pristine lattice. Nevertheless, a π phase shift between
neighboring layers can reduce the symmetry to two-fold,
as as shown in Fig. 1(b) and Extended Fig. 1(a).
Note that electronically-driven nematicity is also two-
fold symmetric, but the onset temperature is much be-
low TCDW as observed by scanning tunnelling microscopy
(STM)[20, 53, 56].

To study the rotational symmetry in the CDW phase,
we perform scanning birefringence measurements as
shown in Fig. 1(c). Under normal incidence, the change
of the polarization, θT , depends not only on the out-of-
plane magnetization or orbital moment, known as the
magneto-optical Kerr effect (MOKE), but also on the
birefringence term when the rotational symmetry is lower
than three-fold. We can distinguish two contributions by
rotating the polarization of the incident beam,

θT = θK + θBsin(2φ− φ0) (1)

where θK and θB represent the real part of the MOKE
and the amplitude of the birefringence; φ is the polar-
ization angle of the incident light with respect to the
horizontal axis in the lab. φ0 is one principal axis of
the crystal in the lab frame. Note that the “MOKE”,
θK+iη, is actually a complex quantity, and the θK and η
are often called MOKE and ellipticity, respectively. (See
Methods.) Fig. 1(d) shows temperature-dependent θT at
different polarization for RbV3Sb5, and the onset of θT
is at TCDW ≈ 103 K. As we change the polarization of
the incident light, both the sign and the magnitude of θT
changes with a maximum amplitude of 0.27 mRad at 6 K.
Plotting the θT vs the incident polarization at a constant
temperature shows a two-fold symmetric pattern below
TCDW (see Fig. 1(e)). In contrast, we barely observe
any angle dependence above TCDW , which is consistent
with the six-fold symmetry of the kagome lattice. The
two-fold symmetric pattern originates from the breaking
of the six-fold rotation symmetry due to the formation
of the CDW.

We set the incident polarization at a fixed polar-
ization, and perform a mapping of θT with a spatial
resolution of 8 µm as shown in Fig. 1(f). Three distinct
domains marked with red, white and blue are clearly
seen in the map. An angle dependent birefringence
measurements in the selected six regions show that
the regions with the same color have the same polar
patterns, as shown in Fig. 1(g-i) and extended Fig.1
1(d-f). Between regions with different color, the polar
patterns are rotated by approximately 120◦ to each
other. Fig. 2 shows that KV3Sb5 and CsV3Sb5 also
have three domains, where the principal axis is also
rotated by 120◦ from each other. The temperature
dependence of the birefringence of KV3Sb5 and CsV3Sb5

also shows that the onset of six-fold rotational symmetry
breaking is at TCDW , ≈ 74 K and ≈ 92 K for these
two compounds respectively (See Extended Fig.2). To
summarize, the three nematic domains are a univer-

sal feature of the CDW phases in AV3Sb5(A=Cs, Rb, K).

Magneto-optical Kerr effect
In Eq. (1), there is an possible isotropic term θK com-

ing from the MOKE due to TRS breaking. The isotropic
MOKE term appears as an offset in the θT vs φ plot
(Fig.1e, Fig.2b,d and Extended Fig. 2b, d). We extract
the temperature dependent MOKE term by fitting the
angle dependence by Eq. 1, and the results for the three
compounds are plotted in Fig. 3a-c. RbV3Sb5, CsV3Sb5,
and KV3Sb5 show the onset of the MOKE at approxi-
mately 103 K, 92 K and 74 K, respectively. Our result
agrees with another study on the Cs compound [52]. The
fitting also yield one principal axis direction φ0.

We use a second method to measure the MOKE with
denser temperature steps by setting the incident polariza-
tion at the principal axis to eliminate the birefringence.
The temperature dependent MOKE by this method for
RbV3Sb5, CsV3Sb5, and KV3Sb5 are shown in Fig. 3d-f.
They clearly show that the onset of the MOKE signal is
universally at TCDW for AV3Sb5. There is an error bar
of ±0.8◦ in determining the principal axis, but as Ex-
tended Fig.3 shows, the temperature dependent MOKE
at φ0 ± 0.8◦ still exhibit the onset of MOKE signal at
TCDW . Also, a simple estimate assuming that the exact
zero birefringence angle is off by 0.8◦ gives an error bar
of 3.7 µrad (sin(0.8◦)× 270 µrad).

