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Abstract—This paper describes and compares three different
state-of-the-art condition monitoring techniques: first principles,
feature extraction, and neural networks. The focus of the paper
is on the application of the techniques, not on the underlying
theory. Each technique is described briefly and is accompanied
by a discussion on how it can be applied properly. The dis-
cussion is finished with an enumeration of the advantages and
disadvantages of the technique. Two condition monitoring cases,
taken from the marine engineering field, are explored: condition
monitoring of a diesel engine, using only the torsional vibration
of the crank shaft, and condition monitoring of a compression
refrigeration plant, using many different sensors. Attention is
also paid to the detection of sensor malfunction and to the user
interface. The experience from the cases shows that all techniques
are showing promising results and can be used to provide the
operator with information about the monitored machinery on
a higher level. The main problem remains the acquisition of the
required knowledge, either from measured data or from analysis.

Index Terms—Fault diagnosis, feature extraction, modeling,
monitoring, neural network applications, signal processing.

I. INTRODUCTION

CONDITION monitoring has always been applied. In the
early days, monitoring was performed by the people who

actually operated the machinery. Because they worked physi-
cally close to the machinery they were operating, they could
assess its condition directly, based on experience. When the
machinery became more complex, measurement systems were
installed to make information about its condition available to
the operators at a central operating console, in a ship, for
instance, the engine control room and/or the bridge (Fig. 1).
The number of operators decreases, but they still have to be
kept informed about the state of the machinery. To prevent
information overload, the condition monitoring process must
be automated to provide the information on a higher level and
at the desired location. Automation also makes condition mon-
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itoring more accurate and provides faster response times. This
allows a more critical design of machinery and smaller design
margins, and will result in a reduction of the life-cycle costs.
Modern condition monitoring systems may also be augmented
by a system that advises the personnel on actions to be taken
when certain faults occur. As a result, operating costs and
reliability can be improved significantly. As shown in Fig. 2,
condition monitoring systems measure process variables on the
machinery. Using one or more sensors, these measurements
can be done continuously or at specific intervals. Modern
sensors provide the ability to monitor machinery at locations
that are difficult to access (like the pressure in a cylinder).
First, the sensor signals are preprocessed. At this stage, sensor
failure(s) should be detected, and the correct signals are
transformed to a suitable format for the processing stage.
In the processing stage, the condition of the machinery is
determined. This can be implemented using several methods,
three of which are described in this paper. Finally, the results
of the earlier stages are postprocessed for a clear presentation
to the user. In the first part of this paper, the preprocessing
and the signal processing methods are described. Each of the
signal processing methods is described, as much as possible,
independently of the application. Special attention is given to
the required process knowledge and sensor information for
each method, as well as the advantages and disadvantages
of each method. Consideration is also given to sensor fault
detection and to the user interface. In the latter part, the
three processing methods are “tested” on two real-world
applications, a ship’s diesel engine and a refrigeration plant.

II. SENSORS AND PREPROCESSING

Condition monitoring systems depend on sensors for obtain-
ing the necessary information. However, the odds of sensor
failure are often of the same order of magnitude as the
odds of machinery failure. Since the diagnosis determined by
a condition monitoring system can only be accurate if the
measured information is correct, the first step should be to
evaluate the sensor signals. The reliability of the sensor system
can be increased by monitoring the sensors themselves. Sensor
fault detection methods can be divided into direct and model-
based methods. Direct methods are based on an evaluation of
the actual sensor signals. Some examples follow.

Sensor Redundancy:Double redundant sensors can indi-
cate the failure of one of the sensors, but cannot tell which.
Triple redundant sensors can (in most cases) locate the failing
sensor.
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Fig. 1. Bridge of a modern ship.

Fig. 2. Condition monitoring.

Range Checking:The use of sensors with a limited range
enables range checking.

Off-Period Values:After the machinery is stopped, the tem-
peratures and pressures will stabilize at specific off-period
values. Deviations in the off-period sensor values can point
to sensor failures.

Model-based methods use information about the monitored
machinery to create an “analytic” sensor redundancy. Instead
of using two (or more) redundant sensors, the model will
function as one of the redundant sensors. These methods can
identify less prominent sensor faults than the direct methods
mentioned above. Two successful methods are mentioned here.

Observer-Based Sensor Monitoring:Based on models of
parts of the machinery and other sensor values, several ob-
servers calculate an estimate for the value of a specific sensor.
These estimated values are redundant with the measured values
and, thus, give an indication of a sensor fault.

