
J. Cryptology (1994) 7:79-130 Joumol of 

CRYPTOLOGY 
�9 1994 International Association for 
Cryptologic Research 

Three Systems for Cryptographic Protocol Analysis 

R. Kemmerer  

Computer Science Department, University of California, 
Santa Barbara, CA 93106, U.S.A. 

C. Meadows 

U.S. Naval Research Laboratory, 4555 Overlook Avenue, SW, 
Washington, DC 20375, U.S.A. 

J. Millen 

The MITRE Corporation, Bedford, MA 01730, U.S.A. 

Communicated by Thomas Beth 

Received 25 March 1992 and revised 17 August 1993 

Abstract. Three experimental methods have been developed to help apply formal 
methods to the security verification of cryptographic protocols of the sort used for 
key distribution and authentication. Two of these methods are based on Prolog 
programs, and one is based on a general-purpose specification and verification 
system. All three combine algebraic with state-transition approaches. For purposes 
of comparison, they were used to analyze the same example protocol with a known 
flaw. 

Key words. Interrogator, Narrower, Inatest, Ina Jo, Key distribution, Authentica- 
tion, Security, Protocols, Formal methods, Specification, Verification. 

1. Introduction 

1.1. Background 

Formal  methods, including both specification and verification, are used in computer  

science to verify the correctness of systems that are too complicated and subtle to 

be easily understood, and whose correct operation is vital enough so that a high 

degree of assurance is desired. First, the system is specified in a formal specification 

language that has some mathematical  basis; then theorems are proved about  the 

specification with the assistance of an automatic  theorem-prover.  Something is 

usually learned about  the system, not only from the results of at tempting to prove 

it correct, but from the greater understanding that  comes from expressing it in a 

formal specification language. 

Techniques for the specification and verification of both the security of computer  

79 



80 R. Kemmerer, C. Meadows, and J. Millen 

systems and the correctness of communication protocols have been in existence for 

some time. See Holzmann's book, for example, for a survey of communication 

protocol verification 1'11]. As Kemmerer I-12] has pointed out, it seems natural that 

such techniques should be applied to cryptographic protocols. 

Cryptographic protocols are relatively simple in structure, but their security 

properties are not always intuitively obvious, and the number of protocols that have 

appeared in the literature that subsequently were proved to be flawed suggests that 

more formal analysis is necessary. The peculiar difficulty of cryptographic protocol 

security analysis arises from the threat of malicious interference, where an attacker 

may intercept and replace or modify messages in transit. While this threat applies 

to noncryptographic protocols as well, cryptographic protocols are, or should be, 

designed to foil such attacks, and it is difficult to design them properly and to prove 

that the design is effective. 

A great deal of work has been done in applying mathematical techniques both 

to cryptography and to developing security models for protocols that are directly 

based on "hard" problems (e.g., in 1,10]), but until recently very little attention had 

been paid to applying machine-assisted formal verification techniques to them. 

In the last few years, however, the situation has changed. A number of researchers 

have begun applying formal verification techniques to cryptographic protocols, in 

many cases with very interesting results. For example, Burrows et al. have developed 

a logic for analyzing authentication protocols and show how the use of the logic 

uncovered previously unknown flaws [5]. Similarly, in 1,181 Meadows used one of 

the systems described in this paper to find a previously unknown flaw in Simmons's 

selective broadcast protocol [26], and in 1,17] she showed how the effort of captur- 

ing the security goals of a protocol in a formal specification language led to the 

discovery of a previously unknown flaw in the Burns-Mitchell resource-sharing 

protocol [4]. In this paper we give an introduction to this new field by providing 

an in-depth view of three experimental systems that have been used to determine 

how useful formal methods can be in the verification and understanding of 

cryptographic protocols. Two of these systems, the NRL Protocol Analyzer and the 

Interrogator, were developed expressly for the analysis of cryptographic protocols; 

the third, Inatest, is a specification execution tool designed to support general- 

purpose software specification and verification using the Formal Development 

Methodology. In order to set offthe similarities and differences between them better, 

all three systems were applied to the analysis of the same protocol, which was 

already known to have a security flaw. The specifications and results of the analyses 

are described in this paper. 

Generally, some combination of three approaches is taken in the application of 

formal methods to the verification of cryptographic protocols. The first approach, 

initially formulated by Dolev and Yao [8], we call the algebraic approach. With 

this approach, a protocol is modeled with a collection of rules for transforming and 

reducing algebraic expressions representing messages. An example of a rule is the 

fact that encryption and decryption cancel each other out. Rules are invoked as a 

result of actions by communicating parties or an intruder. An analysis is performed 

by determining whether or not there is any sequence of rule applications that results 

in a subversion of the protocol's goals. Longley implemented rules of this type with 

an expert system [15]. 



Three Systems for Cryptographic Protocol Analysis 81 

The second approach is the state-transition approach, originating in the formal 

analysis of protocols for functional concerns such as deadlock and undefined tran- 

sitions. This approach tests whether insecure states are reachable. State transi- 

tion rules can be implemented within an algebraic system, as Meadows has done. 

The third approach is called the loffical approach: a set of axioms is developed 

describing the conditions under which certain knowledge and/or beliefs will hold, 

and the protocol is analyzed according to that logic. The best-known example of 

such a system is that of Burrows et al. [5]. While the analysis techniques used in a 

logical system are rather different from those using state-transition models, it is 

interesting to note that the logical approach can be given state-transition semantics 

I-l], and that logics have been combined with algebraic models by Merritt and 

Wolper [19] and the work that builds on theirs [2], [29]. 

Logical systems arising from [5] consititute an important and fruitful line of 

research for protocol analysis. We, however, confine this paper to a comparison of 

three systems that combine algebraic with state-transition approaches. By doing so, 

we avoid a substantial set of complex issues surrounding features such as the 

"idealization" process that turns a protocol into a set of logical assertions, that are 

peculiar to the logical approach. 

1.2. The Three Systems 

While the three systems described in this paper all combine algebraic with state- 

transition approaches, each system implements them in a different way. 

In Kemmerer's system the protocol and the means by which an intruder attacks 

it are described in a formal specification language, Ina Jo, which had been designed 

as a general-purpose tool to support software development and correctness proofs. 

A symbolic execution tool, Inatest, is then used to "walk through" the protocol and 

demonstrate its vulnerabilities. Kemmerer has also used an Ina Jo approach on 

other protocols to identify flaws, and he has used formal verification techniques to 

prove security properties of these protocols [12]. 

Millen's and Meadows's systems search backward instead of forward. In these 

systems the user first specifies an insecure state, and the system is used to determine 

whether or not that state is reachable. In Millen's Interrogator the protocol is 

specified symbolically in Prolog, using predicates to describe the state transitions. 

Its handling of encryption is built in. The Interrogator performs an exhaustive 

backward search through a single run of the protocol to determine if the insecure 

state is reachable from an initial state. The user can control the extent of the search 

by varying the assumptions about what information is available to the intruder. 

For example, the user might select certain information from a normal run of the 

protocol that he thinks would be useful. 

In Meadows's tool, the Naval Research Laboratory (NRL) Protocol Analyzer, 

the search is less automated, and unlike the other two systems, its main intent is to 

assist the user in proving a protocol secure rather than to uncover vulnerabilities. 

The protocol is specified in Prolog as a set of state transition rules describing the 

sending and receiving of messages. The words used in the messages obey a set of 

reduction rules. In the Protocol Analysis Tool the user specifies an insecure state, 

and the tool gives the user a complete description of all states that can immediately 



82 R. Kemmerer, C. Meadows, and J. Millen 

precede that state. The user can then query these states to find out from what states 

they are reachable, and so forth. The user can limit the search space by proving that 

portions of it are unreachable; for example, the tool assists the user in detecting and 

avoiding infinite loops. 

It is also possible to use the NRL Protocol Analyzer in "automatic" mode, so 

that a search tree is produced without any input from the user except the provision 

of a final goal. This should not be done, however, until the user has limited the size 

of the search space by proving lemmas about unreachability of portions of it. Even 

then, it may require intervention from the user from time to time to reduce the size 

of the tree, by the use of such techniques as querying subdescriptions of a state 

instead of the entire state. 

Each of these systems offers its unique advantages. With Inatest, the use of 

forward search means that a protocol can be explored to discover insecure states 

that may not have been envisioned by the protocol designer. The Interrogator 

provides the greatest amount of assistance in determining flaws for the least amount 

of effort; it is merely necessary to specify the protocol and make assumptions about 

what information available to the intruder is relevant. The NRL Protocol Analyzer 

is the most useful in providing a high degree of assurance that a protocol is secure; 

however, it has also been used to uncover subtle security flaws. 

In this paper we restrict ourselves to the analysis of a key distribution protocol. 

However, we note that the systems discussed in this paper can be and have been 

applied to other kinds of protocols. In particular, the NRL Protocol Analyzer has 

been applied to protocols designed for selective broadcast of messages [18] and 

the secure sharing of resources [171 and Kemmerer has applied Ina Jo to a key 

management facility [12]. 

1.3. The Example Protocol 

In this paper we demonstrate and compare how the three systems work by showing 

how they were used to analyze a single flawed protocol, due to Tatebayashi et al. 

[28]. The Tatebayeshi-Matsuzaki-Newman (TMN) protocol is a key distribution 

scheme by which a pair of ground stations in a mobile communication system obtain 

a common session key, through the mediation of a trusted server. Messages to the 

server are encrypted in the server's public key, known to all ground stations. Ground 

stations generate conventional keys to be used as session keys. The protocol was 

found by Simmons to suffer from several security flaws, which are documented in 

1-28]. Simmons suggested this protocol as a test case for the different protocol 

analysis systems. 

Success on this example does not prove the power of the three systems, since 

Simmons's analysis was known ahead of time, and this particular example does not 

bring out some of the special strengths available in these systems. The example is 

simply a vehicle for illuminating such issues as specification style, user interaction, 

and differences with respect to the kind of informal analysis done by an expert such 

as Simmons. 

The TMN protocol works as follows. The server possesses a public-private key 

pair. The public key is known to everyone in the system, while the private key 

belongs to the server alone. 



Three Systems for Cryptographic Protocol Analysis 83 

1. When user A wishes to communicate with user B, it encrypts a random number 

with the server's public key, and sends the encrypted random number, along 

with A's and B's names. 

2. When the server receives the request, it decrypts the random number and stores 

it as a key-encryption key for that conversation; it also notifies B that A wishes 

to speak to it. 

3. User B, on receiving the notification from the server, generates a random 

number to be used as a session key, encrypts it with the server's public key, 

and sends it to the server. 

4. The server decrypts the response, encrypts the key with A's random number 

using a private-key algorithm, and sends the result to A. In the specification of 

the protocol, the algorithm used for this step is commutative in the sense that, 

if A [B] represents the encryption of B under the key A, we have A [B] = B [A]. 

This could be done with a bitwise exclusive-or of the two keys, for example. 

The commutativity is significant for Simmons's analysis and Kemmerer's 

demonstration. 

5. User A decrypts the message from the server using the original random number 

it had generated and assumes that the result is the session key. 

The protocol is diagrammed in Fig. 1. In this diagram the server's public key is 

e, user A's key is r 1 and user B's key is r2. Encryption is shown generically in the 

form key[data]. 
This protocol suffers from at least two security flaws. One results from the fact 

that the public-key encryption algorithm used is a homomorphism, and thus can 

be used by an intruder to construct words that the protocol designer had not 

intended. This flaw, discovered by Simmons, is discussed in detail in [28], so we 

omit its description here. The other flaw results from the fact that no secure 

authentication is used between parties, and so an intruder who is able to intercept 

messages can, by impersonating user B to the server, cause it to convince A that a 

key generated by the intruder is a key generated by B. In this paper we show how 

Inatest can be used to uncover the first flaw, while the NRL Protocol Analyzer and 

user A user B 
(r l ) l  B, e[rl] 

I~ rl[r2]= r2[rl] 

server  

r 

A 
e[r2] 

r2[data] 

(r2) 

D. 

Fig. 1. The TMN Example Protocol. 



84 R. Kemmerer, C. Meadows, and J. MiUen 

Interrogator can be used to find the second. We present the Interrogator first, then 

the NRL Protocol Analyzer, and finally the use of Ina Jo and Inatest. 

2. The Interrogator 

2.1. Introduction 

The Interrogator is a Prolog program that searches for active wiretapping 

vulnerabilities in protocols. It is automatic in the sense that once the protocol and 

initial assumptions have been specified, the program runs by itself until it either 

finds a penetration scenario or gives up. 

The earliest form of the Interrogator was documented in [20]. A more capable 

and flexible version for the Symbolics LISP machine, with graphic display of 

protocols, was described in [21]. This version of the program was able to reproduce 

the Denning-Sacco flaw [7] in the Needham-Schroeder protocol [23]. There are 

several examples of protocol flaws which it can find, though to date it has not yet 

been responsible for discovering any previously unknown vulnerability. Presently, 

the Interrogator runs on a Macintosh, and there is a new experimental version of 

it under development. Most of the present description applies to a relatively stable 

"baseline" version of the Interrogator as of April 1990, which is similar in capability 

to the 1987 version. 

Protocol specifications for the Interrogator model a protocol as a set of 

communicating state-transition machines, each of which represents a party. The 

state of each party includes a list of memory items that expands as it receives data 

from messages. A state transition occurs in a party when a message is sent or 

received. Because we assume there is an attacker capable of message modification, 

a message received is not necessarily the same as the message sent in the previous 

(or any earlier) transition. 

The general idea of the Interrogator is to define a predicate, pKnows(D, H, B, S), 

which holds when the penetrator is able to obtain knowledge of specified data D, 

via a message history H, which takes the network from its initial state to an insecure 

goal state specified by B and S. By invoking pKnows with H as a variable, the user 

causes the Prolog interpreter to search for an acceptable instantiation for it. The 

resulting message history H is the penetration scenario. 

The Interrogator's search strategy is dictated largely by the normal operation 

of the Prolog interpreter. Like the NRL Protocol Analyzer, it begins from the goal 

state and works backward, finding the possible prior states according to the proto- 

col specification. Unlike the NRL program, which (except in automatic mode) 

presents all the possible prior states to the user in breadth-first fashion, and asks 

for the user's selection to continue the search path, the Interrogator continues 

automatically in depth-first fashion to look at earlier states. Each branch of the 

search path is terminated either by a success when it reaches the initial state, or by 

a dead end when it reaches a state that has no possible prior state. 

2.2. Program Structure 

The program is conceptually divided into two fixed sections, the Knowledge and 

Reachability sections, plus two replaceable sections, the Protocol and Scenario 



Three Systems for Cryptographic Protocol Analysis 85 

K ProtoJ 
[ Scenario 

Fig. 2. Conceptual structure of the Interrogator. 

sections, illustrated in Fig. 2. The Knowledge section contains the predicate 

pKnows, and gives rules by which the penetrator extracts data from a message. If 

a message contains encrypted data, the penetrator obtains it only if the penetrator 

knows the appropriate key. Thus, the Knowledge section may call itself recursively. 