Note that the two methods in Fig. 3 are performed
at different locations and different thermal cycles, which
lead to the different magnitude and signs. Different
MOKE signs at various regions are also consistent with
two TRS breaking domains. To confirm the consistency
between the two methods, we measure the MOKE signal
again by the second method in region 2 of RbV3Sb5, and
obtain similar data as method 1 as shown in Extended
Fig. 1d. Furthermore, as shown in Extended Fig.4,
thermal cycles at the same location can give rise to
different signs of the MOKE signal, which is another
strong evidence for the time-reversed domains. The con-
tour of the birefrigence domain does not change much,
but the intensity of θT changes a little bit perhaps due
to change of the MOKE contribution. To summarize,
our MOKE measurement at zero field directly probe
the TRS-breaking order parameter and demonstrate
that TRS is broken at the TCDW for all three AV3Sb5

compounds, indicating the existence of the long-sought
loop currents in the CDW phases in AV3Sb5 as shown
in the inset of Fig. 3d.

Circular dichroism
To further confirm TRS breaking in the CDW phase,

we measure the circular dichroism (CD) on these three
compounds. Left circularly polarized (LCP) and right
circularly polarized (RCP) light are normally incident on
the sample, and the difference of the reflectivity between
the LCP and RCP is defined as the CD. The CD mea-
surement is free from the birefringence effect and fitting
errors. The measured CD signal can be shown to be pro-
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portional to the ellipticity, η, of the MOKE contribution
(see Methods). Fig. 4 shows the CD vs temperature for
all three compounds at different spatial locations, and we
clearly see an onset of CD at TCDW as the temperature-
dependent CD at different spots of the samples splits at
TCDW . The locations of these points are shown in the
the spatial CD mapping in Extended Fig.5.

Note that CD can also originate from chiral (handed)
structures, and there has been theoretical proposals
that the CDW on the surface of AV3Sb5 could be chiral
if the period along the c axis is of four unit cells [45].
When the structure becomes chiral (handed), it breaks
all of the mirror symmetries and, therefore, breaks the
inversion symmetry. We performed second harmonic
generation experiments, and observe that the SHG
signal is only around 0.2 counts of photons per second
under 12 mW incident power. We also do not see any
change across the TCDW . Our observation of AV3Sb5

being centrosymmetric agrees with previous studies
[30, 49], and our detection sensitivity is much higher
[58, 59]. Interestingly, in the CsV3Sb5, within the same
birefrigence domain as shown in Extended Fig.6, we
observe large-area two CD domains with opposite signs,
which is another strong evidence of TRS breaking.
Therefore, we conclude that the onset of CD at the
TCDW comes from TRS breaking.

Discussion
Our observation of two-fold symmetry and three-state

nematicity just below TCDW is very different from the
nematic order observed by STM in CsV3Sb5[53, 56] and
KV3Sb5 [20], which shows the nematic order at temper-
ature much below TCDW . The difference is probably not
just because that STM is an surface sensitive measure-
ment, and our probe is a bulk measurement as the pen-
etration depth of the light is around 50 nm [60, 61]. It
could be that the nematicity observed by STM is some
kind of additional electronically-driven phenomena at low

temperature as proposed recently[20, 53, 56]. Also, the
three domains were not resolved by STM[20, 53, 56].
The origin of the two-fold symmetry and three domains
observed in our measurement is most likely due to the
π phase shift of the stacking between CDW layers, as
shown in Fig. 1b and Extended Fig.1a, because the on-
set temperature of birefrigence coincides with TCDW in
all three compounds. There have been lots of works of
proposing different kinds of stacking between CDW lay-
ers [26, 30, 31, 35, 56, 57, 62–65]. Our results shows
that those without two-fold symmetry are not compati-
ble. The domains we observe are on the order of 100 µm
scale, which explains the nematicity observed in trans-
port experiments on macroscopic samples possibly due to
unequal population of three domains [54, 55]. Our results
add strong constrains on interpreting other macroscopic
measurements including photo-emission, x-ray and opti-
cal spectroscopy [17, 26, 30, 35, 36, 57, 60, 61, 63–67].

