
This is a postprint version of the following published document:

Lin, Y-D., Lai, Y-C., Huang, J-X y Chien, H-T. (2018).

Three-Tier Capacity and Traffic Allocation for Core,

Edges, and Devices for Mobile Edge Computing. IEEE

Transactions on Network and Service Management, 15

(3), pp. 923-933.

DOI: 10.1109/TNSM.2018.2852643

 © 2018 IEEE. Personal use of this material is permitted. Permission

from IEEE must be obtained for all other uses, in any current or future

media, including reprinting/republishing this material for advertising

or promotional purposes, creating new collective works, for resale or

redistribution to servers or lists, or reuse of any copyrighted

component of this work in other works.

https://www.doi.org/10.1109/TNSM.2018.2852643
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

Three-Tier Capacity and Traffic Allocation for Core,

Edges, and Devices for Mobile Edge Computing
Ying-Dar Lin , Fellow, IEEE, Yuan-Cheng Lai , Jian-Xun Huang, and Hsu-Tung Chien

Abstract—In order to satisfy the 5G requirements of ultra-low
latency, mobile edge computing (MEC)-based architecture, com-
posed of three-tier nodes, core, edges, and devices, is proposed. In
MEC-based architecture, previous studies focused on the control-
plane issue, i.e., how to allocate traffic to be processed at different
nodes to meet this ultra-low latency requirement. Also important
is how to allocate the capacity to different nodes in the manage-
ment plane so as to establish a minimal-capacity network. The
objectives of this paper is to solve two problems: 1) to allocate the
capacity of all nodes in MEC-based architecture so as to provide
a minimal-capacity network and 2) to allocate the traffic to sat-
isfy the latency percentage constraint, i.e., at least a percentage of
traffic satisfying the latency constraint. In order to achieve these
objectives, a two-phase iterative optimization (TPIO) method is
proposed to try to optimize capacity and traffic allocation in
MEC-based architecture. TPIO iteratively uses two phases to
adjust capacity and traffic allocation respectively because they
are tightly coupled. In the first phase, using queuing theory calcu-
lates the optimal traffic allocation under fixed allocated capacity,
while in the second phase, allocated capacity is further reduced
under fixed traffic allocation to satisfy the latency percentage
constraint. Simulation results show that MEC-based architec-
ture can save about 20.7% of capacity of two-tier architecture.
Further, an extra 12.2% capacity must be forfeited when the
percentage of satisfying latency is 90%, compared to 50%.

Index Terms—Iterative optimization, mobile edge comput-
ing (MEC), three-tier architecture, capacity allocation.

I. INTRODUCTION

A
S THE volume of data grows rapidly, 5G wireless com-

munication has been proposed [1]. The aim of 5G is to

provide very high data rates and ultra-low latency in the order

of ms [2], [3]. The performance requirements of latency in

5G networks are a 1 ms limit for data-plane latency, a 10 ms

limit for control-plane latency [4], and a 1000 times faster

 This work was supported in part by H2020 collabora-tive Europe/Taiwan
research project 5G-CORAL (grant number 761586), and Ministry of Science
and Technology, Taiwan for financially supporting this research under
Contract No. MOST 106-2218-E-009-018. The associate edi-tor coordinating
the review of this paper and approving it for publication was G. Bianchi.
(Corresponding author: Yuan-Cheng Lai.)

Y.-D. Lin and H.-T. Chien are with the Department of Computer
Science, National Chiao Tung University, Hsinchu 300, Taiwan (e-mail:
ydlin@cs.nctu.edu.tw; hsutung@cs.nctu.edu.tw).

Y.-C. Lai is with the Department of Information Management, National
Taiwan University of Science and Technology, Taipei 106, Taiwan (e-mail:
laiyc@cs.ntust.edu.tw).

J.-X. Huang was with the Department of Information Management, National
Taiwan University of Science and Technology, Taipei 106, Taiwan (e-mail:
hibari180505@gmail.com).

data rates than 4G networks [5]. Thus, one of the most impor-

tant challenges of 5G is to address a contradiction between the

increasing complexity of mobile applications and its limited

latency [6].

Traditional wireless architecture is two-tiered and consists

of a core and devices. These provide specific functions for

the services required by a user, such as a user playing

a multimedia game using a mobile device. In this case, the

device is responsible for the encoding/decoding functions,

while the core is responsible for the calculating the game’s

operations. However, there is usually a long distance between

core and devices, resulting in a long propagation delay which

cannot meet the latency limitation of 5G networks.

Thus, MEC-based architecture, based on the concept of

fog computing, has been proposed [7]. In this architecture,

some equipment, termed “edge”, located as an intermediate

tier, is deployed between the core and devices: it is a three-

tiered network architecture with core, edges, and devices. The

edges carry out functions of both core and devices. Thus, in

MEC-based architecture, for functions required by traffic, the

computation of functions in devices and core can be offloaded

to that in edges. Computation offloading from core to edges

can avoid the propagation delay between core and edge. Also,

since edges are closer to users’ devices than the core, when

services are served in the nearer edge, the propagation delay

will be significantly reduced [4]. Thus MEC-based architec-

ture is thus very suitable for 5G networks because the latency

limitation is more likely to be satisfied. On the other hand,

computation offloading from devices can reduce devices’ load-

ing, so that the cost of devices and their power consumption

can be reduced [5].

Most previous research on offloading was designed for

two-tier architecture which consists only of a core and

devices [8]–[16], where offloading was essentially one

way, from devices to core. The research [17] designed for

MEC-based architecture mainly handled two-way offloading.