The Reachability section determines whether a legal message history taking the 

network from its initial state to a given state exists. It attempts to backtrack over 

one state transition, and then calls itself recursively. To identify legal state 

transitions, it calls the Protocol section. The Reachability section also defines the 

possible ways a penetrator might upset the normal course of a protocol by inter- 

cepting and modifying messages. 

The Protocol section is essentially the protocol specification. This section is 

constructed specially for each protocol to be analyzed. A protocol is modeled as a 

collection of communicating parties, each of which is a state-transition machine. 

The network state is the combination of the current states of all the parties, plus a 

"network buffer" which may hold a message in transit. A state transition for a party 

is either a "transmit" or "receive" transition, specified in Prolog as a relation among 

a prior state, a message, and a next state. The state of a party has some structure 

to be described later. 

The Scenario section specifies assumptions that help to define the possible pene- 

tration scenarios. Here, the analyst states which items of data are assumed known 

to the penetrator initially. The analyst may also have identified some constraints 

or suspicions about the final state after the penetration. The more information that 

is supplied to constrain the final state, the fewer search paths the Interrogator must 

consider, and the faster it runs. 

While a state-machine representation of protocols is common to the other 

analysis approaches described in this paper, the Interrogator differs by not having 

the set of data items known to the penetrator saved as part of the current network 

state. 

There is a close relationship between the Knowledge and Reachability sections. 

In order for the penetrator to obtain data, that data must have been transmitted 

in a message by some party. That happens only when the party is in a certain 

state, as specified in the protocol. The program then asks whether that state is 

reachable. This is important, because, if the state is not reachable, then, despite 

appearances, it is really not possible for the penetrator to have obtained the data 

that way. 

On the other hand, in order for a state to be reachable, it may be necessary for 

the penetrator to modify a message, inserting some data known to the penetrator. 

This leads to a call on pKnows, to find out whether the penetrator could have 

obtained that data. 



86 R. Kemmercr, C. Meadows, and J. Millen 

2.3. The Encryption Model 

The baseline version of the Interrogator has a very simple model of encryption. 

Encrypted data in messages is represented symbolically by a list [key, data]. Built 

into the Knowledge section is the simple fact: If the penetrator knows the key and 

the encrypted field [key, data-I, then it knows the data, at least in a single-key system. 

Public-key encryption is handled by defining a relation inverseKey(pkey, skey). 

If the penetrator knows pkey and [skey, data], it has found data; or if it knows skey 

and [pkey, data], it has found data. The two keys are treated symmetrically; the 

only distinction between public and secret keys is the initial assumption that the 

pcnetrator knows the public one. A conventional key (that is, a key used in a 

single-key encryption system) is its own inverse. 

In the more recent experimental version of the Interrogator, a fifth section has 

appeared: the Algebra section. This contains code for simplifying expressions 

containing symbolic computations occurring in messages. These expressions 

indicate encryption and other operations explicitly. Different encryption 

operators distinguish public-key from symmetric-key encryption, encryption from 

decryption, and so on. For example, dec(k, enc(k, x)) is simplified to x, and 

xor(x, xor(y, x)) is simplified to y, where "xor" represents bitwise exclusive-or, or 

modulo-two addition. 

2.4. Penetrator Actions 

Recall that the network state consists of the states of all parties, plus the contents 

of the network buffer. A transmit transition causes a message to be placed in the 

network buffer, and a receive transition causes the message currently in the network 

buffer to be removed. The pcnetrator action, if any, occurs between a transmission 

and the next reception. As an active wiretapper, the pcnetrator is assumed to 

be able to observe and manipulate the network buffer, as shown in Fig. 3. The 

penetrator can modify the message currently in the network buffer, by replacing 

any or all of the fields in the message. Data items inserted as replacements must be 

known to the penetrator. 

Fig. 3. 

penetrator 

modification 

Message transmission, modification, and reception. 



Three Systems for Cryptographie Protocol Analysis 87 

il S 

b terl 

[rl ,r2] ( ~  

[r2,data] 

a 

to,r2] 

b 

() 

Fig. 4. A Normal Run of the TMN Protocol. 

2.5. The Protocol Example 

A normal run of the TMN protocol is illustrated schematically in Fig. 4. This figure 

differs from Fig. 1 in that it shows state numbers, and it also uses the Interrogator's 

notation for encrypted expressions. The initiating party, a, sends a message to the 

server, s, indicating the desired receiving party, b, and supplying a new key r l 

encrypted in the server's public key e. The server tells b that a wants to open a 

connection, and b responds with another new key r2, encrypted in the server's public 

key. The server forwards r2 to a, encrypted using r 1. Now a and b share the key r2, 

which can be used as a session key. One use of r2 to encrypt some data from a is 

shown. 

Note that the details of the encryption techniques are not visible in this represen- 

tation. In particular, the encryption of r2 using r 1 in the penultimate message in 

Fig. 4 can be handled in various ways. The original protocol suggested combining 

r l  and r2 arithmetically, with a sum, product, or quotient, which led to difficulties 

noted by Simmons in his analysis. The Interrogator can only make use of the 

abstract version, which tells it only that a, knowing r 1, is able to extract and use r2. 

Simmons's analysis makes use of the additional property that a party knowing r2 

can extract and use r 1 as well. The current experimental version of the Interrogator 

is able to represent such arithmetic operations. 

2.6. Encoding the Protocol 

The main part of the protocol specification is a set of transmit and receive clauses 

showing how each party changes state as a result of sending and receiving messages. 

The state changes are indicated in Fig. 4, showing the succession of numerical state 

labels for each party. The state of a party includes not just the state label, but also 

a list of data items that the party has learned from previous messages and which 

are needed to construct later messages. These lists will appear in the transmit and 

receive clauses. 



88 R. Kemmerer, C. Meadows, and J. Millen 

Consider the first message from a to s. Only the data fields in the message are 

shown on the arrow in Fig. 4. The full message is [a, s, 1, b, [e, rl,l ]. The first three 

items may be thought of as the "header." By convention, they are the source address, 

destination address, and a format label. As we shall see below, each message has a 

format specifying the data types for each of its fields. The format label helps the 

receiver of the message to recognize it and respond appropriately, and it also helps 

the Interrogator to limit its search for modified message field values to appropriate 

possibilities. 

The state change for the first transmit operation is specified with this transmit 

clause: 

transmit([a, 1,l, [a, s, 1, b, [e, rl,l,l, [a, 2,l). 

The three arguments of the transmit term are 

prior state, message transmitted, next state. 

In general, a party state is encoded as a list of the form [party, state-label . . . .  ] where 

the third and subsequent items, if any, are individual data items remembered by 

that party. In the transmit term above, we see that party a has not yet learned 

anything. Note that the transmit clause gives the state change for only one party, 

the one transmitting the message. This is sufficient because only one party changes 

state at a time. 

It is, perhaps, confusing that the Prolog list data structure is being used to 

represent three distinct expression types: a message, an encrypted data field, and a 

party state. The role of a given list is determined by context, as is the significance 

of the items in each list. 

The next state change that would occur normally is that of the server upon 

receiving the first message. This one is more interesting, since it adds some new 

information to the server's memory: 

receive([s, 1], [A, s, 2, B, [e, R1]],  Is, 2, A, B, R 1,l). 

Note that the message fields that went into the server's memory are indicated with 

capital letters, which, by Prolog convention, are variables. The rationale for this 

is that the server does not know in advance who will request service, to whom a 

connection is requested, or what key will be specified. The server does assume that 

the key R I is encrypted in the server's public key. In effect, R 1 is defined to be the 

result of decrypting the last message field using the server's secret key. This clause 

defines a family of transitions for all possible values of the variables A, B, and R 1. 

To see how the server uses its memory, look at the next transmit clause: 

transmit(Is, 2, A, B, Rl-I, [s, B, 3, Al, [s, 2, A, B, R 1,l). 

The server simply tells B (whoever that may be) that A wants a connection, and 

retains its memory of data items. 

The complete protocol specification is shown in Fig. 5. Besides transmit and 



Three Systems for Cryptographic Protocol Analysis 89 

transmit ([a,l], [a, s,l,b, [e,rl] ], 
receive( [s,l], [A,s,I,B, [e, Rl]], 

transmit ( [ s, 2, A, B, R1 ], [S,B,2,A], 

receive( [b,l], [s,b,2,A], 

transmit ( [b, 2,A], [b, s, 3, [e, r2] ], 
receive( [s, 3,A,B, RI], [B, s, 3, [e, R2] ], 
transmit ([s, 4,A,B,RI,R2], [s,A, 3, [RI,R2] ], 

receive( [a,2], [s,a, 3, [rl,R2]], 
transmit ( [a, 3,R2], 

receive( [a,4,R2], 

[a, 2 ] ) . 

[s, 2,A,B, RI] ). 
[s, 3,A,B, RI] ). 

[b, 2,A] ). 

[b, 3,A] ). 
[S, 4,A, B, RI,R2] ). 

[s,5]). 
[a, 3,R2] ). 

[a,b, 4, [R2,data] ], [a, 4,R2] ). 

[b,a, 4, [R2, ]], [a, 5]). 

initialNodelist([[a,l],[s,l],[b,l]]). 

pKnowsInitially (e). 

pKnowsInitially (r3). 

pKnowsInitially (X) :- ptype (X,addr). 

pKnowsInitially (X) :- ptype (X, form). 

mformat ( [_s,_d, 1 l 

mformat([ s, d, 2 1 

mformat([ s, d, 3 1 
mformat([ s, d, 4 I 

_a], [addr, addr, form, addr, [cryp, key] ] ) . 
_f], [addr, addr, form, addr] ) . 

_el, [addr, addr, form, [cryp, key] ] ) . 
__e], [addr, addr, form, [cryp, data] ] ) . 

ptype (a, addr) . 
ptype (s, addr) . 

ptype (b, addr). 

ptype (x, addr) . 

ptype (e, key). 
ptype (se, key) 

ptype (rl, key) 
ptype (r2, key) 
ptype (r3, key) 

ptype (i, form) 

ptype (2, form) 

ptype (3, form) 

ptype (4, form). 

ptype (data, data) . 

inverseKey(se, e). 

inverseKey(e, se). 
inverseKey(rl,rl). 
inverseKey(r2,r2). 
inverseKey(r3,r3). 

hopeless(rl). 
hopeless(r2). 

hopeless(se). 

state ([la, 4, r3], [s, 5], [b,l] ] ). 

Fig. 5. TMN protocol specification for the Interrogator. 



90 R. Kernmerer, C. Meadows, and J. Millen 

receive clauses, it contains the format definitions and associated type declarations, 

the key relationships, the initial state ("initialNodelist"), and some scenario informa- 

tion, to be discussed below. 

2.7. Scenario Specification 

In order to run the Interrogator, a penetration goal must be identified, along with 

any assumptions about what information is already known to the penetrator. 

For the T M N  protocol, we assume that the penetrator is another ground station 

knowing the server's public key, and having the ability to generate potential session 

keys. This initial knowledge is specified with pKnowslnitially clauses. Besides the 

keys, the penetrator is also assumed to know public constants such as the addresses 

of other parties and the protocol formats. 

The key that will be generated by the penetrator is represented by the symbolic 

constant r3, declared as initial knowledge. Although such keys are thought of as 

being generated on the fly when needed, it could just as easily be imagined that a 

private list of keys has been prepared ahead of time, and r3 is the next one to be used. 

The goal item is the data transmitted by a (and intended for b). When invoking 

the Interrogator, we must indicate not only the goal item but also the final network 

state. While this could be left as a variable, it can save considerable search time to 

give the program some hints. In Fig. 5 the state clause specifies the goal state for 

each party: [[a, 4, r3], [s, 5], l-b, 1]]. For party a, this says that a has just transmit- 

ted the data encrypted with the penetrator's key r3. This assumption embodies a 

particular hypothesis as to how the data might be compromised. Party s is in its 

final state. Party b is still in state 1. Again, this represents a hypothesis about the 

nature of the penetration; it says that all messages to party b will be intercepted. 

Three keys are designated as "hopeless": r 1, r2, and se. This saves the Interrogator 

the time it might otherwise spend trying to figure out if they can be compromised. 

2.8. Running the Interrogator 

The Interrogator is invoked with the goal state as shown in the first line of 

Fig. 6. The goal state, S, is the one satisfying state(S) as specified in the last line 

of Fig. 5. 

After about 12 seconds on a Macintosh IIcx, the program prints "Found data!" 

and displays the penetration history H twice, once under program control and once 

as part of the normal Prolog output. 

The message history shows the sequence of messages sent and received. Each 

message is received as it was sent unless the penetrator modifies it. One message, 

from s to b, was modified; it was turned into a response apparently from b to s, 

containing the penetrator's key instead of a key generated by b. A schematic picture 

of what happened is shown in Fig. 7. 

What the penetrator was supposed to have done was to intercept the message 

from s, so that b does not receive it, construct the simulated reply, and send that 

reply directly to s. The reply was constructed out of information known to the 

penetrator at that point. In particular, since r3 is the penetrator's key, and e is a 

public key, it could encrypt the former with the latter to get the field I-e, r3]. 



Three Systems for Cryptographic Protocol Analysis 91 

?- state (S), pKnows (data, H, [ ], S). 

Fo1~nd data, 
[sent, [a, s,l,b, [e,rl] ] ] 
[rcvd, [a, s,l,b, [e,rl] ] ] 
[sent, [s,b, 2,a] ] 
[rcvd, [b, s, 3, [e,r3] ] ] 
[sent, [s,a, 3, [rl,r3] ] ] 
[rcvd, [s,a, 3, [rl,r3] ] ] 
[sent, [a,b, 4, [r3,data] ] ] 

S = [[a, 4,r3], [s,5], [b,l]], 
H = [ [sent, [a,b, 4, [r3,data] ] ], [rcvd, [s,a, 3, [rl,r3] ] ], 

[sent, [s,a, 3, [rl,r3]]], [rcvd, [b, s, 3, [e,r3]]], 
[sent, [s,b,2,a] ], [rcvd, [a, s,l,b, [e,rl] ] ], 
[sent, [a,s,l,b, [e, rl]]]] 

Fig. 6. Interrogator run on TMN. 

In this penetration history the penetrator must pretend to be b. This is inferior 

to Simmons's penetration, in which the penetrator could eavesdrop on a complete 

conversation between a and b without making the effort to imitate b. Nevertheless, 

it successfully captures at least one data message intended for b. 