As predicted in theoretical works [28, 45, 47, 68, 69],
the interactions between saddle points in the kagome lat-
tice lead to various competing orders such as real and
chiral flux CDW orders in AV3Sb5. In some param-
eter regimes, the favored chiral flux CDW order can
also induce real CDW order, leading to a mixture of or-
der parameters. The results from our optical measure-
ments shows that both the three-state nematicity and
TRS breaking exhibit at TCDW in AV3Sb5, which in-
dicate that the two kinds of symmetry breaking might
be interwined. The TRS breaking is favorable to the
chiral flux CDW order with loop currents, which might
indicate unconventional superconductivity in these com-
pounds as the superconducting phase develops from the
CDW phase. Looking forward, we hope our work will
stimulate future works to study the nematicity and TRS
breaking in both the CDW and superconducting phases
in AV3Sb5. The imaging methodologies developed here
can also be widely applied to other strongly correlated
and topological systems.
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I. METHODS

A. Sample growth method

Single crystals of CsV3Sb5, RbV3Sb5, and KV3Sb5

were synthesized from Cs (liquid, Alfa 99.98%), Rb (liq-
uid, Alfa 99.75%), K (metal, Alfa 99.95%), V (powder,
Sigma 99.9%) and Sb (shot, Alfa 99.999%). As-received
vanadium powder was purified in-house to remove resid-
ual oxides. Due to extreme reactivity of elemental alka-
lis, all further preparation of AV3Sb5 crystals were per-
formed in an argon glovebox with oxygen and moisture
levels <0.5 ppm. AV3Sb5 single crystals were synthe-
sized using the self-flux method. Elemental reagents were
milled in a pre-seasoned tungsten carbide vial to form
a composition which is 50 at.% A0.4Sb0.6 and approxi-
mately 50 at.% VSb2. Excess antimony can be added to
the flux to suppress volatility if needed. The fluxes were
loaded into alumina crucibles and sealed within stainless
steel jackets. The samples were heated to 1000 ◦ C at
250 ◦ C/hr and soaked there for 24 h. The samples were
subsequently cooled to 900 ◦ C at 100 ◦ C/hr and then
further to 500 ◦ C at 1 ◦ C/hr. Once cooled, the crystals
are recovered mechanically. Crystals are hexagonal flakes
with brilliant metallic luster. Elemental composition of
the crystals was assessed using energy dispersive x-ray
spectroscopy (EDX) using a APREOC scanning electron
microscope.

B. Birefringence and MOKE measurements

Laser pulses from a Ti:sapphire oscillator with 800 nm
center wavelength, 80 MHz repetition rate and 50 fs pulse
duration are used to measure the change of polarization
angle. To measure the change of the polarization angle
without rotating the sample, a half wave plate (HWP) is
put right in front of the sample and in between the cube
beam splitter. Both the incident and reflected light goes
through the half wave plate, thus polarization change
due to the half wave plate is cancelled. The net change
of the polarization purely comes from the sample itself
[70]. By rotating the HWP, we can measure the change
of polarization θT for different incident polarizations.

In the following derivation, we will show how the bire-
fringence and the MOKE signal can be distinguished by
rotating the half wave plate and keeping the beam at the
same spot. The Jones matrix for polarizer at 45◦ and 0◦,
photo-elastic modulator (PEM), half wave plate (α) and

mirror are,

P (45) =
1

2

[
1 1
1 1

]
P (0) =

[
1 0
0 0

]
HWP (α) =

[
cos(2α) sin(2α)
sin(2α) − cos(2α)

]
PEM =

[
1 0
0 eiτ

]
M =

[
1 0
0 −1

]
where α is the angle between the fast axis of the half wave
plate and the horizontal axis of the lab, τ is the phase
retardation applied by the PEM. The rotation matrix is,