However, offloading, covered in [8]–[17], addresses the issue

of traffic allocation in the control plane. To the best of our

knowledge, no current research considers capacity allocation

in the management plane. In fact, capacity allocation and

traffic allocation are mutually affected: if for example more

capacity is allocated to edges, more traffic will be served in

them. Thus, capacity allocation and traffic allocation should

be considered simultaneously. The objective of this paper

is to address two problems: (1) to allocate the capacity of

all nodes in MEC-based architecture to create a minimal-

capacity network; and (2) to allocate the traffic to satisfy

1

https://orcid.org/0000-0002-5226-4396
https://orcid.org/0000-0003-3695-5784
https://orcid.org/0000-0002-0074-9770

the latency percentage constraint, i.e., at least a percentage

of traffic satisfying latency constraint. Note that this work

uses a latency percentage constraint, rather than a latency con-

straint, because the former is more suitable to users’ Quality

of Experiences (QoE).

In order to achieve these objectives, we proposed a “two-

phase iterative optimization” (TPIO) algorithm to try to

optimize capacity and traffic allocation: one phase for adjust-

ing capacity allocation and the other for adjusting traffic

allocation. The amount of inputted traffic is proportional to

computation workload because all packets are assumed to be

homogenous, i.e., they require the same computation work-

load. The first phase fixes the allocated capacity and adjusts the

traffic allocation to satisfy the latency percentage constraint.

The second phase fixes the allocated traffic and adjusts the

capacity allocation to minimize the total capacity of all nodes.

The two phases take turns until the total capacity has been min-

imized and the latency percentage constraint has been satisfied.

Note that the problem we address is an optimization

problem, that is, constructing a minimal-capacity network

under satisfying the latency percentage constraint. However,

to avoid too high complexity, our proposed algorithm, TPIO,

is actually a heuristic solution to achieve near-optimal results.

To the best of our knowledge, our research is the first to

overcome capacity allocation and traffic allocation in MEC-

based architecture. Our contributions are as follows: (1) we

derive end-to-end latency distribution and the percentage of

the traffic satisfying latency constraint; (2) we design a new

system model where the offloading can only happen from

devices to edges and from core to edges, but not from devices

to core; (3) we propose the TPIO method, which allocates

the capacity of all nodes in MEC-based architecture, so as to

provide a minimal-capacity network and allocate the traffic to

satisfy the latency percentage constraint; and (4) we conduct

extensive simulations to demonstrate the benefits of MEC and

investigate the effects of different parameters in MEC-based

architecture.

The rest of this work is organized as follows:

Section II covers some background and reviews related

work; Section III defines the problem statement and

Section IV describes the details of the TPIO algorithm;

Section V evaluates TPIO by some simulations and

Section VI concludes the work.

II. BACKGROUND

A. MEC-Based Architecture

The ETSI (European Telecommunication Standard Institute)

has proposed MEC-based architecture within a radio access

network which is in close proximity to mobile users [7]. MEC-

based architecture introduces several advantages, including:

• QoE improvement: MEC can improve the QoE of users

by pushing data-intensive tasks towards an edge and

locally processing data in proximity to the users instead

of at a remote core.

• Rapidly deployment: because MEC-based architecture

is an extension of 4G networks, Mobile Network

Operators (MNOs) can rapidly deploy new services to

consumer and enterprise business segments which can

help them differentiate their service portfolios [7].

• Traffic bottleneck reduction: MNOs can reduce traffic

bottlenecks at the core and backhaul networks, while

assisting in the offloading of heavy computational tasks

from power-constrained user devices to an edge.

B. Related Work

Most previous work investigated computation offloading in

two-tier architecture. Some of this research discussed the case

where only one service is provided [8]–[12]. Tang et al. [8]

designed a socially-aware mobile network and modeled the

offloading problem as a socially-aware computation offload-

ing game. Chen [10] considered the multi-user computation

offloading problem in a single-channel wireless setting, so that

each user has a binary decision variable (i.e., to offload or not).

The same authors in another paper [9] considered the same

multi-user computation offloading problem, but extended it

from single to multiple channels (i.e., to offload which wireless

channel or not).

Other researchers discussed the case where multiple services

exist [14]–[16]. Since the complexity of cases for multiple

services is very high, these studies made different additional

assumptions so as to reduce time complexity. For exam-

ple, [14] assumed that only one device appears; [16] assumed

that different data-center operators offer different specific ser-

vices, and each user is allowed to subscribe a specific service

from a certain data-center operator.

For computation offloading problems, there may be dif-

ferent objectives: latency minimization, energy saving, over-

head minimization. For latency minimization [11], [12], [17]

attempted to minimize the latency under the constraint of

energy consumption, while for energy saving [8], [13]–[15]

attempted to reduce energy consumption under the constraint

of latency or execution time.

Recent research discussed the offloading problem in MEC-

based architecture [17], where the offloading can take place

from the core to edges and from the devices to edges. However,

there are some major differences between this and our research.

First, it only considered traffic allocation as a problem in the

control plane. However, we consider not only traffic allocation in

the control plane, but also capacity allocation in the management

plane. Second, it only considered one service in the network

while we include two services, one in core or edges, and the

other in devices or edges. Third, it assumed that the traffic

arrives simultaneously from devices. In our study, on the other

hand, the arrival of packets follows a Poisson process, which

is closer to the real environment. Finally, it only considered

the nodes’ workload to carry out the traffic allocation, but our

study considers the latency percentage constraint.

Table I shows the comparisons between earlier studies and

our work.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we introduce our system model, the notations

used and the problem statement. Table II lists the notations and

their meanings.