2.9. Sensitivity 

The principal drawback of the baseline version of the Interrogator is that the time 

it takes to find a penetration can vary wildly depending on details of the protocol 

specification and the assumptions made for the scenario. There are also (rare) 

situations where the program cuts off a search path that leads to a penetration, and 

so fails to find one, due to the limitations of certain heuristics that were built into 

the program to help speed up the search. 

The program takes more time if less information is specified about the goal state. 

For example, if either the key used by a or the final state of b is left unspecified, the 

8 S 

(~ b, [e,rl] (~  

[rl ,r3] ( ~  

a 

[e,r3] 

penetrator 

(acting like b) 

v 

[r3,data] 
ID, 

Fig. 7. The Interrogator's TMN penetration. 



92 R. Kemmerer, C. Meadows, and J. Millen 

program runs for so long it has never seemed worth the time to find out exactly 

how long; at least 10 minutes. If the final state ofb is specified as state 3, the program 

finds a different penetration, but takes about 30 seconds instead of 12 seconds. 

The running time is also sensitive to the order in which constants are declared, 

especially keys, since there are many situations where it tries the possible keys in 

the given order, and it finds the solution more quickly if the one it needs occurs 

early in the list. 

2.10. Protocol Specification Variations 

There are, in general, many ways to specify the same protocol, which are "correct" 

in some sense. Yet they lead to different running times, and some may exclude 

possible penetrations. 

The use of symbolic constants is an area where choices are made. For example, 

the TMN protocol specification uses constants a and b to represent the initiating 

and listening parties, yet any two parties (out of a population of perhaps hundreds) 

could take on either role. By using constants a and b, rather than variables, to define 

the protocol, we are essentially using the mathematician's proof trick of saying "with 

no loss of generality, we may assume that . . . .  " Since some party acts as initiator, 

and another as listener, we may as well call them "a" and "b." It is less clear, however, 

that some penetrations are not missed by failing to mention other parties "c," "d," 

etc., who might conceivably play a part in some subtle vulnerability. Dolev and Yao 

addressed this question in their paper, and proved that it was sufficient to consider 

only the "active" parties in the protocol, but their result was in the context of a 

particular model that is not general enough to cover the TMN protocol or others 

we must analyze. 

Another simplification is that the state graph for each party is loop-free. In actual 

protocols there are various ways for a party to return to its initial state and begin 

a new conversation. While it is possible to specify loops in the state graph, they are 

avoided because they can cause the program to get into a loop. 

Many protocol vulnerabilities are, in fact, made possible only by exploiting two 

or more separate conversations involving the same party. Simmons's penetration 

of the TMN protocol is an example of this. In this case, and in others, it is still 

possible to find the vulnerability with a nonlooping version of the protocol, because 

all sessions but one are passively observed; the penetrator eavesdrops on them but 

does not modify any message. In such cases it is sufficient to include the record of 

eavesdropped sessions as initial knowledge. However, it is not clear for what general 

class of protocols this tactic is adequate. 

Until rigorous results are available for such questions, our simplifying tactics are 

justified in part by arguments applicable to particular protocols, or by the philoso- 

phy that we are accomplishing something useful by a systematic search for some 

vulnerabilities, even in the absence of a proof that no vulnerabilities are neglected. 

3. The NRL Protocol Analyzer 

In this section we describe the NRL Protocol Analyzer and the way in which it was 

used to analyze the TMN protocol [28-1. The NRL Protocol Analyzer is an 



Three Systems for Cryptographic Protocol Analysis 93 

interactive program written in Prolog [6] that can be used to assist either in the 

verification of security properties of cryptographic protocols or in the detection of 

security flaws. It is currently implemented in both Quintus Prolog and SWlProlog. 

Although it is still under development, it has already been used successfully to detect 

previously unknown flaws in the Simmons Selective Broadcast Protocol [26] and 

the Burns-Mitchell Resource Sharing Protocol l4]. The results of these analyses, 

using earlier versions of the Protocol Analyzer, are contained in 1-18 and 17]. 

In the case of the TMN protocol we were already aware of the security flaw by 

the time we used the tool to analyze it. Since the Protocol Analyzer is interactive 

and depends at least partly upon the intuition of the user for its guidance, the fact 

that we already knew how to break the protocol meant that it was not a complete 

test of the Analyzer's powers. Thus, the analysis presented in this paper does not 

present as strong evidence for the usefulness of the tool as those of the Simmons 

and Bums-Mitchell protocols. However, it can still be used as a means of illustrating 

how the Analyzer works. The simplicity of the TMN protocol means that we are 

able to give a more complete description of our analysis than we were in our 

descriptions of the analyses of the Simmons and Burns-Mitchell protocols, and 

thus we can give the reader a better idea of how the Analyzer operates. 

3.1. Description of the Model and Specification Lanouage 

The model that we use takes the same approach as the term-rewriting model of 

Dolev and Yao [8]. In their model the intruder or intruders are assumed to have 

complete control of the communications network in that they are able to read all 

traffic, identify the source of each message, alter any message, destroy any message, 

and construct and initiate messages themselves. Thus, the honest participants in the 

protocol are communicating directly, not with each other, but with the intruder. 

We may thus think of the protocol as a machine that the intruder manipulates to 

produce messages. In the Dolev-Yao model a protocol is insecure if an intruder is 

able to manipulate it to produce one or more of a designated set of messages that 

are supposed to be secret. 

The main difference between our model and the Dolev-Yao model is that the 

Dolev-Yao model treats a protocol as a machine for producing words, while our 

model treats a protocol as a machine for producing three things: words, beliefs, and 

events. In our model each participant in the protocol possesses a set of beliefs. Beliefs 

are modified or created as the result of receiving messages made up of words, while 

messages are sent depending upon both beliefs and messages received. Events 

represent the state transitions in which new words are generated and beliefs are 

modified. Thus an intruder who controls the dissemination of messages can use the 

protocol to produce words, beliefs, and events. 

Since our analysis program is written in Prolog, we use several Prolog 

conventions in our specification language. Thus variables (for which it is possible to 

substitute other variables and expressions) are represented by capital letters or 

strings beginning with capital letters, while constants are represented by lowercase 

letters or strings beginning with lowercase letters. All variables appearing in a 

statement are universally quantified. Thus, a statement "if foo(X), then fie(X, Y)" 

should be interpreted to mean "for all X and Y, if foo(X), then fie(X, Y)." 



94 R. Kemmerer, C. Meadows, and J. Millen 

A specification in the NRL Protocol Analyzer consists of four sections. The first 

section consists of transition rules governing the actions of honest principals. It may 

also contain rules describing possible system failures that are not necessarily the 

result of actions of the intruder, for example, the compromise of a session key. The 

second section describes the operations that are available to the honest principals 

and the users. The third section describes the atoms that are used as the basic 

building blocks of the words in the protocol. The fourth section describes the rewrite 

rules obeyed by the operations. 

3.1.1. Transition Rules. A transition rule has three parts. 

Pre-Conditions. The first part of a transition rule gives the conditions that must 

hold before the rule can fire. These conditions describe the words the intruder must 

know (that is, the message that must be received by the principal), the values of the 

state variables available to the principal (referred to as "lfacts" in the transition rule), 

and any conditions on the state variables and words. 

Post-Conditions. The second part describes the conditions that hold after the rule 

fires in terms of words learned by the intruder (that is, the message sent by the 

principal) and any new values taken on by state variables. Each time a rule fires, a 

counter local to the principal is incremented; this is also recorded in the precondi- 

tions and postconditions of the rule. 

Event Statements. The third part of the rule consists of an event statement. It is 

used to record the firing of a rule and is useful for indicating what the rule does. It 

is determined by the rest of the rule. The event statement describes a function with 

four arguments. The first gives the name of the relevant principal. The second gives 

the number of the protocol round. The third identifies the event. The fourth gives 

the value of the principal's counter after the rule fires. The value of the event is a 

list of words relevant to the event. 

Here is a typical specification of a transition rule, describing a key server's 

receiving a request for a key, where R is supposed to be a nonce generated by user(A, 

honest). Note that R is simply a variable, since the intruder could have substituted 

any word for R. In this protocol the key server sends out a key and stores the user's 

request, together with the key. 

rule(3) 

If: 

count(server) =N, 

intruderknows([user(A,Y),user(B,X),R]), 

then: 

count(server) =s(N), 

ifact(server,N,key,s(N)) = [user(A,Y),user(B,X),key(server,N)], 

intruderlearns([e(key(user(A,Y),(user(B,X),key(server,N),R))]), 

EVENT: 



Three Systems for Cryptographic Protocol Analysis 95 

event(server,N,sentkey,s(N)) = 

[user(A,Y),user(B,X),R,key(server,N)]. 

Note that the principal involved in this transition, the server, is identified only as 

arguments of state variable assignments. This is in contrast to, for example, the 

Interrogator, which uses a similar model but which uses the more conventional 

notation of representing each principal's local state space as a list of words. The 

main reason for our choice of this nonstandard notation is to make it easier to allow 

queries of partial descriptions of states. If state variables are represented as separate 

function assignments, it is easy to ask questions about the teachability of par- 

tial descriptions by asking questions about the reachability of subsets of sets of 

assignments. 

3.1.2. Operations on Words. The second section of the specification defines the 

operations that can be made by honest principals and by the intruder. If an 

operation can be made by the intruder, the Analyzer translates it into a transition 

rule similar to the above, except that the relevant principal is the intruder instead 

of an honest principal, and no lfacts are involved. An example of a specification of 

an operation is the following, describing public-key encryption: 

fsdl:pke(X,Y):length(X)=l:length(pke(X,Y))=length(Y):pen. 

The term "fsd" stands for "function symbol description." The next term gives the 

operation and the arguments. The third gives conditions on the arguments. In this 

case we make the condition that the key be a certain length, which in this case we 

make a default unit length one. The next term gives the length of the resulting word, 

which in this case is the length of Y. The last field is set to "pen" if the penetrator 

can perform the operation, and "nopen" if he cannot. 

Some operations are built into the system. These are: concatenation of X and Y, 

denoted by (X, Y), taking the head (first element) of a list L, denoted by head(L), 

taking the tail (all but the first element) of a list L, denoted by tail(L), and id_check, 

which is used by an honest principal to determine whether or not two words are 

equal. The function id_check(X, Y) evaluates to "ok" when X and Y are equal. 

3.1.3. Specifying Atoms. The third section describes the words that make up the 

basic building blocks. Examples would be user names, keys, and random numbers. 

Again, we indicate whether or not the word is known to the intruder in the last field 

of an atom specification. It is "known" if the intruder knows it, and "notknown" if 

the intruder does not know it. 

3.1.4. Specifying Rewrite Rules. The last section describes the rewrite rules by 

which words reduce to simpler words. An example of a rewrite rule would be one 

which describes the fact encryption with corresponding public and private keys 

cancel each other out: 

rrl:pke(privkey(X),pke(pubkey(X),Y))=>Y. 
rr2:pke(pubkey(X),pke(privkey(X),Y))=>Y. 



96 R. Kemmerer, C. Meadows, and J. Millen 

The Analyzer is queried by asking it to find a state that consists of a set of words 

known by the intruder, a set of lfacts, and a sequence of events that must have 

occurred. Conditions can be put on the words, lfacts, and events by putting 

conditions on the words that appear in them. Conditions can also be put on the 

results by specifying that certain sequences of events must not have occurred. 

3.1.5. Assumptions Underlying the Analyzer. 

lying the Analyzer. We list them below: 

There are several assumptions under- 

1. A principal is either honest, that is, he or she follows all rules of the protocol, 

or he or she is dishonest. All dishonest principals are assumed to be in 

cooperation with the intruder; thus, any words known to a dishonest principal 

(such as master keys) should also be assumed to be known by the intruder. It 

is up to the protocol specifier to make the assumption whether or not dishonest 

principals exist. 

2. The intruder can only learn a word or cause a state variable to change as a 

result of an application of a combination of the transition rules and the rewrite 

rules. Thus, for example, if the assumption that keys may be compromised 

. 

. 

under certain circumstances 

mise will have to be written. 

Burns-Mitchell protocol. 

When the intruder learns a 

is desired, a rule explicitly describing key compro- 

This was done, for example, in our analysis of the 

word, he or she learns the entire significance of 

that word. Thus, when the intruder learns e(key(X), rand(X, N)) he or she 

knows that is the encryption of a random number generated by X encrypted 

with a key belonging to X, although he or she may not know key(X) or 

rand(X, N). 

Two words cannot be identical unless they are identical syntactically. Thus 

key(X) can never be equal to rand(X, N), and rand(X, N) is not equal to 

rand(Y, M) unless X = Y and M = N. If a specification designer wishes to 

allow for the possibility, say, that a randomly generated number will be equal 

to a key, this must be allowed for by the appropriate use of variables so that 

a substitution making the two words identical exists. 

3.2. Analyzing a Protocol 

The NRL Protocol Analyzer is similar to many other tools for analyzing communi- 

cation protocols in that it makes use of specifications of protocols as communicating 

state machines, and that analysis is performed by proving that undesirable states 

are unreachable. However, there are a couple of important differences which mean 

that we could not apply conventional protocol analysis techniques. 

The first important difference is that the search space is infinite. We assume, for 

example, that if a principal applies the same encryption function over and over, 

this will result in an infinite sequence of words. Although, in fact, repetition will 

eventually occur, in a well-designed cryptosystem this will not happen for a very 

long time. Since exhaustive search of so large a space is infeasible, we may assume, 

for all practical purposes, that it is infinite. (This is the same assumption made by 



Three Systems for Cryptographic Protocol Analysis 97 

Dolev and Yao.) Thus techniques developed for exhaustive search do not give us 

much benefit. 

Another important difference is that, in analyzing a protocol, it is not enough to 

ask what transition gives us output that is equal to the input we desire. Instead, for 

each output we need to ask what substitutions, if any, give us output that is reducible 

to the input we desire. Thus we have to include algorithms for determining such 

substitutions. 

These differences from the assumptions underlying conventional communication 

protocol analysis mean that we needed to develop new techniques for analyzing 

protocols. In this section we outline what these techniques are and how they are 

used. 

3.2.1. Querying the Protocol Analyzer. The Protocol Analyzer is used by spec- 

ifying a set of states using terms built up of variables, constants, and function 

symbols. A state is specified by listing a set of words learned by the intruder and a 

set of lfacts belonging to the honest participants, along with a set of conditions on 

the words and lfacts. A set of sequences of events that must not have occurred or a 

sequence of events that must have occurred can also be listed. 

The protocol analysis program takes each subset D of the desired words, beliefs, 

and events and compares it with each subset O of the words, beliefs, and events 

output by each rule. It then uses a variant of the narrowing algorithm of Rety et al. 