R(β) =

[
cos(β) − sin(β)
sin(β) cos(β)

]
where β is the angle of rotation. For a sample that has
both the birefringence and MOKE effect, we can use the
following Jones matrix to represent the sample (ignoring
the higher order term),

S(θ) =

[
1− sin(θ)2∆ ∆ sin(2θ)

2 − c
∆ sin(2θ)

2 + c 1− cos(θ)2∆

]
(2)

where θ is the angle between the fast axis and the po-
larization of the incident light, ∆ = δ + iκ is the com-
plex birefringence term, and c = θK + iη comes from
the MOKE effect which is also a complex number. The
output light O measured at the photo detector can be
calculated by,

O = P (0) ·HWP (π − α) ·M · S(θ) ·HWP (α)

· PEM · P (45) ·
[
E
0

]
= E

[
∆ cos(4α−2 θ)

4 + c eτ i

2 − ∆
4 + ∆ eτ i sin(4α−2 θ)

4 + 1
2

0

]
We see that the above expression only depends on the
angle difference term 4α− 2θ, thus we can set θ = 0 and
it will not affect the final results. The intensity measured
at the photo detector is (ignoring the higher order terms),

I(t) = |O|2 = E2

[
sin (τ)

(
−η

2
− κ sin (4α)

4

)
+ cos (τ)

(
θK
2

+
δ sin (4α)

4

)
+
δ cos (4α)

4
− δ

4

+
1

4

]
+O(h)

Setting τ = τ0 sin(ωt), and using the Fourier decompo-
sition of cos(τ(t)) and sin(τ(t)), we have the following
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relation,

I(t) = E2

[
δ cos (4α)

4
− δ

4
+

1

4

+ 2J1(τ0) sin(ωt)

(
−η

2
− κ sin (4α)

4

)
+ (J0(τ0) + 2J2(τ0) cos(2ωt))

(
θK
2

+
δ sin (4α)

4

)]
+O(h)

The 1f, 2f and DC component of the signal is,

I(1f) = E22J1(τ0)

(
−η

2
− κ sin (4α)

4

)
sin(ωt)

I(2f) = E22J2(τ0)

(
θK
2

+
δ sin (4α)

4

)
cos(2ωt)

I(DC) = E2
[δ cos (4α)

4
− δ

4
+

1

4

+ J0(τ0)(
θK
2

+
δ sin (4α)

4
)
]

We can set τ0 = 2.405, which is the zero point for the J0

Bessel function. Since both δ and θK are very small, we
can approximate the DC term by I(DC) = E2/4. Fur-
thermore, lock-in measures the RMS (root-mean-square)
of the signal, so we have the following relation,

Ilock(1f)

Ilock(DC)
=

4J1(τ0)√
2

(
−η − κ sin (4α)

2

)
(3)

Ilock(2f)

Ilock(DC)
=

4J2(τ0)√
2

(
θK +

δ sin (4α)

2

)
(4)

Finally, we note that the polarization φ of the incident
light changes twice as much as the change of the half
wave plate angle φ = 2α, we have the following relation,

−η − κ sin (2φ)

2
=

√
2

4J1(τ0)

Ilock(1f)

Ilock(DC)
(5)

θK +
δ sin (2φ)

2
=

√
2

4J2(τ0)

Ilock(2f)

Ilock(DC)
(6)

We can see that the change of the polarization angle in
Eq. (6) has a constant MOKE term θK , and a φ depen-
dent birefringence term δ sin(2φ)/2.

C. CD measurement

An alternating left circularly polarized (LCP) and
right cicurlarly polarzied (RCP) light generated by the
photo elastic modular (PEM) is reflected off the sam-
ple, and the difference between the LCP and RCP in-
tensity (CD) is measured by a photo detector connected
to a lock-in analyzer. PEM modulates the incident light
between the left circularly- and right circularly- polar-
ized at a frequency of f =42 kHz. Both the 1f and DC

component is extracted from the measured signal, and
the circular dichroism of the sample is proportional to
I(1f)/I(DC).