2

TABLE I
SUMMARY OF THE RESEARCH ON OFFLOADING

Fig. 1. Three-tier hierarchical MEC-based architecture.

A. System Model

We consider a three-tier hierarchical MEC-based architec-

ture composed of a core, NE edges and ND devices, as shown

in Fig. 1. C denotes the core, a single network device. E

denotes edges and ei ∈ E denotes the i-th edge. D denotes

the set of the set of devices and di ,j ∈ D denotes the j-th

device connecting to the i-th edge. Each node has its own

capacity, denoted by the symbol µ : µC , µEi , and µDi ,j rep-

resent the capacity of the core, of edge ei , and of device

di ,j , respectively. Let N1 denote the link between the device

and the edge, and N2 denote the link between the edge and

the core. µN1 and µN2 represent the link bandwidth of links

N1 and N2, respectively. The propagation delays of links N1

and N2 are denoted as ZN1 and ZN2, respectively. The traf-

fic (in units of packets) arrival rate from each device follows

a Poisson process. The packet arrival at device di ,j has rate

λi .j . Each packet requires two services, one provided by the

core and the other by the devices. According to MEC-based

architecture, core and devices can offload their computation

to edges, i.e., the edges deliver services provided by both

the core and devices. Therefore, depending where the packet

obtains these two services, traffic coming from device di ,j ,

denoted as gi ,j , can be classified as four types. First, the traf-

fic is served by devices and core, that is, no offloading. We

denote the traffic as gDC
i ,j , with rate λDC

i ,j . Second, the traf-

fic obtains services from devices and edges, denoted as gDE
i ,j ,

with rate λDE
i ,j . Third, the traffic obtains services from edges

and core, denoted as gECi ,j , with rate λECi ,j . Last, traffic obtains

both services from edges, gEEi ,j , with rate λEEi ,j . For simplicity,

according to the classification above, these various traffics are

termed DC-type traffic, EC-type traffic, DE-type traffic, and

EE-type traffic.

The constrained latency is L. However, previous studies

have always focused on achieving the goal where the aver-

age latency is less than this constraint. In fact, if such a goal

is achieved, it represents that about a half traffic satisfies this

constraint, and that about a half traffic exceeds the constraint.

In this study, we use a more appropriate metric, termed the

latency percentage constraint, i.e., the percentage of the latency

constraint satisfied must exceed a threshold, ThL. For exam-

ple, ThL = 80% means that at least 80% traffic has satisfied

the latency constraint.

3

TABLE II
USED NOTATIONS

B. Problem Statement

Our objective for the system model considered in this paper

is to minimize total capacity and to satisfy latency percentage

constraint. To achieve this, we have to allocate capacity and

traffic appropriately. The problem statement is then defined as

follows.

Input: The topology composed of a core, NE edges, ND

devices, the propagation delay of links (ZN1, ZN2), link band-

width (µN1, µN2), traffic arrival rate λi .j , latency constraint

L, and the threshold ThL.

Output: The allocated traffic vector [λDC
i ,j , λDE

i ,j , λECi ,j , λEEi ,j]

and the allocated capacity [µC , µEi , µDi ,j].

Objective: Minimize µtotal = µC +
∑

i µ
E
i +

∑

i

∑

j µ
D
i ,j

Constraint: The percentage of traffic required to satisfy the

latency constraint L must exceed the threshold ThL, that is,

P(t<L)≥ ThL, where t is the traffic latency.

As given in the problem statement, the allocated capacity

and allocated traffic vector of four types are outputs. Thus, the

problem is solved by an algorithm in the management plane,

and our algorithm runs in a management computer, rather than

devices, edges, or core. After determining the allocated traffic

vector of four types, the values will be adopted by the devices,

edges, and core, which execute suitable algorithms to route

these packets in the control plane and schedule them in the

data plane. However, these algorithms are beyond the scope

of this paper.

IV. TWO-PHASE ITERATIVE OPTIMIZATION

TPIO has two interleaved phases for adjusting the capacity

and traffic allocation in order to minimize the total capacity

under satisfying the latency percentage constraint. In order

to achieve this, we must derive an appropriate formula for

latency. First, we derive the equations for latency distribution,

then describe the TPIO concept, and finally provide a flow

chart to show how the system operates.

A. Latency Distribution

When considering one server which may be a node or a link,

it is assumed that packet arrivals follow a Poisson process with

rate λ. Packet service time is an exponential distribution with

a mean 1/µ. Under an M/M/1 queuing model, the probability

density function (PDF) of the latency, t, and its cumulative

distribution function (CDF) can be represented as

f (t) = (µ− λ)e−(µ−λ)×t , (1)

F (L) = P(t ≤ L) =

{

1− e−(µ−λ)×L, L ≥ 0
0, L < 0

}

. (2)

However, the traffic in MEC-based architecture requires

many servers and different types of traffic need to be served

by different servers. Below we calculate the latency percentage

constraint for each type of traffic.