[24] to find a complete set of substitutions Z to the variables in D and O, if any 

such exist, that leave D irreducible but make O reducible to D (where by "complete" 

we mean that if there is any other such substitution, it can be obtained by applying 

a further substitution to a substitution from Y.). Thus, if we are attempting to find 

all cases in which an intruder can learn a word e(X, Y), and a rule with output 

e(A, B) exists, the program will find the two substitutions: 

1. A = X , B =  Y, and 

2. B = d(A, e(X, Y)). 

The program then applies these substitutions to the input and output of the rule. 

For each such set of substitutions, it generates a result consisting of the words 

matched, the internal state values matched, the events matched, the events not 

matched; the event that occurred, the events that will occur in the future, the events 

that must be avoided, and the words and internal state values input into the rule. 

All words in the result are assumed to be in their reduced form. 

Once we have this result, we can use the Analyzer to determine from what states 

the input state (i.e., the state defined by the state values and words that are given 

as input to the rule, and by the state values, words, and event statements not yet 

matched) is reachable, and via what events. This will allow us to keep a consistent 

picture of the history of events that leads to the state we are looking for. 

If we apply this approach mindlessly, we will of course wind up with an explosion 

of states, and never reach our goal. Thus we must develop ways of limiting the search 

space. The Analyzer supports several ways of doing this. 



98 R. Kemmerer, C. Meadows, and J. Millen 

3.2.2. Partial Queries. The first tool available to the user is the use of selection in 

state querying. When the user is presented with a state, he does not have to ask how 

the whole state can be reached; instead, he can ask how some piece of it is reachable. 

For example, in the encryption example given above, once the user is presented with 

the fact that the intruder can produce W if he knows X and d(X, W), he does not 

have to ask the system how the intruder can find X and d(X, W); instead he can 

ask how the intruder can find d(X, W). If the intruder cannot find d(X, W), then he 

certainly cannot find X and d(X, W). 

3.2.3. The Language Checker. The user is also given several tools to assist him in 

proving lemmas about the unreachability of states. The first of these tools we call 

the Language Checker. The Language Checker makes use of the fact that many of 

the infinite paths followed by the Analyzer define formal languages. For example, 

suppose that the user wants to find out how the intruder can find a word k, and 

that the Analyzer tells him that this can be done only if he can find e(W, k), where 

W is any word. Suppose that the user presents e(W, k) to the Analyzer, and it tells 

him that this can only be found if the intruder knows e(W1, e(W, k)), and so on. 

This pattern of results suggests the language E with the following productions: 

1. E ~ k ,  

2. E ~ e(W, E), 

where W is the language consisting of all computable words. If we can show that 

intruder knowledge of any irreducible word of E requires previous knowledge of an 

irreducible word of E, then we will have shown that the entire language E is unreach- 

able. Thus, any state in which the intruder knows a word of E is unreachable. 

The Language Checker can be used to show that a language is unreachable by 

showing that intruder knowledge of any word of it requires intruder knowledge of 

some other word of the language. After the Language Checker has been used to 

show that the language is unreachable, the language can be loaded into the Ana- 

lyzer, which will then reject as unreachable any state that requires intruder knowl- 

edge of a word of that language. 

3.2.4. The State Unifier. Another tool used by the Analyzer is the State Unifier. 

The State Unifier makes use of the fact that it is often possible to prove that a state 

is reachable only if it is in a certain form. For example, an honest protocol partici- 

pant user(A, honest) may possess a local state variable that contains a random 

number generated by that user. We can easily prove that variable is set to W only 

if W = rand(user(A, honest), N). The State Unifier can be used to find the appropri- 

ate conditions that make a state reachable and output them in a form readable by 

the Analyzer. The Analyzer can then use the results so that, whenever the specified 

state is returned, the appropriate substitutions can be made. Thus, for example, if 

the Analyzer produces a state in which the state variable described above is set to 

IV, it will make the substitution W = rand(user(A, honest), N) if possible. If the 

substitution is not possible, the state is rejected as unreachable. This prevents having 

to prove the same result over and over again every time that state is produced. 

When the Analyzer is used to analyze a protocol, one generally begins by using 

the Language Checker and the State Unifier to reduce the search space. Once this 



Three Systems for Cryptographic Protocol Analysis 99 

is done, the analysis of the protocol generally becomes rather straightforward. 

However, this means that there is a lot of overhead associated with the analysis. It 

is our intention to automate as much of this analysis as possible. We have already 

achieved part of our goal with the development of the Language Checker and the 

State Unifer. However, we intend to do more along those lines. 

3.2.5. Modes of Use. Finally, we note that there are two modes in which the user 

can query the Analyzer. In one, the manual mode, the list of states that can 

immediately precede the queried state are presented to the user, the user queries 

each of these states to get the output that immediately precedes them, and so forth. 

Since the user can specify that only substates of each state be queried at each step, 

this mode makes it easier to keep the size of the search space under control. In the 

other, the automatic mode, the user only specifies the initial state, and the Analyzer 

itself queries all subsequently produced states, using breadth-first search. The auto- 

matic mode uses some simple tree-pruning heuristics (for example, eml~ty lfacts and 

words known initially by the intruder are not queried) but in general it will query 

a larger portion of the state than a user might; thus greater ease of use is traded off 

against a larger search space. 

Unreachable states and states that may be initial are identified as such when 

automatic mode is used. Note that a state can only be identified as potentially initial 

since the Analyzer does not always query the entire state. Thus, although a path 

may exist leading to some substate, the entire state may not be reachable, and thus 

the initial state in that path may not be truly initial. In this case the path must be 

re-examined manually. 

It is possible to switch back and forth between automatic and manual modes. 

Thus, the user can start in automatic mode, and if the tree is becoming too bushy, 

then switch back into manual mode, erase part of the tree, and redo that part of 

the search in manual mode until the tree is of manageable size. The automatic mode 

can also be used to search only a part of the tree. The example that we present in 

this paper is so small that this was not necessary, but these techniques have proved 

helpful on larger problems. 

3.3. Description and Specification of the TMN Protocol 

We now describe the specification of the TMN protocol. As in our other speci- 

fications [18], [17], we divide the system into honest users who follow the rules 

of the protocol (identified by names of the form user(A, honest)) and dishonest 

users who are under the control of the intruder (identified by names of the form 

user(A, dishonest)). Each rule describes either the intruder communicating with an 

honest user of the system or the intruder generating words on his own. 

Two kinds of encryption are used in the protocol: single-key encryption and 

public-key encryption. We assume that the same single-key and the same public-key 

algorithms are used throughout the protocol. Single-key encryption of word Y with 

key X is denoted by e(X, Y). Single-key decryption of word Y with key X is denoted 

by d(X, Y). Public keys are denoted by pk(S), where S is some identifier, and 

the corresponding private key is denoted by sk(S). Encryption or decryption in a 



I00 R. Kemmerer, C. Meadows, and J. Millen 

public-key system is denoted by pke(K, X), where K is the public or private key, 

respectively. 

The reduction rules that we assume hold are as follows: 

e(X, d(X, Y)) ~ Y, 

d(X, e(X, Y) )~  Y, 

pke(sk(server), pke(pk(server), X)) -} X, 

pke(pk(server), pke(sk(server), X)) --} X. 

The first five rules of the specification correspond directly to the rules of the 

protocol. 

We begin by describing an honest user (identified as user(A, honest)) attempting 

to establish communication with another user, who may be either honest or dis- 

honest (identified as user(B, X)). User(A, honest) sends the message containing the 

encrypted random number and remembers both the number and the name of the 

individual it is attempting to establish communication with: 

rule(l) 

If: 

count(user(A,honest)) = [N], 

then: 

count(user(A,honest)) = [s(N)], 

intruderlearns([pke(pubkey(server),rand(user(A,honest),N)), 

user(A,honest),user(B,W)]), 

ifact(user(A,honest),N,stepl,s(N)) = 

[user(B,W),rand(user(A,honest),N)], 

EVENT: 

event(user(A,honest),N,initrequest,s(N)) = 

[user(B,W),rand(user(A,honest),N)]. 

Next, the server receives a request, which is identified as coming from a user, 

user(A, Y), who may be honest or dishonest, requesting to communicate with a 

user, user(B, X), who may be honest or dishonest. The server decrypts the third 

message field and stores it as the key-encryption key. It also sends a message to 

user(B, X) telling it that user(A, Y) wishes to communicate with it. 

rule(2) 

If: 

count(server) = [N], 

intruderknows([X,user(A,Y),user(B,W)]), 

length(X) = 1, 

then: 

count(server) = [s(N)], 

ifact(server,N,keyencryptkey,s(N)) = 

[pke(privkey(server),X),user(A,Y),user(B,W)], 



Three Systems for Cryptographic Protocol Analysis 101 

intruderlearns([user(A,Y)]) 

EVENT: 

event(server,N,storedkey,s(N)) = [user(A,Y),user(B,W),X] 

When user(B, honest) receives the call from the server, it generates a random 

number as a session key and sends the result to the server encrypted with the server's 

public key. It also remembers the random number and the name of the individual 

(user(A, Y)), that it is attempting to communicate with. 

rule(3) 

If: 

count(user(B,honest)) = [M], 

fntruderknows([user(A,Y)]), 

then: 

count(user(B,honest)) = [s(M)], 

ifact(user(B,honest),M,step2,s(M)) = 

[user(A,Y),rand(user(B,honest),M)], 

intruderlearns([pke(pubkey(server),rand(user(B,honest),M))]), 

EVENT: 

event(user(B,honest),M,genkey,s(M)) = 

[user(A,Y),rand(user(B,honest),M)]. 

When the server gets a response from user(B, X), it decrypts it using its private 

key, encrypts the result using the random number generated by user(A, Y), and 

sends the result to user(A, Y). It now no longer needs the information from 

user(B, X) and user(A, Y), and so it deletes it. 

rule(4) 

If: 

count(server) = [M], 

intruderknows([X]), 

ifact(server,N,keyencryptkey,M) = [Z,user(A,Y),user(B,W)], 

length(X) = i, 

then: 

count(server) = [s(N)], 

ifact(server,N,keyencryptkey,s(M)) = [], 

intruderlearns([e(Z,pke(privkey(server),X))]), 

EVENT: 

event(server,N,sentkey,s(M)) = [user(A,Y),user(B,W),Z,X]. 

The word "key" in the message identifies it as containing an encryption key. 

When user(A, honest) receives what it believes to be an encrypted key from 

the server, it decrypts it and assumes that the result is a session key good for 

communicating with user(B, X). Note that the protocol rules do not give 

user(A, honest) any grounds for believing that a message is an encrypted key. 



102 R. Kemmerer, C. Meadows, and J. Millen 

rule(5) 

If: 

count(user(A,honest)) = [M], 

intruderknows([R]), 

ifact(user(A,honest),N,stepl,M) = [user(B,W),X], 

length(R) = i, 

then: 

count(user(A,honest)) = [s(M)], 

ifact(user(A,honest),N,seskey,s(M)) = [d(X,R)], 

EVENT: 

event(user(A,honest),N,getkey,s(M)) = [R,user(B,W),X]. 

rule(6) 

If: 

count(user(A,honest)) = [M], 

ifact(user(A,honest),N,stepl,M) = [user(B,W),X], 

ifact(user(A,honest),N,seskey,M) = [K], 

then: 

count(user(A,honest)) = [s(M)], 

EVENT: 

event(user(A,honest),N,acceptkey,s(M)) = [user(B,W),K]. 

Rule 6 is somewhat artificial; it is put in because we need a transition in which 

user(A, honest) accepts the key. Usually, user(A, honest) would accept the key as the 

result of doing some sort of checking. However, in this protocol user(A, honest) 

accepts the key as genuine without doing any checking. Thus this transition is 

empty. 

Finally, we include the various rules that are used to define atoms, function 

symbols, and rewrite rules: 

fsdl:e(X,Y):length(X)=l:length(e(X,Y))=length(Y):pen. 

fsd2:d(X,Y):length(X)=l:length(d(X,Y))=length(Y):pen. 

fsd3:pke(X,Y):length(X)=l:length(pke(X,Y))=length(Y):pen. 

atoml:rand(user(A,dishonest),N):l:known. 

atom2:rand(user(A,honest),N):l:notknown. 

atom3:privkey(server):l:notknown. 

atom8:pubkey(server):l:known. 

rrl: e(X,d(X,Y)) => Y. 

rr2: d(X,e(X,Y)) => Y. 

ee3: pke(privkey(server),pke(pubkey(server),Y)) => Y. 

rr4: pke(pubkey(server),pke(privkey(server),Y)) => Y. 



Three Systems for Cryptographic Protocol Analysis 103 

3.4. Analysis of the TMN Protocol 

In analyzing the protocol we attempted to determine how it was possible for the 

system to reach a state in which user(A, honest) believed that some word K was a 

key, and K was known to the intruder. 

Before we began our analysis, we used the Language Checker and the State 

Unifier to limit the search space. We defined six languages and used the Language 

Checker to show that they were unreachable. Lack of space prevents us from going 

into detail about how these languages were specified, but, to give an idea of the 

flavor of the kinds of things we proved, one of the languages was used to prove that 

the intruder could never learn the server's private key; another was used to prove 

that the intruder could not learn any word of the form d(X, Y) unless he already 

knew Y. 

We also defined three state condition specifications for the State Unifier. These 

give the conditions under which a state is reachable. The states defined were: the 

state in which the intruder knows a word of the form e(X, Y) without knowing Y 

(Y must be of the form pke(privkey(server), W)), the state in which the intruder 

knows a word of the form pke(X, Y) without knowing Y (Y must be of the form 

pke(pubkey(server), rand(user(B, honest), N))), and the state in which an honest 

user's lfact stepl is nonempty (it must be set to [user(B, H), rand(user(A, honest), 

N)]). The first two definitions were constructed using the Language Checker; the 

third was constructed by querying the state directly and observing under what 

conditions the state was reachable. 

Once the language and state files were generated, they were loaded into the 

Analyzer. Now, when a user queried the Analyzer on how to find a state, it would 

find the set of states that could immediately precede it and, for each such state, 

determine whether or not it contained a word of an unreachable language. If it did, 

that state was discarded. If the state contained a set of words and lfacts described 

in the state file, the Analyzer attempted to modify them so that they satisfied the 

conditions specified in the state file. If they could be so modified, that state was 

discarded. In this way we could keep the size of the search space under control. 

Once we had done this initial syntactic analysis, we were ready to use the Analyzer 

to look for attacks that allowed an intruder to find out a session key. The most 

obvious way was to begin by asking it if there were any states in which the intruder 

knew a word and some honest user user(A, honest) had accepted that word as a key 

for communication with another honest user. (This is trivially the case for communi- 

cation with a dishonest user, since all dishonest users are assumed to share all 

information with the intruder.) If we did this, however, we would have generated 

an unmanageably large search space. This is because the Analyzer will attempt to 

satisfy the two subgoals separately as well as together, and there are a very large 

number of ways an intruder can find out a single word with no conditions put on 

it. What we decided to do instead was first to find out the conditions under which 

user(A, honest) would accept a word as a key. Knowing those conditions would 

restrict the set of words that the Analyzer would have to look for when we gave it 

the full query. 