Sensor Fault Analysis [3]:If a sensor fails, a characteristic
pattern will appear in the measured sensor data. This pattern
is unique for a specific sensor fault.

III. SIGNAL PROCESSINGMETHODS

A. Introduction

Storing and displaying sensor values only shifts the point
of view from, for instance, the engine room to the control
room or the bridge, without giving the operator support
for the interpretation of these values. This requires process
knowledge, that is, knowledge about the machinery and its
behavior. The methods presented here use different amounts
of process knowledge, as illustrated in Fig. 3.

The amount of available process knowledge limits the
applicable methods. The choice of a method, however, is
determined by the required performance and may not require
all available process knowledge. Machinery diagnosis implies
detection of, and distinguishing between, faults by processing
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Fig. 3. Required process knowledge.

measured symptoms or features. The following three basic
methods are presented in this paper:

1) signal processing using models based on first principles;
2) signal processing using feature extraction and pattern

recognition;
3) signal processing using neural networks.

B. First Principles Method

The first principles method uses mathematical simulation
models based on process physics to predict the behavior of
machinery, both for healthy and faulty conditions. One of the
main characteristics of these simulation models is the required
high level of knowledge of the machinery and the processes.
They require extensive knowledge of the “first principles,”
such as conservation laws, and of constitutional laws, such as
the properties of matter. Some measured data is required for
tuning, validation, and verification.

There are two principally different ways to utilize first
principles models within the field of condition monitoring.

1) The models can be used to analyze the actual mea-
sured behavior of the machinery. On-line application
is, for instance, establishing the healthy behavior of
the machinery, given the operational parameters. This
is an effective approach for finding a fault before it
can cause more damage to the machinery. Problems
may occur when two different faults have the same
influence on the measured signal. This occurs if the
model is not reversible. By using a model, insight is
gained into the behavior of the machinery. This insight
is not only useful for condition monitoring, but can also
be used for machinery improvement, training purposes,
or development.

2) The models can be used to gain knowledge about the
behavior of machinery when a fault occurs. The structure
of the models has to be such that faults can be introduced
unambiguously. Because faults cause off-design behav-
ior, existing models can usually not be used. Depending
on the level of detail of the models, only a limited
number of faults is available for simulation. Because
faults create off-design conditions, no data—measured
or supplied by the manufacturer—are available to vali-

date the results. This puts high demands on the reliability
of the modeling concept. It is expected that only the
qualitative results of the fault simulations will be re-
liable, since validation of the models is not possible.
For machinery which consist of complex components,
the development of new models is very costly. For
complex machinery which consist of relatively simple
components, the development of a library of standard
component models could be considered (also due to the
high costs that are involved in developing models). The
application of this method would then require far less
effort. This approach could well be suited for machinery
consisting of a large number of components, such as
pneumatic, hydraulic, and electronic systems.

The advantages of this method are as follows.

1) The user of the condition monitoring system does not
need the process knowledge to interpret the measured
signal.

2) Much insight into the behavior of the machinery is
gained, and this insight can be used for other applications
or for further development of the monitored machinery.

3) Only a limited amount of measured data is needed.
4) The knowledge necessary to diagnose faults correctly is

gained in a structured way and is reproducible.
5) The diagnostic knowledge required for the condition

monitoring system is available on startup.
6) The method is well suited for newly designed, complex

machinery.
7) The availability and reliability of the knowledge is

no longer dependent on the experience and subjective
judgement of human experts.

The disadvantages are as follows.

1) A high accuracy of the measured signals is required.
2) The model is always an approximation of the real

machinery.
3) Thorough process knowledge is needed for development

of the model.
4) A new model has to be designed for every type of

machinery.
5) The knowledge gained is mainly qualitative; quantitative

results are often unreliable.
6) Only a limited subset of faults is simulated.

C. Feature Extraction and Pattern Recognition Method

Feature extraction and pattern recognition algorithms are
used for analyzing signals and for classifying (parts of the)
signals into classes. The classification is done by matching
(part of) the signal with a set of reference signals. The
sensor signal will be classified as a member of the class that
corresponds with the best matching reference signal.