1) DC-Type Traffic: First, we consider DC-type traffic

which is served by a device and the core. DC traffic must

travel to N1 link and N2 link, and is regarded as being served

by four servers: device, N1 link, N2 link, and core. The prop-

agation delay in N1 link is fixed as ZN1 and the propagation

delay in N2 link is fixed as ZN2. Since constrained latency

is L, the latency spent in these four servers must be less than

L′ = L−ZN1−ZN2, where L′ is constrained latency L with-

out the propagation delay of any links. The CDF of latency

for DC-type traffic arriving in di ,j can be expressed by

F
DC
i,j (L) = P(t ≤ L) =

L′

∫
0

L′
−t1
∫
0

L′
−t1−t2
∫
0

f
D
i,j (t1)× f

C (t2)

× f
N2(t3)

×

(

1− e
−

(

µN1
−λN1

i

)

×(L′
−t1−t2−t3)

)

dt3dt2dt1,

where f Di,j =
(

µ
D
i,j − λ

D
i,j

)

× e
−

(

µD
i,j−λD

i,j

)

×t
,

f
C (t) =

(

µ
C

− λ
C
)

× e
−

(

µC
−λC

)

×t
,

f
N2(t) =

(

µ
N2

− λ
N2

)

× e
−

(

µN2
−λN2

)

×t
. (3)

fDi ,j (t), fC (t), fN2 (t) are the PDF of the latency for

device di ,j , core, and the N2 link, respectively. In Eq. (3)

the latency spent in the device di ,j is t1, the latency spent in

the core is t2, the latency spent in the N2 link is t3, and the

residual latency spent in the N1 link. To obtain the PDF of

each server, we must calculate the arrival rate of this server,

which is the sum of its arrival rates, i.e., λDi ,j = λDC
i ,j + λDE

i ,j ,

λC =
∑

i

∑

j (λ
DC
i ,j + λECi ,j). The arrival rate of the link

is the total traffic rate going through this link, which is,

λN1
i =

∑

j λi ,j and λN2 =
∑

i

∑

j (λ
DC
i ,j + λECi ,j). Note that

4

TABLE III
ALLOCATING TRAFFIC GUIDELINE

only the propagation delay of links is assumed as a fixed value.

However, we actually consider the packet arrival rate and link

bandwidth to calculate the transmission delay. As the network

latency in the link includes transmission delay and propaga-

tion delay, the network latency is actually dependent of the

link bandwidth and the packet arrival rate.

2) EC-Type Traffic: EC-type traffic is served by an edge and

the core, so that it must travel to links N1 and N2. Similar to

DC-type traffic, the CDF of latency for EC-type traffic arriving

in di ,j can be expressed by

F
EC
i,j (L) = P(t ≤ L) =

L′

∫
0

L′
−t1
∫
0

L′
−t1−t2
∫
0

f
E
i (t1)× f

C (t2)

× f
N2(t3)

×
(

1− e
−(µN1

−λN1

i)×(L′
−t1−t2−t3)

)

dt3dt2dt1,

where f Ei (t) =
(

µ
E
i − λ

E
i

)

× e
−(µE

i −λE
i)×t

. (4)

fEi (t) is the PDF of the latency for edge ei . Its arrival rate

can be calculated as λEi =
∑

j (λ
DE
i ,j + λECi ,j + 2λEEi ,j). fC (t)

and fN2 (t) are the same as in Eq. (3).

3) DE-Type Traffic: DE-type traffic only travels to N1 link,

but not to N2 link. It is thus regarded as being served by three

servers: device, link N1, and edge. Since constrained latency

is L, the latency spent in these three servers must be less than

L′ = L− ZN1, where L′ is constrained latency L without the

propagation delay of N1 link. The CDF of latency for DE-type

traffic arriving in di ,j can be expressed by

FDE
i ,j (L) = P(t ≤ L) =

L′

∫
0

L′
−t1
∫
0

f Di ,j (t1)× f Ei (t2)

×
(

1− e−(µ
N1

−λN1

i)×(L′
−t1−t2)

)

dt2dt1. (5)

4) EE-Type Traffic: Similar to DE-type, EE traffic only

travels to link N1, but not to link N2. Thus, the CDF of latency

for EE-type traffic arriving in di ,j can be expressed by

FEE
i ,j (L) = P(t ≤ L) =

L′

∫
0

L′
−t1
∫
0

f Ei (t1)× f Ei (t2)

×
(

1− e−(µ
N1

−λN1

i)×(L′
−t1−t2)

)

dt2dt1. (6)

Fig. 2. The TPIO concept.

From Eqs. (3)∼(6), we can derive the CDF of latency for

traffic arriving in di ,j by

Fi,j (L)

=
FDC
i,j (L)λDC

i,j + FEC
i,j (L)λEC

i,j + FDE
i,j (L)λDE

i,j + FEE
i,j (L)λEE

i,j

λi,j

.

(7)

Also we can derive the CDF of latency for all traffic as

F (L) =

∑

i

∑

j Fi ,j (L)λi ,j

λ
. (8)

After obtaining F(L), the objective is to satisfy F(L)≥ ThL.

B. The TPIO Concept

TPIO has two iterative phases for adjusting capacity and

traffic allocation. As shown in Fig. 2, in Phase 1 we adjust

traffic allocation based on current allocated capacity to satisfy

the latency percentage constraint. In Phase 2, we adjust capac-

ity allocation based on current allocated traffic to minimize

total capacity.

1) Phase 1 (Low-Latency Traffic Allocation): Using

Eqs. (3)∼(6), we determine the traffic types which do not

satisfy the latency constraint in each device. For such traffic

types, latency should be lowered. Thus, TPIO determines to

shift the traffic types which do not satisfy latency percentage

constraint to other types. The decision is based on the node

with the maximum latency. Table III shows this in outline. For

example, the traffic gDC
i ,j does not satisfy the latency percent-

age constraint, meaning that we should shift some of gDC
i ,j to

another type. If the core now experiences maximum latency,

TPIO will shift some gDC
i ,j to gDE

i ,j to prevent over-congestion

in the core. Thus, λDC
i ,j will decrease and be more likely to

satisfy its latency percentage constraint after the shift.