As it turned out, in our attempt to determine under what conditions a word may 



104 R. Kemmerer, C. Meadows, and J. Millen 

be accepted as a key, we found an attack in which the intruder passes off a word 

generated by himself as a session key. We used the automatic query option, so that 

each state produced by the Protocol Analyzer was queried by the Analyzer until 

only initial or unreachable states were left. The output ran to about two pages; we 

give the beginning and the end here: 

5 ?- autoquery. 

What state do you wish to query? 

i: 

What words is the intruder looking for? 

I: 

What state variable values is the intruder looking for? 

J: 

List the sequence of events that you want to have occurred. 

I: event(user(A,honest),N,acceptkey,M) = [user(B,honest),K] 

i: 

What conditions to you want to put on all of these? 

i: 

List the sequences of events that you dont want to have occurred. 

Enter a list 

l: 

Specify a range of rule numbers that you want 

l: 

Solution number 1 

The events that occurred are 

R1 = event(user(G4465, honest), [G4468], acceptkey, 

s(G4471)) = 

[user(G4476, honest), G4479]. 

Input state variables are: 

Sl = count(user(G4465, honest)) = G4471. 

S2 = ifact(user(G4465, honest), [G4468], stepl, G4471) = 

[user(G4476, honest), rand(user(G4465, honest), G4468)]. 

S3 = ifact(user(G4465, honest), [G4468], seskey, G4471) = 

[G4479]. 

Rule number 6 was used. 

querying state 1 

Found state I.I 

Found state 1.2 

querying state i.i 

Found state i.i.I 

querying state 1.2 

Found state 1.2.1 



Three Systems for Cryptographic Protocol Analysis 105 

Found state 1.2.2 

Found state 1.2.3 

querying state i.i.i 

The state i.i.i may be an initial one. 

querying state 1.2.1 

querylng state 1.2.2.2.7.1 

The state 1.2.2.2.7.1 may be an initial one. 

querylng state 1.2.2.2.7.2 

The state 1.2.2.2.7.2 is unreachable. 

querylng state 1.2.2.3.1.1 

The state 1.2.2.3.1.1 may be an initial one. 

querylng state 1.2.2.3.1.2 

The state 1.2.2.3.1.2 is unreachable. 

querylng state 1.2.2.4.1.1 

The state 1.2.2.4.1.1 may be an initial one. 

querylng state 1.2.2.4.1.2 

The state 1.2.2.4.1.2 is unreachable. 

We then looked at each path beginning in a possible initial state. Several of these 

described attacks. A typical one was the path beginning in state 1.2.2.4.1.1. This 

generated the following path: 

Solution number 1.2.2.4.1.1 

The events that occurred are 

R1 = event(user(G264, honest), [G267], initrequest, 

s(G267)) = 

[user(G279, honest), rand(user(G264, honest), G267)]. 

Input state variables are: 

S1 = count(user(G264, honest)) = G267. 

States found are: 

D1 = ifact(user(G264, honest), [G267], stepl, s(G267)) = 

[user(G279, honest), rand(user(G264, honest), G267)]. 

Words found are: 

E1 = pke(pubkey(server), rand(user(G264, honest), G267)) 

Rule number 1 was used. 

Solution number 1.2.2.4.1 

The events that occurred are 

R1 = event(server, [G340], storedkey, s(G340)) = 

[user(G350, G351), user(G356, G357), 

pke(pubkey(server), rand(user(G264, honest), G267))]. 

Input words are: 

Wl = pke(pubkey(server), rand(user(G264, honest), G267)) 



106 R. Kemmerer, C. Meadows, and J. Millen 

W2 = user(G350, G351) 

W3 = user(G356, G357) 

Input state variables are: 

Sl = count(server) = G340. 

S2 = Ifact(user(G264, honest), [G267], stepl, s(G267)) = 

[user(G279, honest), rand(user(G264, honest), G267)]. 

States found are: 

D1 = ifact(server, [G340], keyencryptkey, s(G340)) = 

[rand(user(G264, honest), G267), 

user(G350, G351), user(G356, G357)]. 

Rule number 2 was used. 

Solution number 1.2.2.4 

The events that occurred are 

R1 = event(pen, [G385], pen_pke, s(G385)) = 

[pubkey(server), G282]. 

Input words are: 

W1 = pubkey(server) 

W2 = G282 

Input state variables are: 

Sl = count(pen) = G385. 

S2 = ifact(server, [G340], keyencryptkey, s(G340)) = 

[rand(user(G264, honest), G267), 

user(G350, G351), user(G356, G357)]. 

$3 = ifact(user(G264, honest), [G267], stepl, s(G267)) = 

[user(G279, honest), rand(user(G264, honest), G267)]. 

Words found are: 

E1 = pke(pubkey(server), G282) 

Rule number 303 was used. 

Solution number 1.2.2 

The events that occurred are 

R1 = event(server, [G340], sentkey, s(s(G340))) = 

[user(G350, G351), user(G356, G357), 

rand(user(G264, honest), G267), pke(pubkey(server), G282)]. 

Input words are: 

W1 = pke(pubkey(server), G282) 

Input state variables are: 

SI = count(server) = s(G340). 

S2 = ifact(server, [G340], keyencryptkey, s(G340)) = 

[rand(user(G264, honest), G267), 

user(G350, G351), user(G356, G357)]. 

S3 = ifact(user(G264, honest), [G267], stepl, s(G267)) = 

[user(G279, honest), rand(user(G264, honest), G267)]. 

Words found are: 

E1 = e(rand(user(G264, honest), G267), G282) 

Rule number 4 was used. 



Three Systems for Cryptographic Protocol Analysis 107 

Solution number 1.2 

The events that occurred are 

R1 = event(user(G264, honest), [G267], getkey, 

s(s(G267))) = 

[e(rand(user(G264, honest), G267), G282), 

user(G279, honest), rand(user(G264, honest), G267)]. 

Input words are: 

Wl = e(rand(user(G264, honest), G267), G282) 

Input state variables are: 

S1 = count(user(G264, honest)) = s(G267). 

S2 = ifact(user(G264, honest), [G267], stepl, s(G267)) 

[user(G279, honest), rand(user(G264, honest), G267)]. 

States found are: 

D1 = ifact(user(G264, honest), [G267], seskey, 

s(s(G267))) = 

[G282]. 

Rule number 5 was used. 

Solution number 1 

The events that occurred are 

R1 = event(user(G264, honest), [G267], acceptkey, 

s(s(s(G267)))) = 

[user(G279, honest), G282]. 

Input state variables are: 

Sl = count(user(G264, honest)) = s(s(G267)). 

S2 = ifact(user(G264, honest), [G267], stepl, 

s(s(G267))) = 

[user(G279, honest), rand(user(G264, honest), G267)]. 

$3 = ifact(user(G264, honest), [G267], seskey, 

s(s(G267))) = 

[G282]. 

Rule number 6 was used. 

The attack is as follows. In the first transition user(G264, honest), intending to 

communicate with user(G279, honest), encrypts his random number with the 

server's public key, following the first step of the protocol. In the second the server 

receives the message, following the second step of the protocol. (Note however, that 

the user names received are two entirely new ones. This is because the Analyzer is 

giving us the most general conditions under which the transition may take place; 

any two user names will suffice.) In the third, however, the intruder encrypts 

some word that he already knows with the server's public key. In the fourth step 

the intruder, impersonating user(G279, honest), sends the encrypted word to the 

server. The server decrypts the word, encrypts it with the random number from 

user(G264, honest), and sends it to user(G264, honest). In the fifth and sixth steps 

user(G264, honest) decrypts the message with his random number and accepts the 

word generated by the intruder as a key. 



108 R. Kemmerer, C. Meadows, and J. Millen 

3.5. Discussion 

By using the Protocol Analyzer, we were able to "discover" one of the flaws in the 

TMN protocol. However, we did not find the flaw discovered by Simmons. This 

was because we did not model the algebraic properties of RSA and modular addition 

that were necessary in order to uncover that flaw. 

Our choice not to model these properties was a result of the fact that the 

narrowing algorithm used by the Protocol Analyzer only works for rewrite rules. 

Both RSA and modular addition involve commutative operations which cannot be 

expressed as rewrite rules. Although the particular properties of RSA and modular 

addition that led to the flaw could be written as rewrite rules, we could only guess 

which rules to choose after we knew the flaw; thus a demonstration of the use of 

the tool in finding these flaws would not have been very useful. 

There are several ways in which the Protocol Analyzer could be improved that 

we are currently investigating. The first of these is the use of unification algorithms 

that work for more general equational theories than rewrite rules. In the area of 

unification algorithms, we are investigating the use of algorithms that combine 

unification algorithms for several theories [3]. Such algorithms would allow us to 

consider cases in which some operators obey rewrite rules and others the laws, say, 

of an Abelian group or a Boolean ring. Since much of the complexity of the algebraic 

identities used in cryptographic protocols arises from the use of combinations of 

different operators (such as single-key encryption and exclusive-or) that obey differ- 

ent sets of algebraic rules for which efficient unification algorithms exist, this seems 

to be the most promising avenue to pursue. We note, however, that equational 

theories for which unification is undecidable exist. Thus it is possible that we may 

encounter operators that obey a set of algebraic rules for which no unification 

algorithm can be found. 

We are also investigating improvements to the user interface and the automated 

support offered by the tool. At this point, the main drawback to the user interface 

offered by the tool is that a large amount of data describing different paths through 

the protocol is output that is difficult to manage and interpret. We are currently 

investigating better ways of displaying and managing this data. In the area of 

automated support, we find that the preliminary syntactic analysis is still relatively 

difficult and time consuming, largely because it is still the user's responsibility to 

generate the lemmas that the Analyzer proves. One way to make the task easier 

would be to have the Analyzer generate the lemmas automatically, possibly with 

some assistance from the user. This seems to be feasible, since in most cases the 

generation of lemmas is a tedious repetitive process that could probably be auto- 

mated. Another area in which the automated assistance could be improved is in the 

automated query mode. The introducton of more sophisticated tree-pruning algo- 

rithms would allow us to reduce the frequency with which the user has to switch 

back to manual mode, and thus make the search easier. 

Finally, we are investigating improved ways of specifying the results the Analyzer 

proves for us. The Analyzer can be used to prove that an insecure state is 

unreachable, but it does not give us any assistance in deciding what states are the 

insecure ones. Thus, although using the Analyzer gives us added confidence that 

certain security flaws do not exist, more is needed before we can extend that 



Three Systems for Cryptographic Protocol Analysis 109 

confidence to a confidence that a protocol is "secure" in general. What is needed is 

a uniform language for specifying security requirements so that they can be analyzed 

independently of the protocol. We have been developing such a language. It uses 

requirements on sequences of events to specify security properties of a protocol. 

These events can be mapped to the event statements in the protocol transitions. The 

language and how it is used is described in more detail in [27]. 

4. Inatest Experience 

4.1. Introduction 

The approach presented in this section analyzes encryption protocols using 

machine-aided formal verification techniques. The idea of the approach is to 

specify formally the components of the cryptographic network and the associated 

cryptographic protocol rules or actions. The formal method used is the Formal 

Development Methodology (FDM), which is an example of the state machine 

approach to formal specification. When using the state machine approach a system 

is viewed as being in various states. One state is differentiated from another by the 

values of state variables, and the values of these variables can be changed only via 

well-defined state transitions. Thus, the components are represented as state con- 

stants and variables, the protocol rules are represented as state transitions, and 

assumptions about the cryptographic algorithms are specified as axioms. The 

desirable properties that the protocol is to preserve are expressed as state invariants 

and the theorems that must be proved to guarantee that the system satisfies the 

invariants are automatically generated by the verification system. The formal speci- 

fications can also be tested by symbolically executing the formal specifications, 

which is what was done for the analysis of the TMN protocol presented in this 

section. 

The formal specification language that is used is a variant of Ina Jo, 1 which is 

a nonprocedural assertion language that is an extension of first-order predicate 

calculus. The key elements of the Ina Jo language are types, constants, variables, 

axioms, definitions, initial conditions, criteria, and transforms. A criterion is a 

conjunction of assertions that specify the critical requirements for a good state (i.e., 

a secure state). A criterion is usually referred to as a state invariant since it must 

hold for all states including the initial state. An Ina Jo language transform is a state 

transition function; it specifies what the values of the state variables will be after 

the state transition relative to their values before the transition. The system being 

specified can change state only as described by one of the state transforms. A 

complete description of the Ina Jo language can be found in the Ina Jo Reference 

Manual [25]. 

4.2. Formal Specification of the T M N  Protocol 

In this section the important aspects of the Ina Jo specification for the TMN 

protocol are discussed. The complete specification is presented in the Appendix. 

i Ina Jo is a trademark of Unisys. 



110 R. Kemmerer,  C. Meadows, and J. Millen 

Each user has a table of pending keys and a table of current keys. 2 These are 

represented by the Ina Jo state variables 

Pending_Key(User, User): Key_Type, 

Current_Key(User, User): Key_Type, 

where Current_Key(U 1, U2) is user U l's current session key for communicating 

with user U2, and similarly for Pending_Key. 

The Server also has a table that is used for retaining keys during the key 

establishment protocol that are to be used to encrypt the new session key when 

returning it to the requester. This table is represented in the specification by the 

variable 

In_Process(User, User): Key_Type. 

There are three other state variables in the specification. They are 

Net: Messages, 

Keys_Used: Keys, 

Intruder_Info: Information. 

The first represents the network itself, the second all the keys that have ever been 

used in the network (this includes keys that are used for establishing a session 

key as well as the session keys themselves), and the information known by the 

intruder. 

Before discussing the details of the Ina Jo transforms it is necessary to say a few 

words about some of the types and constants in the specification. Communication 

in the network is via messages, where a message is composed of a type, a source, a 

destination, and contents. The field Type is the only field of the message header that 

is explicitly represented in the specification; message address fields are not included 

since all users can retrieve all messages in a broadcast network. Source is used to 

indicate the user that requested a new session key, and Destination indicates the 

user with whom the requesting user wants to communicate. The Ina Jo specification 

constants 

Type(Message): Message_Type, 

Source(Message): User, 

Destination(Message): User, 

Contents(Message): Text 

are used to retrieve each of the relevant parts of a message. They are constants 

because unlike state variables they do not change value from state to state. That is, 

for any given message they will always produce the same values. 

The contents of messages sent from a user to the Server are encrypted using a 

public-key encryption algorithm and the Server's public key. These encryption 

2 It is sufficient to have a single table if it is assumed that  a user will never at tempt to establish a new 

session key with another  user for which a session key currently exists. 