The isolation of parts of the signal that are unique for the
classes results in a better control of the classification problem.
In this way, the influence of fluctuations in the sensor signal
which are caused by instabilities and noise will be reduced
to a minimum. The process of isolating those parts of the
sensor signal is called the feature extraction process, while
the matching process is known as pattern recognition. The
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isolation of features from the sensor signal has the benefit
that several faults can be detected independently, using the
same signal, if there is no correlation between the patterns
of the features for the different faults. Process knowledge
is only needed to indicate the (expected) behavior of the
sensor signals. This implies that this method is suitable to
monitor machinery for which an accurate enough model is not
available. This method requires a mathematical description, or
at least a lookup table for each feature that corresponds with
a fault, over a wide range of operating conditions. As a result,
a lot of effort is needed to develop the feature extraction and
classification algorithms.

Feature extraction and pattern recognition can be extended
with new functions for the detection of new faults without
changing already existing fault detection functions. A modular
construction has the benefit that already existing modules can
be reused in the implementation of new functions.

The advantages of this method are as follows.

1) Little process knowledge is needed.
2) The algorithms are only triggered by predefined patterns

of the sensor signals. This reduces the influence of noise.
3) The decision process is traceable. The usage of well-

defined algorithms makes it possible to tell which clas-
sification corresponds with which sensor and provides
insight in the underlying reasoning process.

4) The method is suitable for machinery for which a
mathematical model is not available.

The disadvantages are as follows.

1) Measurements of faults are required.
2) Detailed knowledge of the behavior of the sensor sig-

nal(s) is needed to determine which parts of the signals
are relevant.

3) Much effort is needed to develop the algorithms.
4) Depending on the complexity of the signals, high-

performance computing techniques might be needed.

D. Neural Network Method

Neural network technology is used to recognize and classify
complex fault patterns without much knowledge about the
process, the signals, or the fault patterns themselves. A neural
network consists of many simple neurons which are connected
with each other (Fig. 4). The behavior of the network is
determined by the (adjustable) weights that are associated with
each connection. The values of these weights are determined
during the training session. During this session, examples
of the different situations (input patterns with corresponding
output classifications) are presented to the neural network.
Neural networks tend to be very robust to noise in the signals
[2]. Application of neural network technology requires a large
training data set, covering all classes of conditions that are
required to be detected. The results of a neural network are
only valid within the range of this training data set. On the
other hand, the ability of neural networks to “train” themselves
sometimes allows neural networks to find a solution where
other methods fail. Choosing the correct network layout and
training methods for a certain task is difficult. There is
little structured knowledge about which network and training

Fig. 4. A neural network.

method are best for a certain application. However, this choice
is crucial for obtaining a good result. Neural-network-based
systems do not provide insight into the classification criteria
that the network is trained to use. It is never possible to prove
the quality of such a system deterministically. Using statistical
techniques (based on a separate test data set), the performance
of such a system can be estimated.

The advantages of this method are as follows.

1) Neural networks are very fast. This is useful when a
diagnosis system must run in real time and must handle
a lot of signals.

2) Little or no process knowledge is required using neural
networks. A special advantage is that no knowledge
about fault patterns is required.

3) A neural network is robust, especially regarding noise.

The disadvantages are the following.

1) Knowledge about, and a “feel” for, the training of neural
networks is required.

2) Training neural networks is time consuming.
3) An extensive set of measured data is required for all

classes of conditions, including faults.
4) The required data sets can be very large.
5) A neural network does not provide insight into the

criteria it uses to classify the input patterns, because the
learned knowledge is distributed over all the weights in
the network.

6) A neural network only provides valid answers inside
the trained range.

7) A neural network, once trained, is not flexible. If en-
vironmental conditions change to values outside the
trained range, the network must be retrained.

IV. POSTPROCESSING AND THEUSER INTERFACE

After the sensor preprocessing and fault detection have
been done, using one of the previously discussed methods,
this information should be presented to the operator. The
use of screens can improve the presentation of information
significantly. Not only the regular process variables and the
condition monitoring diagnosis can be displayed, but also
maintenance advise can be given and trend analysis can
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(a) (b) (c)

Fig. 5. p-V diagram. (a) Healthy. (b) Leaking discharge valve. (c) Leaking suction valve.

be performed. The design of the user interface should be
ergonomic, while the layout and the use of the user interface
must be simple and comprehensible. For condition monitoring
systems, it is useful to distinguish between two types of
displays, survey displays and specific displays [6]. Both can
be either static or dynamic. During regular operation, the
survey displays present the status of the machinery, using
key information and graphic tools. Only when the diagnosis
module reports problems, the operator must look “deeper” into
the specific displays of the user interface where the problem
is identified.