When it is known which traffic should be shifted, TPIO

determines how much traffic is to be shifted. In order to

achieve rapid converge in phase 1, the amount of traffic being

shifted is determined according to the appropriate equation

of Eqs. (3)∼(6). Thus, we can then determine the amount of

traffic to be shifted to satisfy the latency percentage constraint.

For example, if we want to shift some gDC
i ,j to gDE

i ,j , we

select the corresponding Eq. (3) and set FDC
i ,j (L) = ThL to

determine the new λDC
i ,j and λDE

i ,j .

2) Phase 2 (Low-Capacity Allocation): Traffic allocation

has thus been determined after phase 1. However, under cur-

rent traffic allocation, the capacity may be further reduced to

reduce overall capacity. To do so we select the node which

5

Fig. 3. Flow chart of TPIO.

has the highest capacity reduction to reduce total capacity. For

example, if reducing device capacity can generate the largest

capacity reduction while satisfying the latency percentage con-

straint, TPIO will adjust the devices’ capacity to rapidly reach

the objective of minimum capacity.

C. The TPIO Algorithm

The TPIO algorithm is shown in Fig. 3. Initially, depend-

ing on the number of devices and edges, TPIO constructs

the hierarchical MEC-based architecture by almost uniformly

mapping the devices to edges. Each edge is thus responsible

for ⌊ND/NE ⌋ devices except the last one. The device j has

the parent edge i = ⌊j/⌊ND/NE ⌋⌋. For clarity, we use the

index (i, j), rather than (⌊j/⌊ND/NE ⌋⌋, j) for used notations.

First, the percentages of four types are initially set to be the

same, i.e., λDC
i ,j = λDE

i ,j = λECi ,j = λEEi ,j = 1
4λi ,j . Thus we

can determine the arrival rate of each node as

λDi ,j = λDC
i ,j + λDE

i ,j ,

λEi =
∑

j

(

λDE
i ,j + λECi ,j + 2λEEi ,j

)

,

λC =
∑

i

∑

j

(

λDC
i ,j + λECi ,j

)

. (9)

TPIO then determines the initial capacity of each node,

µC , µEi , µDi ,j . It assumes the traffic takes the same time in each

node and ignores the latency spent in links to let the allocated

capacity be enough. That is, the latency in each node is L/2.

Thus, according to Eq. (2), the initial allocated capacity for

the core, edges, and devices is

µC = λC −

(

loge(1− ThL)

L/2

)

,

µEi = λEi −

(

loge(1− ThL)

L/2

)

,

µDi ,j = λDi ,j −

(

loge(1− ThL)

L/2

)

. (10)

Fig. 4. Flow chart of phase 1.

Next, a loop for iteratively calculating traffic and capacity

allocation is repeated until a satisfactory result is obtained. In

Fig. 3, phase 1 adjusts traffic allocation and phase 2 adjusts

capacity allocation. We compute Fi ,j (L), the percentage of

traffic satisfying the latency constraint in device di ,j according

to Eq. (7). Then we calculate F(L) to determine the percent-

age of all traffic satisfying L. Comparing F(L) with ThL to

determine whether current traffic allocation can satisfy the

latency percentage constraint. If F(L)≥ ThL, i.e., the traffic

allaocation satisfies the latency percentage constraint, TPIO

will enter phase 2 to reduce the allocated capacity. However,

phase 1 might not get the proper traffic allocation when the

allocated capacity is too small. To solve this problem, we count

the number of iterations in phase 1, i.e., count1. If this number

is larger than a threshold, TH1, it means that current allocated

capacity cannot satisfy the latency percentage constraint, and

so TPIO enters phase 2.

The stop criteria is when ∆µtotal/µtotal is less than a tiny

value, ǫ, where ∆µtotal is the capacity variation and µtotal is

the total capacity. In this case, the capacity reduction ratio is

less than a tiny value. Also a threshold, TH2, is used to limit

the number of iterations of phase 2, count2.

1) Phase 1 (Low-Latency Traffic Allocation): The detailed

flow chart for phase 1 is shown in Fig. 4. We first compute

Fi ,j (L), the percentage of traffic that satisfies the latency con-

straint in device di ,j according to Eq. (7). As currently F(L) is

smaller than ThL, there are some devices with Fi ,j (L)<ThL.

6

Fig. 5. Flow chart of phase 2.

Which we select as the victims, and then calculate the prob-

ability that these victims will adjust their traffic allocation.

The probability of changing traffic allocation in device di ,j ,

denoted as pi ,j , is calculated as

pi ,j = max

(

1−
Fi ,j (L)

ThL
, 0

)

. (11)

If Fi ,j (L) is much less than ThL, it is more likely to

shift the traffic in device di ,j . According to the probabil-

ity pi ,j , if a victim determines it necessary to adjust traffic

allocation, TPIO adjusts the traffic according to the guide-

lines in Table III, and computes the amount of shifted traffic

by the corresponding equation among Eqs. (3)∼(6). For

example, if the shifted traffic is DC-type traffic, TPIO uses

FDC
i ,j (L) = ThL to reduce this and thus obtains a changed traf-

fic allocation (λ′DC
i ,j , λ′DE

i ,j , λ′ECi ,j , λ′EEi ,j). After adjusting the

traffic for each victim, we compute a new F(L) and determine

whether it is better than the old F(L). If so, TPIO replaces

(λDC
i ,j , λDE

i ,j , λECi ,j , λEEi ,j) with (λ′DC
i ,j , λ′DE

i ,j , λ′ECi ,j , λ′EEi ,j). On

the other hand, if the new F(L) is worse than the old one, TPIO

retains (λDC
i ,j , λDE

i ,j , λECi ,j , λEEi ,j) without making any changes.