Three Systems for Cryptographic Protocol Analysis 111 

algorithms and the Server's keys are specified using the following constants: 

Server_Public: Key, 

Server_Secret: Key, 

PEncrypt(Key, Text): Text, 

PDecrypt(Key, Text): Text 

Finally, the Server uses a conventional encryption algorithm to encrypt the 

contents of messages for the users, and this algorithm is also used for user-to-user 

communication. These conventional algorithms are represented in the specification 

by the constants 

Encrypt(Key, Text): Text, 

Decrypt(Key, Text): Text. 

As Massey pointed out in his presentation at the Oberwolfach Workshop [16], 

it is essential, when proving the security of an information system, to state any 

assumptions that are being made. In the case of an encryption protocol, these 

assumptions should include: what the intruder knows about the system; what 

messages the intruder observes; and what other actions the intruder is assumed to 

be able to perform. A "clear definition of security" must be presented as well. 

All of the points raised by Massey are addressed in the TMN formal specification. 

What the intruder knows is modeled as Intruder_Info, what messages the intruder 

observes is explicitly expressed as part of the transforms, and the other actions that 

the intruder can perform are represented as additional transforms. Finally, the 

criterion part of the formal specification clearly presents the definition of security. In 

addition, assumptions about the encryption algorithms are presented as Ina Jo 

axioms. 

For the TMN protocol specification there are five Ina Jo axioms. The first axiom 

AXIOM 

Vt: Text(PDecrypt(Server_Secret, PEncrypt(Server_Public, t)) = t) 

states that text encrypted using the public-key encryption algorithm and the Server's 

public key can be retrieved in the clear by using the public-key decryption algorithm 

and the Server's secret key. The second axiom 

AXIOM 

Vt 1, t2: Text, k: Key(Times(PEncrypt(k, t 1), PEncrypt(k, t2)) = PEncrypt(k, Times(t 1, t2))) 

states that the public-key encryption algorithm distributes over the multiplication 

operator (Times in the specification). 

The third axiom defines the division operator to be the inverse of the multiplica- 

tion operator. 

AXIOM 

Vt 1, t2: Text(Divide(Times(t 1, t2), t l) = t2). 



112 R. Kemmerer, C. Meadows, and J. Millen 

The fourth axiom 

AXIOM 

Vk, t: Text(Decrypt(k, Encrypt(k, t)) = t) 

states that text encrypted using the conventional encryption algorithm can be 

recovered in the clear if it is decrypted using the conventional decryption algorithm 

and the same key. 

The last axiom expresses the commutativity of the conventional encryption 

algorithm. That is, 

AXIOM 

Vk 1, k2: Key(Encrypt(k 1, k2) = Encrypt(k2, k 1)). 

The second and fifth axioms are the critical axioms for demonstrating the flaw, 

although all five are used in the demonstration scenario. 

The critical requirements that the system is to satisfy in all states are expressed 

in the criterion clause of the formal specification. For the TMN protocol the 

criterion states that the only key that is known to the intruder (i.e., a key contained 

in the set Intruder_Info) and that is also a key that was used by the system (i.e., a 

key in the set Keys_Used) is the Server's public key. Note that this includes keys 

used in the past as well as those presently being used. The criterion is expressed as 

follows: 

Vk: Key((k e Keys_Used & k e Intruder_Info) --. k = Server_Public). 

The initial clause describes the requirements that must be satisfied when the 

system is initialized. For this system the initial state requires that there are no keys 

pending, there are no current keys for communicating with other users, and no key 

requests are in progress. All of these are indicated in the initial condition clause by 

using the special key value Null_Key. In addition, there are no messages in the 

network and the only keys that have been used are the Server's public key and secret 

key. Finally, the intruder starts out knowing the Server's public key (which is known 

to all users, since that is how they send messages to the Server). 

The rules of the protocol being analyzed, which were presented in Section 1.3, 

are specified as Ina Jo transforms. There are five transforms that correspond to the 

normal state changes of the protocol. They are: 

�9 Request_Key(A, B: User, K: Key), which corresponds to rule 1. 

�9 Process_Request(A, B: User, C: Text), which corresponds to rule 2. 

�9 Respond_To_Server(A, B: User, R2: Key), which corresponds to rule 3. 

�9 Return_Key(A, B: User, C: Text), which corresponds to rule 4. 

�9 Get_Key(A, B: User, C: Text), which corresponds to rule 5. 

The specification does not contain transforms corresponding to the subsequent 

communication between users A and B. However, this would be done if a more 

complete analysis of the protocol were attempted. 

The flaw that is demonstrated in this section is a generalization of the Simmons 

flaw, which relies on the fact that the RSA algorithm is homomorphic with respect 

to multiplication and that the conventional key algorithm is commutative. To 

model the intruders the specification also includes two user constants, Cheater and 



Three Systems for Cryptographic Protocol Analysis 113 

Partner, which represent the cooperating intruders. The jointly agreed upon key 

that is used by the intruders is modeled by the constant Partner_Key. This key is 

returned whenever the server requests a key for communication with the Cheater 

from the Partner. There are also additional transforms that model the actions of 

the intruders. The three additional transforms are: 

�9 Cheater_Request(R 1: Key), which is like the normal Request_Key transform 

except that the Cheater uses a key that is based on a previously encrypted key 

(PEncrypt(Server_Public, R 1)) that the Cheater had intercepted. 

�9 Partner_Response, which is like the Respond_to_Server transform except that 

the Cheater's partner always responds with the same key (Partner_Key), which 

the Cheater also knows. 

�9 Compromise_Key(C: Text), which is analogous to the Get_Key transform 

except that the Cheater uses his pending key and the previously agreed upon 

key (Partner_Key) to compromise the encrypted key and the resulting informa- 

tion is used to update what the intruder knows (Intruder_Info). 

Because the Partner_Key is a key known to the intruder that will also be used by 

the system, it is necessary to weaken the criterion to state that the only keys that 

can be known to the intruder and also used by the system are the Server's public 

key and the Partner_Key. Thus, the criterion is expressed as follows: 

Vk: Key((k e Keys_Used & k �9 Intruder_Info) 

k �9 {Server_Public, Partner_Key}). 

Similarly, the initial clause must also specify that Partner_Key is initially known 

to the intruder. 

Due to space limitation, only the Request_Key transform is discussed in detail 

in this paper. The Ina Jo transform for Request_Key is 

Transform Request_Key(A, B: User, R 1: Key) 

Refcond 

R 1 ~ Keys_Used 

Effect 

VU 1, U2: User( 

N" Pending_Key(U 1, U2) = 

if U1 = A & U 2 = B  

then R 1 

else Pending_Key(U 1, U2) 

ti) 

& N" Keys_Used = Keys_Used w {R 1} 

& 3m: Message( 

N" Net = Net u {m} 

& Type(m) = Request 

& Source(m) = A 

& Destination(m) = B 

& Contents(m) = PEncrypt(Server_Public, R 1)) 

& N" Intruder_Info = Intruder_Info 

u {PEncrypt(Server_Public, R 1)} 



114 R. Kemmerer, C. Meadows, and J. Millen 

The Refcond part of the transform expresses the conditions that must hold for the 

transition to take place. For the Request_Key transform this condition is that the 

key that A sends to the Server must not have been previously used. This is an 

example of a condition that is not likely to show up in the implementation, for it 

would be impractical for all users to know all of the keys that had been used. 

However, it is not unreasonable to assume this in the specification, for by using a 

pseudorandom number generator scheme to produce new keys the probability of 

coincidentally choosing an already used key is extremely low. 

The resultant state after the state transition occurs (i.e., after the transform fires) 

is expressed in the Effect part of the transform. The N"x notation is used in an Ina 

Jo specification to indicate the value that variable x has in the state that results 

from firing a transform. In the Effect section variables not preceded by N" represent 

the value the variable had in the immediately preceding state. That is, in the state 

where the transform was fired. After the Request Key transform fires, User A's 

pending key for communicating with user B is R 1, and R 1 is added t 9 the set of 

keys that have been used. A request message with source A and destination B is 

placed in the network and its contents is the key R 1 encrypted using the public-key 

encryption algorithm with the Server's public key. Because the intruder is assumed 

to be able to listen passively to all network traffic the intruder information is 

enhanced with the encrypted form of R 1. 

Any state variables that do not appear in the effects section are assumed not to 

change. That is, the Ina Jo processor will automatically conjoin the expression 

N"x = x 

to the effect expression for any variable x that is not explicitly mentioned as 

changing in the effects section of the transform. This expression states that the new 

value of state variable x is equal to its old value. Therefore, for the Request Key 

transform the Ina Jo processor conjoins 

VU1, U2: Text( 

N" In_Process(U 1, U2) = In_Process(U 1, U2) 

& N" Current_Key(U1, U2) = Current_Key(U1, U2)) 

to the effect expression whenever it uses the effect section to generate a proof 

obligation. 

The other transforms for this specification are interpreted in a similar manner. 

4.3. Formally Verifying the Specification 

After the formal specification is completed the theorems that are generated to check 

if the critical requirements (Ina Jo criteria) are satisfied can be verified. If the 

theorems are verified and the encryption algorithms satisfy the assumed axioms, 

then the system will satisfy its critical requirements. 

The Formal Development Methodology employs an inductive approach to gen- 

erate the necessary proof obligations to assure that the critical requirements are 

preserved. First, it must be shown that the criteria hold in the initial state. Next, for 

every transform it is necessary to show that if the transform fires in a state where 



Three Systems for Cryptographic Protocol Analysis 115 

the criteria hold, then the resultant state also satisfies the criteria and the previous 

and new states satisfy the relationships expressed by the constraints. That is, the 

initial state is the basis case and the induction is on the transforms. Thus, the 

transforms can be fired in any order and by induction any reachable state will satisfy 

the criteria and any two consecutive states will satisfy the constraints. 

The first proof obligation that is generated by the Ina Jo processor is the Initial 

Conditions Theorem: 

INIT ~ CR, 

where INIT is the INITIAL clause and CR is the criteria in the CRITERION clause 

of the specification. 

In addition, for each transform in the specification the Ina Jo processor generates 

a Transform Theorem: 

CR & R & E-~ N" CR & CO, 

where R and E are the Refcond and Effect, respectively, for the transform, and CO 

is the CONSTRAINT clause. 

Because the axioms represent the properties that the encryption algorithms are 

to satisfy, the system with a different encryption scheme can be verified by replacing 

the current axioms with axioms that express the properties of the new encryption 

scheme. 

An advantage of expressing the system using formal notation and attempting to 

prove properties about the specification is that if the generated theorems cannot be 

proved the failed proofs often point to weaknesses in the system or to an incom- 

pleteness in the specification. That is, they often indicate the additional assumptions 

required about the encryption algorithm (i.e., missing axioms), weaknesses in the 

protocols, or missing constraints in the specification. 

Because the analysis of this protocol was posed as a challenge problem and it 

was already known that the protocol was flawed, no attempts were made to prove 

the protocol. The interested reader can refer to [13J for more information on 

proving Ina Jo specifications and to [12] for more information on how failed proofs 

of protocol specifications can lead to discovering weaknesses in the protocol. 

4.4. Analyzing the TMN Protocol Specification 

The Simmons flaw in the TMN protocol was demonstrated using a specification 

execution tool for the Ina Jo language called Inatest [9]. The Inatest tool consists 

of a YACC program for translating the Ina Jo formal specification language into 

Lisp, and a set of utility routines written in Lisp that provide an environment 

suitable for symbolic execution. The Inatest system was originally implemented 

in Franz Lisp for the UNIX operating system running on a Digital Equipment 

Corporation VAX/750 or 780. The current version of the tool has been ported to 

Kyoto Common Lisp and runs on SUN workstations. 

The Inatest symbolic execution tool provides a testing environment that allows 

the user to use various modes of operation to test formal specifications written in 

Ina Jo. The user submits a formal specification to the tool which then allows the 

user to interactively direct the tool to execute specified transforms symbolically. 



116 R. Kemmerer, C. Meadows, and J. Millen 

For purposes of testing formal specifications a functional requirement may 

be thought of as a test case for the specification. Each test case consists of a start 

predicate, a sequence of operations (transforms) to be executed, and an optional 

desired resultant predicate to be compared with the actual result state. The start 

predicate specifies the assumptions about the state of the system before invoking 

any operation. The Inatest tool provides the user with several methods for defining 

the start predicate. It may be read in from a file, keyed in from the terminal, or the 

default start state may be used, which assumes the specification's initial predicate 

is the start predicate. In a similar manner the sequence of transforms to be executed 

and the resultant predicate may be read from a file or keyed in. The user also has 

the option to decide interactively what transform to execute next and with which 

actual parameters. 

After executing a transform the user may display the current, start, or desired 

resultant predicate, list the available transforms, or list the specification being 

tested. The user may also change the predicate defining the current state by adding 

a predicate or by defining a new start predicate. The tool also provides a path 

command that allows the user to display the transforms that have been executed 

since the start predicate was defined as well as any assumptions that the user may 

have made along the way. The Inatest user may also save the current state of the 

execution for further execution at a later time. Saved states may be restored in any 

order without affecting the other saved states. A sample of the Inatest commands 

that are available to the user is given in the following table: 

Add 

Exec [trans] 

File [fileid] 

Help 

LS 
LT 

Path 

Quit 
Restore [N] 
Save [comment] 
SEQ [fileid] 
STATES 
Vars [idl 
Check [current or Result] 
Display [current or  Start or  Result] 
Init [start or  Result] 

- - add  a predicate 

--execute transform "trans" 

- - read commands from the named file 

--display available commands 

--l ist  specification 

--l ist  transforms 

--display current path 

- - re turn  to unix 

--restore state number "N" 
--save a state 
--execute a sequence of transforms 
--display saved states 
--display [one] variable value(s) 

To test 

the T M N  

the Simmons flaw in the T M N  protocol the default s t a r t  s t a t e ,  which is 

specification's initial predicate, is used. 

Vul, u2: User( 

Current_Key(u 1, u2) = Null_Key 

& Pending_Key(u 1, u2) = Null_Key 

& In_Process(u 1, u2) = Null_Key) 

& Net = EMPTY 

& Keys_Used = {Server_Public, Server_Secret} 

& Intruder_Info = {Server_Public, Partner_Key}. 



Three Systems for Cryptographie Protocol Analysis 117 

The sequence of transforms executed and the actual parameters used to demonstrate 

the flaw are 

Request_Key(A, B, R 1) 

Cheater_Request(R 1) 

Process_Request(Cheater, Partner, t) 

where t = Times(PEncrypt(Server_Public, Cheater_Key), 

PEncrypt(Server_ Public, R 1)) 

Partner_Response 

Return_Key(Cheater, Partner, t2) 

where t2 = PEncrypt(Server_Public, Partner_Key) 

Compromise_Key(t 3) 

where t3 = Encrypt(PDecrypt(Server_Secret, t), 

PDecrypt (Server_Secret, t2)). 