The information which should be presented by the user
interface is the following:

1) values of process variables;
2) status of the machinery through processed information

(e.g., percentage load, heat flows, machinery and sensor
faults);

3) past, present, and predicted values of condition param-
eters (advises for problem solving);

4) whether or not the machinery is in a stationary condition.

V. CASES

To illustrate the use of the signal processing methods, two
cases are described. The cases are taken from the marine
engineering field.

A. The Refrigeration Plant Case

Compression refrigeration plants are widely used on board
ships for cooling of perishable cargo and machinery, for
air conditioning and for victuals. Frequently, faults in the
plant are not recognized before a breakdown occurs, because
symptoms that could be used to diagnose a defect are difficult
to discern from noise. Furthermore, given a set of deviations,
even experts are often not sure about the cause. This lack
of condition monitoring and diagnostic knowledge is the
result of the closed-cycle character of the process and of the
strong dependency of measurable variables on the operating
conditions. The lack of knowledge is amplified by the high
reliability and maintenance-free operation of these plants,
reducing the “hands on” experience of the operators. In [4],
a prototype condition monitoring system was developed to
evaluate the possibilities and problems of such a system. The

two main problems are: 1) predicting the behavior of the
plant when a fault occurs and 2) reliable recognition of the
symptoms caused by a defect, especially when only a few
symptoms are to be expected. In this case, the first problem
is addressed.

1) Refrigeration Plant Case—The Use of First Principles
Models: Prediction of the behavior of the plant, based on
a general process description, often proves to be insufficient.
The behavior depends too strongly on the operating conditions
and on the specific dimensions and layout of the plant to
allow a detailed diagnosis. Therefore, a detailed model of
the plant is being developed which enables the simulation
of faults [5]. The basis for this model is a description of
the refrigerant flow in terms of resistors (valves) and storage
elements (vessels). Added to this description are the energy
flows in the various components. This results in a model that
is capable of simulating the dynamic behavior of the plant at
various operating conditions, with and without the presence
of a fault.

a) Examples:The reciprocating compressor model ren-
ders a good match, both with data provided by the man-
ufacturer and with actual measurements. Fig. 5(a) shows a
typical pressure versus volume (p-V) diagram produced with
the compressor model at a condenser pressure of 17.3 bar
and an evaporator pressure of 6.8 bar. The results of two
fault simulations are presented to show the possibilities of
such a detailed model. Fig. 5(b) shows the p-V diagram
for the same condition, but with a leaking discharge valve,
calculated with the model. It shows that the leaking valve
has a large influence on the compression and expansion
curve. The expansion is lengthened by the refrigerant flowing
back through the discharge valve, whereas the compression is
shortened. The work performed per cycle increases, while the
mass flow decreases. In Fig. 5(c), the p-V diagram is plotted
for a simulation with a leaking suction valve. During the
expansion, gas is leaking out of the cylinder and, contrary to
Fig. 5(b), the expansion has become shorter. The compression
has become longer for the same reason. The work performed
per cycle and the mass flow both decrease. These examples
show that straightforward faults, such as leaking valves may
cause different plant behavior, depending on the location of
the fault (suction or discharge), especially when the faults
are considered at an early stage of their development. It has
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Fig. 6. Result of neural networks.

proven to be difficult to create models that are both flexible
and reasonably detailed. The results are promising, both for
simulation of healthy behavior and for simulation of faults.

2) Refrigeration Plant Case—The Use of Neural Networks:
If the symptoms caused by a fault are known, for instance,
through the use of a detailed model or through measurements,
it still is often difficult to discern them in the measured
signals. In this case, neural networks were used to generate
a diagnosis about the health of a refrigeration plant, based
on data from extensive measurements, including seventeen
faults [7]. To enhance the flexibility and to be able to add
more faults in the future, a separate network was trained to
recognize each fault. Each network is trained with a different
training data set. All networks have 11 input neurons and
two output neurons. The number of hidden neurons varies,
depending on the fault to be recognized. The results of the
different networks are shown in Fig. 6. This figure shows that
the results that can be reached by this kind of method are
very good. First, if the refrigeration plant runs normally, the
neural networks recognize this with great accuracy, more than
95% of all data points are diagnosed correctly as “normal.”
Secondly, when a fault has been introduced into the plant, the
corresponding network also recognizes this fault with almost
the same accuracy. The lower score is mostly due to the fact
that the data files which contain the data of the faults, also
contain some healthy system data. Finally, the correct fault
has to be recognized. Fig. 6 shows that the results for this
“cross” check are also very good. It is stressed that all the faults
can be recognized. The performance of the neural networks is
calculated without postprocessing. When using an appropriate
postprocessing method, such as a majority vote, the results can
be even better. Another point to be taken into account is that
it is important to recognize a fault before serious damage to
the machinery has occurred. This implies that misdiagnosing
a few data points (false alarms) at an early stage need not be
a problem, provided that the fault is detected on time.