2) Phase 2 (Low Capacity Allocation): The detailed flow

chart for phase 2 is shown in Fig. 5. Here we reduce the node

which has the maximum capacity reduction to reduce the total

capacity. First, TPIO computes the new capacity µ′C with

current µEi and µDi ,j after satisfying the latency percentage

constraint according to Eq. (8). Similarly, TPIO computes the

new µ′Ei with current µC and µDi ,j , and computes the new

capacity µ′Di ,j with current µC and µEi . Comparing the capacity

reduction, where ∆µC = (µC − µ′C), ∆µE =
∑

i (µ
E
i −

µ′Ei), and ∆µD =
∑

i

∑

j (µ
D
i ,j − µ′Di ,j), phase 2 determines

which capacity should be reduced. TPIO selects the maximum

capacity reduction to carry out the adjustment. For example, if

Fig. 6. Simulation scenario.

the core’s capacity can be reduced the most, TPIO will reduce

its capacity, so that capacity allocation is changed to (µ′C ,

µEi , µ
D
i ,j). To determine the terminiation conditon, phase 2 also

calculates ∆µtotal = max(∆µC ,∆µE ,∆µD) and µtotal =
µC +

∑

i µ
E
i +

∑

i

∑

j µ
D
i ,j .

D. The Time Complexity of the TPIO Algorithm

The TPIO is a two-phase algorithm. As can be seen in

Fig. 4, as the algorithm of phase 1 calculates the traffic

allocation once for each device, its complexity is O(ND).

Figure 3 shows that TPIO repeats phase 1 many times per

phase 2. Since we use a good heuristic to shift the traffic, the

average count (count1) in phase 1 is not too large, as shown in

Section IV-B. Also a threshould TH1 is set to limit the times

of its iterations. Thus for each phase 2, the time complexity

of phase 1 in the worst case is O(ND× TH1).

From Fig. 5 can be seen that the complexity of phase 2 is

O(1+NE+ND) because it calcutes the capacity reduction for

each node, including core, edges and devices. However, the

difficulty is to determine how many times of phase 2, but

we could not obtain an exact number. However, as we use

Eq. (8) to calculate how much capacity can be reduced under

current traffic allocation, the capacity reduction might be large

at first, but not subsequently. Therefore, the iteration times of

phase 2 (count2) is not large and TPIO can rapidly converge,

as shown in Section IV-B. Also, a threshould TH2 is set to

limit the number of iterations. Thus, the complexity of TPIO

in the worst case can be estimated as O(TH 2×(ND×TH 1+
(1 +NE +ND))) = O(TH 2× TH 1×ND), because ND is

always larger than NE .

V. EVALUATION

In this section we deal with some simulations to investigate

the performance of TPIO. First, we describe the simula-

tion scenario and default parameters, and then investigate the

effects of some important parameters. Finally, we give some

lessons learned.

A. Scenarios and Parameters

The simulation scenario is a three-tier hierarchical network

as shown in Fig. 6, comprising a core, 100 edges, and

7

TABLE IV
DEFAULT VALUES FOR SIMULATION

1000 devices. Each edge covers 10 devices and each device

has traffic arriving at a rate of 20,000 packets/sec. The distance

between the core and the devices is 10 km, so the area of the

simulation scenario is 102π km2. All devices are assumed to

be uniformly distributed. Thus, the distance between edges and

devices is determined by the number of devices that each edge

covers. If the number of edges is varied, the number of devices

that each edge covers varies and the distance between edges

and devices also varies. Thus, when the distance between the

devices and the core is XDC , the distance between the devices

and the edges, XDE , can be calcauted as

XDE × XDE

⌊

ND
NE

⌋ =
XDC × XDC

ND
,

where ⌊ND
NE

⌋ is the number of devices that each edge covers

except the last edge.

The latency constraint follows 5G network guidelines and is

set at 1 ms [3]. The link between core and edges is considered

as a fiber network, so that the propagation speed is 3 × 108 m/s

and the link bandwidth is 10 Gbps. The link between edges

and devices is considered as a 5G network, so that bandwidth

is set as 1 Gbps. Table IV summarizes the parameters and

default values used in this experiment.

B. Results

1) The Performance of TPIO: Figure 7 shows the com-

parison between the capacity of three-tier and two-tier archi-

tectures with different numbers of edges. The unit of Y-axis

is Mpackets/sec, i.e., 106 packets/sec. The middle tier has

edges in three-tier architecture, while the base station in two-

tier architecture has no computing capacity. The capacity in

three-tier architecture is obviously lower than that of two-tier

architecture with the same parameters. Three-tier architecture

reduced the capacity by 20.7% (50.7−40.2
50.7) at most when

NE = 50, which confirmed the necessity of edges.

With only one edge, its location is the same as that of

the core. Intuitively, three-tier architecture will be reduced to

Fig. 7. The performance comparison between three-tier(TPIO), three-
tier(optimal) and two-tier.

Fig. 8. The time complexity of TPIO.

two-tier architecture and they should have the same allocated

capacity. However, even in this case, three-tier architecture still

has lower capacity than two-tier architecture. This is because

the computation offloading from devices to edges is possible

in three-tier architecture, but offloading from devices to core

is impossible in two-tier architecture. Offloading computation

from devices to edges can significantly decrease the amount

of allocated capacity.