Similar to the previous derivation, we can write out the
Jones matrix for circular dichroism. The output light af-
ter going through a 45 degree polarizer, PEM and sample
is,

O = M · S(θ) · PEM · P (45) ·
[
E
0

]

= E

−∆ sin(θ)2

2 − eτ i (c−∆ sin(2 θ)
2 )

2 + 1
2

− c
2 +

eτ i (∆ cos(θ)2−1)
2 − ∆ sin(2 θ)

4


The intensity measured by the photo detector is,

I(t) = E2

(
sin (τ) η + cos (τ)

δ sin (2 θ)

2
− δ

2
+

1

2

)
+O(h)

= E2

[
1

2
− δ

2
+ 2J1(τ0)sin(ωt)η

+
(
J0(τ0) + 2J2(τ0)cos(2ωt)

)δ sin (2 θ)

2

]
+O(h)

where τ0 = π
2 . For circular dichroism ICD, we are mea-

suring the ratio between the 1f and the DC component
which is equal to,

ICD =
Ilock(1f)

Ilock(DC)
= 2
√

2J1(
π

2
)η (7)

We see from Eq. (7) that the circular dichroism signal
does not depend on the sample orientation (θ) as ex-
pected, and is only related to the ellipticity η term from
the MOKE effect.

In our optical setup, we used a 50:50 non-polarizing
cube in between the PEM and objective to collect the
signal. The non-polarizing cube has different transmis-
sion coefficients for the s and p polarized light across the
750 - 850 nm wavelength range of our pulsed laser. To
account for the this s and p transmission differences and
rule out its effect on the circular dichroism signal, we
can add in the Jones matrix for the cube C into the CD
derivation,

C =

[√
Tp 0
0
√
Ts

]
where Ts and Tp are the transmission coefficient for the
s and p polarized light. The output light in this case is,

O =

[√
1− Tp 0

0
√

1− Ts

]
·M · S(θ) ·

[√
Tp 0
0
√
Ts

]
· PEM · P (45) ·

[
E
0

]
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The intensity measured by the photo detector is,

I(t) = −2J1(τ0) sin (ωt)
√
TpTs

[ (Ts + Tp − 2)η

2

+
(Ts − Tp)κ sin(2θ)

4

]
−
(
J0(τ0) + 2J2(τ0) cos(ωt)

)
√
TpTs

[ (Ts − Tp)θK
2

+
(Tp + Ts − 2)δ sin(2θ)

4

]
+
Ts + Tp − T 2

s − T 2
p

4
+
δ

2

[
T 2
s − Ts + Ts sin2 (θ)

− Tp sin2 (θ)− T 2
s sin2 (θ) + T 2

p sin (θ)
]

+O(h)

where η0 = π
2 . Now, the circular dichroism signal be-

comes,

ICD =
Ilock(1f)

Ilock(DC)
=

J1(τ0)
√

2TpTs

Ts + Tp − T 2
s − T 2

p[
2(Ts + Tp − 2)η + (Ts − Tp)κ sin (2θ)

]
We see now there is a birefringence correction term in
the circular dichroism signal as follows,

Ibire =
J1(η0)

√
2TpTs(Ts − Tp)κ sin (2θ)

Ts + Tp − T 2
s − T 2

p

(8)

This correction term is proportional to the product of κ
and the difference in the transmission coefficients Ts −
Tp. Given the specification of the non-polarized cube
|Ts−Tp| ∼ 10−2, we can estimate the magnitude of such
correction to be,

Ibire ∝ κ · (Ts − Tp) = 10−4 · 10−2 = 10−6 (9)

The birefringence correction is one order of magnitude
less than the circular dichroism signal of the samples,
thus can be ignored in our measurement.

D. CD Theory

We derive the general CD effect and discuss conse-
quences of TRS-breaking and crystal-symmetry-breaking
on CD. According to Fermi’s golden rule, the absorption
rate of circular light with helicity σ± is

I(σ±) =
2π

~
∑
c,v

|〈c|H ′|v〉|2 δ(Ec − Ev − ~ω), (10)

where v and c refer to valance and conduction band
states, respectively, and ~ω is the photon energy. H ′

is the interaction Hamiltonian, whose expression is given
by

H ′ = −eE · r −m ·B. (11)

The two terms on the right-hand side of Eq. (11) cor-
respond to electric and magnetic dipole interactions, re-
spectively. The magnetic dipole term is usually much

weaker than the electric dipole term. However, the mag-
netic dipole cannot be ignored for CD in time-reversal
invariant systems where the electric dipole contribution
vanishes as illustrated following.