The desired resultant state requires that key R 1 that is sent by user A to the Server 

to start the protocol be part of the intruder's information. This requirement is 

expressed as 

R1 E Intruder_Info, 

which is a clear violation of the security requirement since R 1 is one of the keys 

used by the system. 

A complete transcript of the Inatest session that demonstrated this flaw can be 

found in [ 14]. An overview of this session is presented in the following paragraphs. 

The first transform invoked is Request_Key. Since the only keys used at the 

initialization time are the Server's public and secret keys, 

R 1 ~ {Server_Secret, Server_Public}, 

the Request_Key transform fires successfully and as a result 

PEncrypt(Server_Public, R 1) 

becomes part of the intruder's information. That is, 

Intruder_Info = {PEncrypt(Server_Public, R 1), Server_Public, Partner_Key}. 

Next the Cheater_Request transform is invoked with parameter R 1. Because the 

encrypted form of R 1 is part of the intruder's information this transform fires 

successfully. The results of this transform firing that are of interest are that a request 

message is placed in the network requesting a session key for communication be- 

tween the Cheater and the Partner, and the Contents field of this message contains 

the value 

Times(PEncrypt(Server_Public, Cheater_Key), PEncrypt(Server_Public, R 1)), 

which the intruder produces by multiplying the encrypted version of the Cheater_ 

Key times the encrypted form of the key R1, which was retrieved by listening on 

the network. 

In order to manage the expressions being generated more easily the Add 



118 R. Kermnerer, C. Meadows, and J. Millen 

command is used to add the following information to Inatest's knowledge base: 

t = Times(PEncrypt(Server_Public, Cheater_Key), 

PEncrypt(Server_Public, R 1)). 

That is, this predicate is used to define an identifier for the expression. 

Next the Process_Request transform is invoked with the parameters Cheater, 

Partner, and t. When executing this transform the cheater's request for the establish- 

ment of a session key is treated like any other user's request. That is, the In_Process 

table entry for the pair (Cheater, Partner) is set to the decryption of the contents 

part of the message 

PDecrypt (Server_Secret, t). 

The Server also places a request message in the network for the cheater's partner: 

3m: Message( 

N" Net = Net u {m} 

& Type(m) = Server_Request 

& Source(m) = Cheater 

& Destination(m) = Partner). 

The Partner_Response transform is used by the cheater's partner to respond to 

the Server's request. However, instead of sending a new key the partner sends the 

Server the key that the cooperating intruders have agreed upon (Partner_Key) as 

the new session key. This is done by placing a response message in the network with 

its contents being the publicly encrypted Partner_Key. 

3m: Message( 

N" Net = Net w {m} 

& Type(m) = Response 

& Source(m) = Cheater 

& Destination(m) = Partner 

& Contents(m) = PEncrypt(Server_Public, Partner_Key)). 

Before invoking the Return_Key transform the add predicate facility of Inatest 

is used a second time. This time t2 is defined as follows: 

t2 = PEncrypt(Server_Public, Partner_Key). 

The Return_Key transform is invoked next. This transform models the 

unsuspecting Server processing the partner's response like any other user's response 

and generating a message for the cheater. The contents of this message is the session 

key suggested by the partner, which is PDecrypt(Server_Secret, t2), encrypted with 

the key stored in the Server's In_Process table corresponding to the cheater-partner 

pair, which is PDecrypt(Server_Secret, t). That is, 

3m: Message( 

N" Net = Net w {m} 

& Type(m) = Return 

& Source(m) = Cheater 

& Destination(m) = Partner 

& Contents(m) = 

Encrypt(PDecrypt(Server_Secret, t), PDecrypt(Server_Secret, t2))). 



Three Systems for Cryptographic Protocol Analysis 119 

Again the add predicate facility is used to define a new symbol for an expression. 

The symbol t 3 is defined as follows: 

t3 = Encrypt(PDecrypt(Server_Secret, t), PDecrypt(Server_Secret, t2)). 

Finally, the Compromise_Key transform is invoked with parameter t3, and it 

results in the information 

Divide(Decrypt(Partner_Key, t3), Cheater_Key) 

becoming part of the intruder's information. 

To check whether the expected result (R 1 e Intruder_Info) holds in the resulting 

state the check result command is executed. This produces the expression 

R l e  

{ PEncrypt(Server_Public, R 1), 

Times(PEncrypt(Server_Public, Cheater_Key), 

PEncrypt (Server_Public, R1)), 

PEncrypt(Server_Public, Partner_Key), 

Encrypt(PDecrypt(Server_Secret, t), PDecrypt(Server_Secret, t2)), 

Divide(Decrypt(Partner_Key, t3), Cheater_Key), 

Server_Public, 

Partner_Key}. 

To prove this is true it is necessary to use the axioms of the specification. It would 

be desirable to have this as an automatic feature of the Inatest tool; however, in the 

current version of the tool it is necessary to apply the axioms manually. That is, the 

Inatest processor attempts to reduce the expression to true or false, but if it fails it 

asks the user to act as the theorem prover. 

To reduce the expression to true the element 

Divide(Decrypt(Partner_Key, t3), Cheater_Key) 

is reduced to R 1. 

First the expression represented by t3 is reduced. This expression is 

Encrypt(PDecrypt(Server_Secret, t), PDecrypt(Server_Secret, t2)), 

where 

and 

t = Times(PEncrypt(Server_Public, Cheater_Key), 

PEncrypt(Server_Public, R 1)) 

t2 = PEncrypt(Server_Public, Partner_Key). 

Using the second axiom t can be reduced to 

PEncrypt(Server_Public, Times(Cheater_Key, R 1)). 

Then substituting t and t2 in t3 yields the expression 

Encrypt(PDecrypt (Server_Secret, 

PEncrypt(Server_Public, Times(Cheater_Key, R 1))), 

PDecrypt(Server_Secret, PEncrypt(Server_Public, Partner_Key))). 



120 R. Kemmerer, C. Meadows, and J. Millen 

Now applying the first axiom to 

PDecrypt(Server_Secret, PEncrypt(Server_Public, Times(Cheater_Key, R1))) 

yields 

Times(Cheater_Key, R 1). 

Also, by using the first axiom 

PDecrypt(Server_Secret, PEncrypt(Server_Public, Partner_Key)) 

reduces to 

Partner_Key. 

Therefore, t3 reduces to 

Encrypt(Times(Cheater_Key, R 1), Partner_Key), 

which by applying the fifth axiom is equivalent to 

Encrypt(Partner_Key, Times(Cheater_Key, R 1)). 

Substituting this reduced value for t3 into the expression of interest yields 

Divide(Decrypt (Partner_Key, Encrypt(Partner_Key, 

Times(Cheater_Key, R 1)), Cheater_Key). 

By applying the fourth axiom the expression of interest reduces to 

Divide(Times(Cheater_Key, R 1), Cheater_Key), 

which by the third axiom reduces to 

R1. 

Therefore, R 1 is part of the intruder's knowledge. Thus, the Simmons flaw in the 

TMN protocol has been demonstrated using Inatest. 

Executing the Paths command in Inatest at this point generated the following 
output. 

#p 

Start: request_key (a,b, r i) 

No assumptions 

Finished 

Start: cheater-request(rl) 

No assumptions 

Finished 

Added conditions: 

times (pencrypt ( server_public, cheater_key), 

pencrypt(server_public,rl)) = t 

Start: process-request(cheater,partner,t) 

No assumptions 

Finished 



Three Systems for Cryptographic Protocol Analysis 121 

Start: partner_response 

No assumptions 

Finished 

Added conditions: 

pencrypt(server-public,partner-key) = 
Start: return_key(cheater,partner,t2) 

No assumptions 

Finished 

Added conditions: 

encrypt(pdecrypt(server_secret,t), 

pdecrypt(server_secret,t2)) = t3 

Start: compromise_key(t3) 

No assumptions 

Finished, 

t2 

which is a summary of the penetration scenario and any assumptions made during 

the execution of the scenario. The penetration scenario is diagrammed in Fig. 8. 

4.5. Discussion 

The intruder actions that are included as transforms in the Ina Jo specification of 

the TMN protocol are only those needed to model the Simmons attack; all of the 

possible intruder actions are not included. One of the drawbacks of the Inatest 

approach is that the analyst determines the intruder actions and the flaw scenarios; 

there is no disciplined approach nor even a heuristic for determining what actions 

to include. This ad hoc approach to defining user actions and finding flaw scenarios 

is analogous to software testing; if the appropriate test cases (flaw scenarios) are not 

tried no flaws will be discovered. However, in other experiments with the approach 

where the protocol specifications were subjected to formal verification [12-1, the 

proof obligations that could not be proved directed the analyst to scenarios that 

successfully revealed flaws. 

One of the motivations for analyzing encryption protocols is that from the flaws 

that are discovered guidelines for the design of secure encryption protocols may 

User A Server 

I B, e[rl] - - I  

Cheater 

Partner,e[Cheater_Key]-e[rl] 

(Cheater_Key-R1)[Partner_Key] 1 ~ 
=1--Parlner Key[Cheater Key .rl ] 

Cheater 

e[Partner_Key] 

Partner 

Fig. 8. Simmons attack. 



122 R. Kemmerer, C. Meadows, and J. Millen 

arise. In addition, by expressing the protocol as a formal specification the analyst 

is provided with a medium that can be studied further. 

By using the Inatest system it was possible to demonstrate the Simmons flaw in 

the TMN protocol. In addition, by further analysis of the specification more general 

conclusions were drawn. The distribution of the public-key encryption algorithm 

over multiplication is one of the critical properties of the public-key algorithm that 

made the Simmons flaw possible. This property is expressed in the second axiom 

of the formal specification. A generalization that can be made from analyzing the 

specification is that the flaw will exist for any operation over which the public-key 

encryption algorithm distributes. That is, Times was used in the formal specification 

to represent the multiplication operator, but if the intruder had the foo and foo -1 
operators available and the public-key encryption algorithm distributes over foo, 
then the flaw would still exist. 

A similar generalization can be made relative to the fifth axiom. That is, in the 

original TMN protocol example the conventional encryption algorithm used 

bitwise addition modulo two, which allowed the key and text to be commuted. The 

flaw would still exist for any conventional algorithm that allowed commutativity 

of the key and text whenever the text itself was a key. 

5. Conclusion 

5.1. Summary 

We have seen how all three protocol analysis tools successfully demonstrated flaws 

in the TMN protocol. The flaw scenarios revealed by the Interrogator and the NRL 

Protocol Analysis Tool both required the intruder to capture messages and in some 

cases to replace them with modified messages. The intruder also had to interject 

new messages to imitate a normal user's response to a message that was never 

delivered. Although the flaws in the TMN example were understood ahead of time, 

it is not hard to see how the tools might be used to help discover unanticipated 

flaws in other protocols. 

The Inatest tool was able to demonstrate the Simmons attack, which enabled the 

intruder to obtain private data without capturing or altering messages, provided 

that the intruder and an accomplice were legitimate users. The contribution of the 

Inatest approach is that it furnishes a means to specify and experiment with a 

protocol without being constrained by the limitations of a built-in state search or 

algebraic reduction engine. Neither of the other systems reproduced the arithmetic 

properties used by Simmons. 

5.2. The Role of Aloebra 

It might be asked what kept the Interrogator and the NRL tool from finding the 

Simmons attack. The answer lies partly in algebraic issues and, in the case of the 

Interrogator, in the fact that it automates perhaps a bit too much of the search 

process. 

There are actually two separate algebraic features of the Simmons attack. The 

homomorphic nature of RSA encryption was used to hide the reuse of the first key, 

r 1, by the intruder. However, there is a simplified version of the Simmons attack in 



Three Systems for Cryptographic Protocol Analysis 123 

which that is not done, but which still defeats the tools. Consider the following 

message history, in which " + "  represents a bitwise modulo-two sum: 

E ~ S: e[r 1], 

S ~ D : E ,  

D ~ S: e[r3], 

S-~ E: rl + r3. 

In the Simmons attack, the parties E and D are the Cheater and Partner, respec- 

tively, as shown in Figure 8. 

There is no attempt here to avoid the retransmission of e[r l ] .  However, if the 

server does not bother to check, the intruder E ends up with r I + r3. Knowing r3, 

r 1 can be determined. 

Now, both the Interrogator and NRL tools specified the protocol with r l  [r2] in 

the last message instead of r 1 + r2, so the penetration scenario would have r 1 [r3] 

instead o f t  1 + r3. The problem is that there is no algebraic rule for encryption that 

would allow a party who knows r3 to obtain r l  from r l [ r3] .  It is necessary to 

understand that a different, symmetric, mechanism was used to combine r l  and r3. 

One way to do this with the NRL tool would be to add new rules such as 

d(g, e(X, Y)) ~ X, 

e(e, d(X, Y)) ~ X. 

There are presently plans to extend both tools to incorporate modulo-two sum 

and other symmetric operations in a general fashion. When this is done, it makes 

sense to see if they can reproduce the simplified attack, as above. Further RSA- 

specific rules to handle the complete Simmons attack could then be added. Even 

then, however, it is still not obvious whether the tools would facilitate discovery of 

the specific Simmons attack. 

5.3. Specification Styles 

The three tools demanded that the protocol be specified in three remarkably 

different ways. Yet, many of the differences were a matter of syntactic style. 

All three tools assumed that each party possessed certain state information. The 

Interrogator represented the state of a party as a single list, and the significance of 

the items in the list was implicit in the ordering of the list and the way the items 

were used to construct messages and state transitions. The NRL tool used separate 

declarations for each component of the state of a party, and a state component 

included supplementary information such as a mnemonic variable name and a 

"round" number as well as the value. The Ina Jo version of a protocol put state 

information into global matrix variables, but the rows showed the information 

belonging to each user. 

Other differences were conceptual, but not necessarily inherent. An example is 

the use of "round" numbers in the NRL representation to indicate passage of time. 

The other specifications did not have anything comparable, but they had enough 

flexibility so that a similar mechanism might have been provided, if desired. 



124 R. Kemmerer, C. Meadows, and J. Millen 

5.4. Conclusion 

There were substantial differences in the way the tools were used, reflecting the goals 

they were designed to pursue. The NRL tool is used primarily to try to prove that 

a protocol is secure, and discovers flaws as a byproduct of that process. The 

Interrogator is designed to search for ways of achieving specified insecure states, 

without guaranteeing that the protocol is secure when the search fails. In return it 

requires less effort to set up the protocol and conduct the analysis. The Inatest tool 

is the most flexible, with the ability to specify any algebraic or other properties that 

may be relevant to the protocol, but the analysis must be controlled manually 

without the benefit of automatic algebraic reductions. 