Figure 7 also compares the performance of TPIO and the

optimal solution, which is solved by a brute-force approach

and a time-consuming procedure, in three-tier architecture. We

observed that the optimal solutions under different numbers of

edges were almost the same. With fewer edges, the capacity of

an edge became more concentrated and thus reduced required

capacity. On the other hand, in this case the distance between

the devices and edges increased, so the capacity of this archi-

tecture grew to compensate for this increase in propagation

delay. Thus, the positive and negative effects resulted in sim-

ilar optimal solutions. TPIO also achieved very close to the

optimal solution when NE = 50 and a slightly higher capacity

by 6.2% (43.0−40.5
40.5) at most when NE = 300.

Figure 8 shows the efficiency of TPIO by giving the aver-

age number of iterations of phase 1 per phase 2 (average

count1), the number of iterations of phase 2 (count2), and

execution time. The average count1 was always less than 20

and count2 ranged between 15 and 45. Thus we set both TH1

and TH2 as 100. The specifications of the computer running

8

the TPIO algorithm are Intel i5-3230M CPU, 4GB RAM,

with Windows 10 operating system. The execution time of

1700 seconds at most verifies the acceptable complexity of

TPIO.

2) The Effects of the Number of Edges: From Fig. 9(a):

when fewer edges existed, TPIO generated less capacity

because the capacity of an edge became more concentrated

and thus reduced capacity. When the number of edges was too

small, for example, NE = 1, the distance between edges and

devices was far, resulting in the increase of the required capac-

ity. Thus, the number of edges should be properly selected. We

also observed that most capacity was allocated to edges, which

confirmed the necessity of edges.

From Fig. 9(b): most traffic was λEEi ,j , showing that most

traffic obtained two functions in edges, which is why µEi was

large. When NE was small, as the distance between edges and

devices was large, there was some traffic belonging to λDC .

However, when NE increased, as edges were closer to devices,

λDC was shifted to λDE and λEE , resulting in the decrease

of λDC and the increases of λDE and λEE .

3) The Effects of Latency Constraint: The latency con-

straint in 5G is of the order of ms and will affect the

performance of MEC-based architecture. Figure 10(a) shows

the capacity allocation under different latency constraints.

It is reasonable that a higher latency constraint will result

in higher capacity. Note too that the latency constraint is

more likely to be satisfied when traffic is served by the

devices. Therefore, when latency constraint becomes loose,

the capacity of devices decreases to reduce the capacity.

Furthermore, the capacity of edges occupies a significantly

major portion of total capacity. The capacity ratio of edges

was always more than 70%, irrespective of the latency

constraint.

As we know, offloading computation to a higher tier can

reduce total capacity, but it may cause longer latency. Thus,

traffic should preferentially be served by a higher than by

a lower tier when latency constraint is loose, to reduce the

capacity. As shown in Fig. 10(b), λDC was shifted to λEC

by about 25% when latency constraint increased from 0.5ms

to 2.5ms.

4) The Effects of ThL: Figure 11(a) shows the capacity allo-

cation under different ThLs. The total capacity increased by

12.2% as ThL increased from 50% to 90%. It is reasonable

that a larger capacity is accompanied by a higher QoE. This

figure also shows the trade-off between capacity and QoE.

As we know, offloading computation to a higher tier can

reduce total capacity, but it may also cause longer latency.

Furthermore, when a high ThL is set, the traffic must be served

in a lower tier to allow more traffic to satisfy the latency per-

centage constraint. As shown in Fig. 11(b), the traffic type

λDC and λEC were reduced with increasing ThL. λDC and

λEC were shifted to λEE when ThL increased from 50%

to 90%.

An interesting phenomenon can be observed from

Fig. 11(a): the increase in the total capacity was mainly due

to the edge capacity when ThL changed. From Fig. 11(b) can

be seen that λDC and λEC were shifted to λEE when ThL

Fig. 9. The effects of the number of edges.

Fig. 10. The effects of latency constraint.

Fig. 11. The effects of ThL.

changed from 50% to 90%. As λEE was increased, more

capacity in edges had to be allocated.

5) The Effects of the Distance Between Devices and Core:

Figure 12(a) shows the capacity under different distances

between devices and the core, i.e., XDC . The total capac-

ity increased slightly as XDC increased from 10km to 50km

because the extra propagation delay of 0.13ms was needed. We

can see that the capacity of core decreased and the capacity

of edges increased to avoid this propagation delay. As shown

in Fig. 12(b), when XDC became longer, the traffic type λDC

was shifted to λDE or λEE . Also the traffic type λEC was also

shifted to λDE or λEE . That is, when the distance between

9

Fig. 12. The effects of XDC .

devices and the core was far, no traffic got its function in

the core.

C. Lessons Learned

Some interesting lessons can be learned from these results.

(1) The edges are essential for satisfying the latency per-

centage constraint and reducing the allocated capacity. If using

two-tier architecture, more capacity must be allocated.

(2) The number of edges should be properly selected.

Basically, too many edges cause more capacity, while too few

edges make the distance between devices and edges too far,

also resulting in more capacity.

(3) Most capacity, always more than 70%, is allocated to

the edges.

(4) When the latency percentage constraint becomes stricter,

however, the increase of capacity is not as large. Thus, ThL

can be set as a reasonable value, for example, 90%.

(5) When the distance between the core and devices

becomes longer, more capacity should be allocated to devices

and edges to avoid propagation delays between edges and the

core. In this case, no traffic gets its function in the core. Thus,

it is meaningless to place the core in a location too far away

from devices.