For helical photon σ±, the electric and magnetic field
is

E = E0(1,±i, 0) , B =
E0

c
(∓i, 1, 0), (12)

so that the interaction matrix element is

|〈c|H ′±|v〉|2 = |E0|2
∣∣∣〈c∣∣∣er± ∓ im±

c

∣∣∣v〉∣∣∣2 (13)

where r± = x± iy, and m± = mx ± imy. Therefore the
CD is

I(σ+)− I(σ−) ∝ |〈c|H ′+|v〉|2 − |〈c|H ′−|v〉|2

=2Im

[
e2〈v|x|c〉〈c|y|v〉︸ ︷︷ ︸

¬

+
e

c
〈v|mx|c〉〈c|x|v〉+

e

c
〈v|my|c〉〈c|y|v〉︸ ︷︷ ︸

­

+
1

c2
〈v|my|c〉〈c|mx|v〉︸ ︷︷ ︸

®

]
.

(14)

In Eq. (14), ¬ comes from electric dipole, ­ origi-
nates in both electric and magnetic dipoles, and ® come
from merely magnetic dipole interactions. The ® term
is usually ignored since it is to small compared to ¬ and
­.

¬ is the Berry curvature between valance band v and
conduction band c. It is even under inversion symmetry
but odd under TRS. It is usually called magnetic CD in
literature. ­ is even under TRS but odd for mirror or in-
version, because, for example, 〈v|mx|c〉〈c|x|v〉 is odd un-
der x/y → −x/− y reflection or (x, y, z)→ (−x,−y,−z)
inversion. Therefore, if TRS is broken, both ¬ and ­
are nonzero. If TRS is conserved, only ­ can appear in
a chiral material. If both TRS and inversion symmetry
exist, the CD effect vanishes. In the case of inversion
and/or mirror symmetries in the material, the CD effect
due to ¬ indicates the TRS-breaking.

II. ACKNOWLEDGEMENT

This project is mainly supported by L.W.’s startup
package at the University of Pennsylvania. The de-
velopment of the imaging systems were also sup-
ported by the ARO under the Grants W911NF2110131,
W911NF2020166, and W911NF1910342, and the Uni-
versity Research Foundation. Y.X. was also partially
supported by the NSF EAGER grant (DMR-2132591),
a seed grant from NSF funded Penn MRSEC (DMR-
1720530), and the Gordon and Betty Moore Foundation’s



16

EPiQS Initiative, Grant GBMF9212 to L.W. B.R.O. and
S.D.W. acknowledge support via the UC Santa Barbara
NSF Quantum Foundry funded via the Q-AMASE-i pro-
gram under award DMR-1906325. L.B. is supported
by the NSF CMMT program under Grant No. DMR-
2116515.

Competing Interests: The authors declare that they
have no competing financial interests.

Correspondence: Correspondence and re-
quests for materials should be addressed to L.W.
(liangwu@sas.upenn.edu)

Data availability: All data needed to evaluate the con-
clusions in the paper are present in the paper and the
Supplementary Information. Additional data related to

this paper could be requested from the authors.

III. AUTHOR CONTRIBUTION

L.W. conceived and supervised the project. Y.X. per-
formed the experiments and analyzed the data with Z.N.
and L.W.. Y.L. and B.Y. performed the CD symmetry
analysis. B.O. and S.W. grew the crystals. L.W.,Y.X.,
S.W., B.Y., and L.B. discussed and interpreted the data.
L.W. and Y.X. wrote the manuscript from input of all
authors. All authors edited the manuscript.


	 References
	I Methods
	A Sample growth method
	B Birefringence and MOKE measurements
	C CD measurement
	D CD Theory

	II Acknowledgement
	III Author Contribution