By working on a common problem and comparing the results obtained by the 

tools, the authors were able not only to achieve a better understanding of the 

similarities and contrasts among their approaches, but were stimulated with ideas 

and motivation to extend and improve the existing tools. It is hoped that the 

products of this exercise will appear in the not too distant future in the form of 

powerful and easy-to-use tools for protocol security analysis. 

Acknowledgment 

We would like to thank Gus Simmons for posing the TMN protocol as a challenge 

problem to the three of us. 

Appendix. Ina Jo TMN Specification 

SPECIFICATION TMN_Protocol 

LEVEL Top_Level 

TYPE 

Text, 

Key_Type subtype Text, 

User, 

Message, 

Messages = SET OF Message, 

Message_Type = (Request, Server_Request, Response, Return), 

Information = SET OF Text 

CONSTANT 

Type(Message): Message_Type, 

Source(Message): User, 

Destination(Message): User, 

Contents(Message): Text, 

Times(Text, Text): Text, 

Divide(Text, Text): Text, 

Null_Key: Key_Type 



Three Systems for Cryptographic Protocol Analysis 125 

TYPE 

Key = T"K: Key_Type(K ~ Null_Key), 

Keys = SET OF Key 

CONSTANT 

Server_Public: Key, 

Server_Secret: Key, 

PEncrypt(Key, Text): Text, 

PDecrypt(Key, Text): Text, 

Encrypt(Key, Text): Text, 

Decrypt(Key, Text): Text, 

Cheater: User, 

Partner: User, 

Cheater_Key: Key, 

Partner_Key: Key 

AXIOM 

Vt: Text(PDecrypt(Server_Secret, PEncrypt(Server_Public, t)) = t) 

AXIOM 

Vtl, t2: Text, k: Key( 

Times(PEncrypt(k, t 1), PEncrypt(k, t2)) = PEncrypt(k, Times(t 1, t2))) 

AXIOM 

Vt 1, t2: Text(Divide(Times(t 1, t2), t l) = t2) 

AXIOM 

Vk, t: Text(Decrypt(k, Encrypt(k, t)) = t) 

AXIOM 

Vk 1, k2: Key(Encrypt(k 1, k2) = Encrypt(k2, k I)) 

VARIABLE 

Pending_Key(User, User): Key_Type, 

Current_Key(User, User): Key_Type, 

In_Process(User, User): Key_Type, 

Net: Messages, 

Keys_Used: Keys, 
Intruder_Info: Information 

CRITERION 

Vk: Key((k �9 Keys_Used & k �9 Intruder_Info) 
- ,  k �9 {Server_Public, Partner_Key}) 



126 R. Kemmerer, C. Meadows, and J. Millen 

INITIAL 

Vul, u2: User( 

Current_Key(u 1, u2) = Null_Key 

& Pending_Key(u 1, u2) = Null_Key 

& In_Process(ul, u2) = Null_Key) 

& Net = EMPTY 

& Keys_Used = {Server_Public, Server_Secret} 

& Intruder_Info = {Server_Public, Partner_Key} 

Transform Request_Key(A, B: User, R 1: Key) 

Refcond 

R 1 ~ Keys_Used 

Effect 

VU1, U2: User( 

N" Pending_Key(U 1, U2) = 

i f U I = A & U 2 = B  

then R 1 

else Pending_Key(U 1, U2) 

t i )  

& N" Keys_Used = Keys_Used u {R 1} 

& 3m: Message( 

N" Net = Net w {m} 

& Type(m) = Request 

& Source(m) = A 

& Destination(m) = B 

& Contents(m) = PEncrypt(Server_Public, R 1)) 

& N" Intruder_Info = Intruder_Info u {PEncrypt(Server_Public, R1)} 

Transform Process_Request(A, B: User, C: Text) 

Refcond 

9m: Message( 

m �9 Net 

& Type(m) = Request 

& Source(m) = A 

& Destination(m) = B 

& Contents(m) = C) 

Effect 

VU1, U2: User( 

N" In_Process(U1, U2) = 

i f U I = A & U 2 = B  

then PDecrypt(Server_Secret, C) 

else In_Process(U 1, U2) 

fi) 
& 3m: Message( 

N" Net = Net • {m} 



Three Systems for Cryptographic Protocol Analysis 127 

& Type(m) = Server_Request 

& Source(m) = A 

& Destination(m) = B) 

Transform Respond_To_Server(A, B: User, R2: Key) 

Refcond 

R2 ~ Keys_Used 

Effect 

VU1, U2: User( 

N" Current_Key(U 1, U2) = 

if U1 = B &  U2 = A 

then R2 

else Current_Key(U 1, U2) 
f i )  

& N" Keys_Used = Keys_Used u {R2} 

& qm: Message( 

N" Net = Net u (m} 

& Type(m) = Response 

& Source(m) = A 

& Destination(m) = B 

& Contents(m) = PEncrypt(Server_Public, R2)) 

& N" Intruder_Info = Intruder_Info u {PEncrypt(Server_Public, R2)} 

Transform Return_Key(A, B: User, C: Text) 

Refcond 

qm: Message( 

m ~ Net 

& Type(m) = Response 

& Source(m) = A 

& Destination(m) = B 

& Contents(m) = C) 

& In_Process(A, B) ~ Null_Key 

Effect 

VU1, U2: User( 

N" In_Process(U 1, U2) = 

if U1 = A &  U 2 = B  

then Null_Key 

else In_Process(U 1, U2) 

f i )  

& qm: Message( 

N" Net = Net u {m} 

& Type(m) = Return 

& Source(m) = A 

& Destination(m) = B 

& Contents(m) = Encrypt(In_Process(A, B), 

PDecrypt (Server_Secret, C)) 



128 R. Kemmerer, C. Meadows, and J. Millen 

& N" Intruder_Info = Intruder_Info w 

{ Encrypt (In_Process(Destination(m), Source(m)), 

PDecrypt(Server_Secret, C)))} 

Transform Get_Key(A, B: User, C: Text) 

Refcond 

3m: Message( 

m ~ Net 

& Type(m) = Return 

& Source(m) = A 

& Destination(m) = B 

& Contents(m) = C) 

& Pending_Key(A, B) # Null_Key 

Effect 

VU1, U2: User( 

N" Current_Key(U 1,/.]2) = 

if U1 = A &  U 2 = B  

then Decrypt(Pending_Key(A, B), C) 

else Current_Key(U 1,/.I2) 

fi 

& N" Pending_Key(U 1, U2) = 

if U1 = A &  U 2 = B  

then Null_Key 

else Pending_Key(U 1, U2) 

f i )  

Transform Cheater_Request(R 1: Key) 

Refcond 

PEncrypt(Server_Public, R 1) ~ Intruder_Info 

Effect 

N" Keys_Used = Keys_Used w 

{ PDecrypt (Server_ Secret, 

Times(PEncrypt(Server_Public, Cheater_Key), 

PEncrypt(Server_Public, R 1)))} 

& ~m: Message( 

N" Net = Net w {m} 

& Type(m) = Request 

& Source(m) = Cheater 

& Destination(m) = Partner 

& Contents(m) = Times(PEncrypt(Server_Public, Cheater_Key), 

PEncrypt(Server_Public, R 1))) 

& N" Intruder_Info = Intruder_Info u 

{Times(PEncrypt (Server_Public, Cheater_Key), 

PEncrypt(Server_Public, R 1))} 

Transform Partner_Response 

Refcond 



Three Systems for Cryptographic Protocol Analysis 129 

qm: Message(  

m E Ne t  

& Type(m) = Serve r_Reques t  

& Source(m) = Chea te r  

& Dest ina t ion(m)  = Par tner )  

Effect 

N" K e y s _ U s e d  = K e y s _ U s e d  u {Pa r tne r_Key}  

& 3m: Message(  

N" Net  = Ne t  w {m} 

& Type(m) = Response  

& Source(m) = Chea te r  

& Dest ina t ion(m) = P a r t n e r  

& Contents(m) = PEnc ryp t (Se rve r_Pub l i c ,  P a r t n e r _ K e y ) )  

& N" I n t r u d e r _ I n f o  = I n t r u d e r _ I n f o  u 

{ P E n c r y p t  (Server_ Public ,  Pa r t ne r_Key)}  

Trans fo rm C o m p r o m i s e _ K e y ( C :  Text) 

Refcond 

3m: Message(  

m e N e t  

& Type(m) = Re tu rn  

& Source(m) = Chea te r  

& Des t ina t ion(m)  = Pa r tne r  

& Contents(m) = C) 

Effect 

N" I n t r u d e r _ I n f o  = I n t r u d e r _ I n f o  w 

{ D i v i d e ( D e c r y p t ( P a r t n e r _ K e y ,  C), Chea t e r_Key)}  

E N D  T o p _ L e v e l  

E N D  S i m m o n s _ C r y p t o  

References 

[1] Abadi, M., and M. R. Tuttle, A Semantics for a Logic of Authentication, Proceedings of the 

lOth Annual ACM Symposium on Distributed Computing, ACM Press, New York, August 1991, 

pp. 201-206. 
[2] Bieber, P., A Logic of Communication in a Hostile Environment, Proceedings of the Computer 

Security Foundations Workshop II1, IEEE Computer Society Press, New York, June 1990, 

pp. 14-22. 
[3] Boudet, A., Unification in a Combination of Equational Theories: an Efficient Algorithm, Proceed- 

ings of the lOth International Conference on Automated Deduction, Springer-Verlag, New York, 

1990, pp. 292-307. 
[4] Burns, J., and C. J. Mitchell, A Security Scheme for Resource Sharing Over a Network, Comput. 

Security, Vol. 9, 1990, pp. 67-76. 
[-5] Burrows, M., M. Abadi, and R. M. Needham, A Logic of Authentication, ACM Trans. Comput. 

Systems, Vol. 8, No. 1, February 1990, pp. 18-36. 
[6] Clocksin, W. F., and C. S. Mellish, Programming in Prolog, Springer-Verlag, New York, 1984. 



130 R. Kemmerer, C. Meadows, and J. Millen 

[-7] Denning, D. E., and G. M. Sacco, Timestamps in Key Distribution Protocols, Comm. ACM, Vol. 

24, No. 8, August 1981, pp. 533-536. 

[8] Dolev, D., and A. Yao, On the Security of Public-Key Protocols, IEEE Trans. Inform. Theory, Vol. 

29, 1983, pp. 198-203. 

[9] Eckmann, S. T., and R. A. Kemmerer, INATEST: An Interactive Environment for Testing Formal 

Specifications, Third Workshop on Formal Verification, Pajaro Dunes, CA, February, 1985, 

ACM--Software Engrg Notes, Vol. 10, No. 4, August 1985, pp. 17-18. 

[10] Goldwasser, S., S. Micali, and C. Rackoff, The Knowledge Complexity of Interactivr Proof Systems, 

Siam J. Comput., Vol. 18, No. I, February 1989, pp. 186-208. 

[11] Holzmann, G., The Design and Validation of Computer Protocols, Prentice-Hall, Englewood Cliffs, 

NJ, 1991. 

[12] Kemmerer, R. A., Analyzing Encryption Protocols Using Formal Verification Techniques, IEEE 

J. Selected Areas Commun., Vol. 7, No. 4, May 1989, pp. 448-457. 

[13] Kemmerer, R. A., Integrating Formal Methods into the Development Process, IEEE Software, 

September 1990, pp. 37-50. 

[14] Kemmerer, R. A., Analyzing the Tatebayashi-Matsuzaki-Newman Protocol Using Inatest, UCSB 

Report No. TRCS91-05, Computer Science Department, University of California, Santa Barbara, 

CA, April 1991. 

[-15] Longley, D., Expert Systems Applied to the Analysis of Key Management Schemes, Comput. 

Security, Vol. 6, 1987, pp. 54-67. 

[16] Massey, I. L., Cryptography and Provability, Proceedings of the Workshop on Mathematical 

Concepts of Dependable Systems, Matbematisches Forschunginstitut Oberwolfach, Oberwolfach, 

April 1990. 

[17] Meadows, C., A System for the Specification and Verification of Key Management Protocols, 

Proceedings of the 1991 IEEE Symposium on Security and Privacy, IEEE Computer Society Press, 

New York, 1991, pp. 182-195. 

[18] Meadows, C., Applying Formal Methods to the Analysis of a Key Management Protocol, 

J. Comput. Security, Vol. 1, No. 1, 1992, pp. 5-53. 

[19] Merritt, M., and P. Wolper, States of Knowledge in Cryptographic Protocols, unpublished manu- 

script, 1985. 

[20] Millen, J. K., The Interrogator: A Tool for Cryptographic Protocol Security, Proceedings of the 

1984 Symposium on Security and Privacy, IEEE Computer Society Press, New York, pp. 134-141. 

[21] Millen, J. K., S. C. Clark, and S. B. Freedman, The Interrogator: Protocol Security Analysis, IEEE 

Trans. Software Engrg., Vol. 13, No. 2, February 1987. 

[-22] Moore, J. H., Protocol Failures in Cryptosystems, Prec. IEEE, Vol. 76, No. 5, May 1988, pp. 564- 

602. 

[23] Needham, R. M., and M. D. Schroeder, Using Encryption for Authentication in Large Networks 

of Computers, Comm. ACM, Vol. 21, No. 12, December 1978, pp. 993-999. 

[-24] Rety, P., C. Kirchner, H. Kirchner, and P. Lescannr NARROWER: A New Algorithm for 

Unification and Its Applications to Logic Programming, in Rewriting Techniques and Applications, 

Lecture Notes in Computer Science, Vol. 202, Jean-Pierre Jouannaud, ed., Springer-Verlag, Berlin, 

1985, pp. 141-157. 

[-25] Scbeid, J., and S. Holtsberg, Ina Jo Specification Language Reference Manual, TM-6021, Unisys 

Corporation, Culver City, CA, May 1989. 
[26] Simmons, G. J., How To (Selectively) Broadcast a Secret, Proceedings of the 1985 IEEE Symposium 

on Security and Privacy, IEEE Computer Society Press, New York, 1985, pp. 108-I 13. 

[27] Syverson, P. and Meadows, C, A Logical Language for Specifying Cryptographic Protocol Re- 

quirements, in Proceedings of the 1993 I EEE Computer Society Symposium on Security and Privacy, 
IEEE Computer Society Press, New York, 1993, pp. 165-177. 

[28] Tatebayashi, M., N. Matsuzaki, and D. B. Newman, Key Distribution Protocol for Digital Mobile 

Communication Systems, in Advances in Cryptology--CRYPTO '89, Lecture Notes in Computer 

Science, Vol. 435, G. Brassard, ed., Springer-Verlag, New York, 1991, pp. 324-333. 

[29] Toussaint, M.-J., Separating the Specification and Implementation Phases in Cryptology (Extended 

Abstract), Computer Security, ESORICS 92, Lecture Notes in Computer Science, Vol. 648, 

Springer-Verlag, Berlin, 1992, pp. 77-101. 