B. The Diesel Engine Case

The purpose of this feasibility study was to detect faults in
the combustion of one of the five cylinders of a medium-size
diesel engine from the torsion signal at the crankshaft of the
engine. All three methods have been evaluated by applying
it to the test engine. Data was measured and processed for
healthy conditions and for conditions with artificially induced

Fig. 7. Lumped mass model.

defects on one or more cylinders, such as nonfiring, partial
fuelling, leakage, and a faulty fuel injector.

1) Diesel Engine Case—The Use of First Principles Models:
To monitor the condition of a diesel engine, a model is made
of the rotor system of the engine. The engine dynamics are
described by a lumped mass model, shown in Fig. 7. This
model has been used to calculate the vibrations of the rotor
system during one firing sequence. If the gas pressures are
known, the vibrations of the engine can be calculated with
this model, resulting in Fig. 8. The gas pressures can be
actually measured, or can be determined using the “Tangential
effort curves” published by Lloyd’s Register. In principle, the
rotor system model can also be used for reverse calculation
of the cylinder gas pressures using measured vibrations. In
practice, however, application of this method is restrained by
the limited amount of information available for this purpose
in the response. Additional information can be obtained from
the distinct shape of the cylinder gas pressure at a varying
load. Gas pressures are split into two parts, one part caused
by compression and expansion and the other part caused
by combustion, as shown in Fig. 9. The combustion part is
scaleable, which makes it possible to define an invariable
standard curve for the pressure rise due to combustion. This
is multiplied by a factor to account for the variable cylinder
load. Thus, a simple gas model with only one variable—the
load—for each cylinder is obtained. The limited amount
of information in the response is sufficient for a reverse
calculation of all cylinder pressures using a best fit procedure
for the measured and calculated vibrations [10]. It was possible
to calculate the individual cylinder power with an accuracy of
10% using one torsional vibration signal. Fig. 10 shows the
power participation factors of all individual cylinders, both
measured and calculated. Faults can be located easily in an
early stage so damage to the machinery can be limited.

2) Diesel Engine Case—The Use of Feature Extraction and
Pattern Recognition:The purpose of this part of the research
was to find features which could be used to detect a cylinder
firing failure in one or more of the five cylinders using only the
torsion signal. Fig. 11 shows the torsional vibration signal for
three different conditions of the diesel engine during one firing
cycle (two revolutions). Fig. 11(a) represents the torsion signal
of a healthy diesel engine, while Fig. 11(b) and (c) show the
torsion signals of a diesel engine when cylinder 1 run at partial
power and when cylinder 1 is turned off, respectively. The
figure shows that an imbalance of the diesel engine influences
at least the zeroth and first harmonics of the torsion signal. The
figure also shows that the maximum torsion value of cylinder
1, when it has a defect, has a higher value than the maximum
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Fig. 8. Calculated vibrations.

Fig. 9. Split of gas pressure.

Fig. 10. Results of first principles diagnosis.

torsion value when cylinder 1 is healthy. These features are
accentuated and isolated with the aid of two different analysis
methods [9], base-level fluctuation (BLF) signal analysis and
torsion-peak value analysis.

a) BLF signal analysis:The BLF signal is derived from
data measured at five fixed sample points in the torsion

signal. These five points represent the location of the start
of the compression of each cylinder. A cubic interpolation
algorithm is used to determine the BLF signal function, as
shown in Fig. 12. The amplitude of the interpolated signal
gives an indication about the kind of defect. A large amplitude
represents a cylinder-off failure, while a small amplitude
represents a partial power failure. The crank angle at which
the BLF function reaches its maximum value indicates which
cylinder does not work well.

b) Torsion-peak analysis:The torsion-peak analysis first
takes the difference between the torsion signal and the BLF
signal. In the resulting signal, the defect is more visible than
in the original signal. Fig. 13(b) shows that the peak value
of cylinder 1 decreases if the cylinder is running at partial
power. The peak value becomes even smaller after turning off
cylinder 1, as shown in Fig. 13(c). The peak values of each
cylinder are compared with the mean peak values of each
cylinder for a healthy diesel engine. The ratios between the
measured and the reference peak values give an indication
about the condition of each cylinder of the diesel engine,
and are classified according to: 1, the cylinder is classified
as healthy; 1, the cylinder is working at partial power; and

1, the cylinder is not working (power off). In contrast with
the base-level function method, it is possible to monitor the
condition for each cylinder separately.