VI. CONCLUSION

This paper proposes TPIO to optimize capacity and traf-

fic allocation under the constraint of ultra-low latency in

a three-tier MEC-based network. TPIO iteratively uses two

phases to adjust capacity and traffic allocation because they

are tightly-coupled. Given fixed capacity allocation, we use

queuing theory to calculate optimal traffic allocation. On the

other hand, given fixed traffic allocation, allocated capacity is

further reduced under satisfying latency percentage constraint.

TPIO exploits queuing theory to calculate latency and its dis-

tribution to obtain the percentage of traffic that satisfies latency

constraint and decides whether or not it is below ThL.

A simulation exercise shows that MEC-based architecture

with TPIO can save up to 20.7% of capacity compared to two-

tier architecture. This result shows the necessity of a tier of

edges. The superiority of TPIO can be observed because its

performance is close to the optimal solution and it can signifi-

cantly reduce time complexity. The role of edges is necessary

because they can offload traffic originally served by the core,

devices, or both. Another important consequence is the trade-

off between the latency percentage constraint and capacity.

Additional capacity of 12.2% will be incurred when ThL is

90%, compared to that when ThL is 50%. Furthermore, λDC

and λEC are shifted to λEE when ThL is changed from 50%

to 90%. Also, the distance between the core and devices is an

important factor to affect the capacity and traffic allocation.

Despite being promising, there is much work to be done

in the future. First, instead of using two services, a scenario

with more diverse services should be considered. Second, the

wireless link bandwidth between devices and edges should be

extended to a dynamic value instead of a fixed one used in

this paper. Finally, the issue about service chain deployment

in MEC-based architecture could be further investigated.

REFERENCES

[1] 5G Related Aspects in ITU-R Working Party 5D (Responsible Group for

Terrestrial IMT in ITU-R). Accessed: Oct. 14, 2016. [Online]. Available:
https://www.itu.int/en/membership/Documents/missions/GVA-mission-
briefing-5G-28Sept2016.pdf

[2] N. A. Johansson, Y.-P. E. Wang, E. Eriksson, and M. Hessler, “Radio
access for ultra-reliable and low-latency 5G communications,” in Proc.

IEEE ICC Workshop 5G Beyond Enabling Technol. Appl., Jun. 2015,
pp. 1184–1189.

[3] G. P. Fettweis, “The tactile Internet: Applications and challenges,” IEEE

Veh. Technol. Mag., vol. 9, no. 1, pp. 64–70, Mar. 2014.
[4] J. Zhang, W. Xie, F. Yang, and Q. Bi, “Mobile edge computing and

field trial results for 5G low latency scenario,” China Commun., vol. 13,
no. 2, pp. 174–182, Feb. 2016.

[5] T. O. Olwal, K. Djouani, and A. M. Kurien, “A survey of resource
management toward 5G radio access networks,” IEEE Commun. Surveys

Tuts., vol. 18, no. 3, pp. 1656–1686, 3rd Quart., 2016.
[6] Y. Yu, “Mobile edge computing towards 5G: Vision, recent progress, and

open challenges,” China Commun., vol. 13, no. 2, pp. 89–99, Feb. 2016.
[7] (Sep. 18, 2014). Mobile-Edge Computing Introductory Technical

White Paper. [Online]. Available: https://portal.etsi.org/portals/0/
tbpages/mec/docs/mobile-edge_computing-introductory_technical_
white_paper_v1%2018-09-14.pdf

[8] L. Tang, X. Chen, and S. He, “When social network meets mobile cloud:
A social group utility approach for optimizing computation offloading
in cloudlet,” IEEE Access, vol. 4, pp. 5868–5879, 2016.

[9] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE/ACM Trans. Netw.,
vol. 24, no. 5, pp. 2795–2808, Oct. 2015.

[10] X. Chen, “Decentralized computation offloading game for mobile
cloud computing,” IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 4,
pp. 974–983, Apr. 2015.

[11] Y. Li, P. Wang, D. Niyato, and Z. Han, “A hierarchical cooperation
formation model for downlink data transmission in mobile infosta-
tion networks,” IEEE Wireless Commun., vol. 20, no. 3, pp. 144–152,
Jun. 2013.

[12] O. Muñoz, A. P. Iserte, J. Vidal, and M. Molina, “Energy-latency
trade-off for multiuser wireless computation offloading,” in Proc. IEEE

Workshops Wireless Commun. Netw. (WCNCW), 2014, pp. 29–33.
[13] H. Wu, Q. Wang, and K. Wolter, “Tradeoff between performance

improvement and energy saving in mobile cloud offloading systems,”
in Proc. IEEE Conf. Commun. (ICC), Jun. 2013, pp. 728–732.

[14] D. Huang, P. Wang, and D. Niyato, “A dynamic offloading algorithm
for mobile computing,” IEEE Trans. Wireless Commun., vol. 11, no. 6,
pp. 1991–1995, Jun. 2012.

[15] S. Sardellitti, G. Scutari, and S. Barbarossa, “Joint optimization of radio
and computational resources for multicell mobile-edge computing,”
IEEE Trans. Signal Inf. Process. Over Netw., vol. 1, no. 2, pp. 89–103,
Jun. 2015.

[16] H. Zhang et al., “Fog computing in multi-tier data center networks:
A hierarchical game approach,” in Proc. IEEE Conf. Commun. (ICC),
2016, pp. 1–6.

[17] L. Tong, Y. Li, and W. Gao, “A hierarchical edge cloud archi-
tecture for mobile computing,” in Proc. IEEE Conf. Comput.

Commun. (INFOCOM), Jun. 2016, pp. 1–9.

10