The results of both the BLF signal analyses and the results
of the torsion-peak analyses are used to compose one overall
conclusion about the condition of the diesel engine.

3) Diesel Engine Case—The Use of Neural Networks:The
torsion signal is also used directly as an input pattern to the
neural network. The data set contains data of the healthy
condition of the engine and data for the conditions where
one or more defects are introduced or simulated. The back-
propagation algorithm [2] was used to train several two-
layer neural networks. First, a simple network was trained
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(a) (b) (c)

Fig. 11. Torsion signal for (a) healthy engine, (b) cylinder 1 running at partial power, and (c) cylinder 1 off.

(a) (b) (c)

Fig. 12. BLF for (a) healthy engine, (b) cylinder 1 running at partial power, and (c) cylinder 1 off.

(a) (b) (c)

Fig. 13. Torsion-peak value for (a) healthy engine, (b) cylinder 1 running at partial power, (c) cylinder 1 off.

that could only discern between the healthy and not-healthy
states. Progressively more complicated networks were trained,
capable of classifying a growing combination of defects (e.g.,
healthy, cylinder-1 defect, cylinder-2 partial power, etc.). See
also [9].

The training set was limited by the measurements that were
available. The available data set consisted of 8 Gbytes. The
measurement signals were preprocessed extensively using the
following steps: resampling (to :synchronize” the signals in
bins of 512 samples per combustion cycle), filtering, averag-

ing, peak removal, and normalizing. Each of the 512 samples
is mapped on one neuron of the input layer of the network.
Each neuron in the output layer represents one class of defects.
Postprocessing is done by only accepting a neural network
classification if the neural network output values comply with
certain threshold values and if the “distance” between the
highest output neuron value and the second-highest output
neuron value exceeds a threshold. Furthermore, classification
will only be accepted if it has occurred for a minimum number
of times within a fixed time period. Using the automated
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TABLE I
COMPARISON OF METHODS

Fig. 14. Training of neural networks.

procedure shown in Fig. 14, the neural networks were trained
to detect the following (combinations of) defects. The success
rate is given as a percentage in the following:

1) detect which cylinder is off (100%);
2) detect which cylinder is off or partially off (78%);
3) detect which cylinder is off or partially off, for two

independent faults, for cylinders 1, 2, and 3 (100%);
4) detect late ignition (75%);
5) detect early ignition (100%);
6) detect low injection pressure (83%);
7) detect leak in cylinder (100%).

VI. EVALUATION

Adding “intelligence” to the monitoring system can reduce
the number of operating personnel and can minimize the
damage by detecting changes in the condition of the machinery
at an early stage. A main area for further development of
condition monitoring systems is signal processing. This re-
search shows that the three methods described are suitable for

condition monitoring. A comparison on main characteristics
for these methods is given in the matrix in Table I.

As discussed, the required process knowledge is an impor-
tant issue in the development of a condition monitoring system.
The required data is the data necessary to develop and test the
models, to find the features, or to train the neural network.
An important problem in this respect is the availability of data
of the machinery for conditions where a fault is occurring.
The development effort needed to build the signal processing
module will also be dependent on the experience and exper-
tise of the developers. The computing power needed during
development is not the same as the computing power needed
on-line. During development, available computing power can
influence the required development time considerably. On-line,
it influences the delay between measurement and result on
screen.

Maintainability of the software indicates the possibilities to
maintain and change the monitoring system after it has been
implemented. Changing operating conditions require adapt-
ability of the signal processing module. The insight acquired
during the development of the signal processing module can
be used for other purposes, like machinery development and
improvement.

Model-based methods can be applied efficiently for newly
developed machinery because the design data is already avail-
able. Feature extraction and neural networks strongly depend
on the availability of measured data and are, therefore, more
suited for application to existing machinery. The matrix shows
that no single method is satisfactory in every respect. There-
fore, a combination of the methods is likely provide the best
results.
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