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THREE TIME-SCALES IN AN EXTENDED BONHOEFFER-VAN DER POL

OSCILLATOR

P. DE MAESSCHALCK, E. KUTAFINA, AND N. POPOVIĆ

Abstract. We consider an extended three-dimensional Bonhoeffer-van der Pol oscillator which
generalises the planar FitzHugh-Nagumo model from mathematical neuroscience, and which was
recently studied by Sekikawa et al. [18] and by Freire and Gallas [7]. Focussing on a parameter
regime which has hitherto been neglected, and in which the governing equations evolve on three
distinct time-scales, we propose a reduction to a model problem that was formulated by Krupa
et al. [12] as a canonical form for such systems. Based on results previously obtained in [12],
we characterise completely the mixed-mode dynamics of the resulting three time-scale extended
Bonhoeffer-van der Pol oscillator from the point of view of geometric singular perturbation theory,
thus complementing the findings reported in [18]. In particular, we specify in detail the mixed-mode
patterns that are observed upon variation of a bifurcation parameter which is naturally obtained
by combining two of the original parameters in the system, and we derive asymptotic estimates
for the corresponding parameter intervals. We thereby also disprove a conjecture of [22], where it
was postulated that no stable periodic orbits of mixed-mode type can be observed in an equivalent
extension of the Bonhoeffer-van der Pol equations.

1. Introduction

In this article, we consider the three-dimensional Bonhoeffer-van der Pol oscillator, a known
extension of the classical planar FitzHugh-Nagumo equations from mathematical neuroscience [9],
which was studied most recently by Sekikawa et al. [18] and by Freire and Gallas [7]. Specifically,
we are concerned with the following system of equations:

εẋ = x(1− x2) + y + z,(1a)

ẏ = −x− k1y +B0,(1b)

ż = k3(−x− k1z +B0);(1c)

here, we have retained the notation of [18], with ε the ‘small’ singular perturbation parameter and
three additional parameters which are denoted by B0, k1, and k3.

Equation (1) is known to display rich dynamics on at least two different time-scales due to
the presence of the small parameter ε [18, 7]. Here, we focus on the stable mixed-mode oscillatory
behaviour [3] that was reported both numerically and experimentally – by construction of an equiv-
alent electrical circuit – in [18]; in the follow-up article [7], the resulting mixed-mode patterns were
organised systematically in terms of Farey trees, as well as of more general Stern-Brocot trees. In
both studies, the two parameters B0 and k3 were identified as crucial for the unfolding of the bifur-
cation structure of (1); in particular, Sekikawa et al. [18] observed mixed-mode dynamics close to a
pair of (supercritical) Hopf bifurcations which occur in (1) for B0 ≈ ±1

2 , where, additionally, k3 was
assumed to be close to one. (We note that there is a symmetry (x, y, z, B0) → (−x,−y,−z,−B0)
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in Equation (1), allowing us to restrict our study to the regime where B0 > 0 or, rather, to consider
B0 ≈ 1

2 only.) Mixed-mode oscillations (MMOs) are typically found in dynamical systems that
evolve on multiple scales, and that are hence ‘fast-slow;’ see [3] and the references therein for de-
tails. Due to the oftentimes complex nature of these systems, the presence of MMOs is frequently
established only numerically; almost equally often, it is proven by applying geometric singular per-
turbation theory [6, 10]. The latter approach crucially relies on a separation of scales to achieve
a (partial) dimension reduction, thus allowing for a semi-analytical treatment in many cases. One
downside of the geometric approach, however, is that, strictly speaking, it is only valid in the limit
as ε → 0, where ε defines the scale separation in the system. Fortunately, the analysis frequently
does extend to ‘reasonable’ values of ε > 0; in fact, numerical evidence presented in Section 4 below
suggests that the results obtained in this article may remain valid for ‘moderately large’ ε(= 0.1).

Our aim here is to analyse Equation (1) from the point of view of geometric singular perturbation
theory, focussing on a parameter regime that has not been considered in previous work [18, 7]: we
will show that, for 0 . k3 ≪ 1, Equation (1) evolves on three distinct time-scales, and we will
describe in detail the corresponding mixed-mode dynamics, thus complementing the findings of
Sekikawa et al. [18]. Specifically, it follows from (1c) that z is a ‘super-slow’ variable then; in fact,
in the limit of k3 = 0, z is constant, i.e., the system reduces to a van der Pol-like oscillator that can
undergo a ‘classical’ canard explosion [5, 14], transitioning from a stable equilibrium to relaxation
oscillation via a family of canard cycles as z is varied. (Similarly, a reduction to a planar FitzHugh-
Nagumo system is feasible when k3 = 1: after introduction of y + z as a new variable, it becomes
apparent that the (x, y + z)-equations decouple.) It is hence reasonable to assume that a canard
phenomenon underlies the mixed-mode dynamics which is generated by Equation (1) when k3 is
non-zero, but small. In fact, the so-called ‘generalised canard mechanism’ [1] has been proposed
as a unified generating mechanism for mixed-mode behaviour in singularly perturbed systems of
equations such as (1): typically, MMOs are characterised by an alternation of small-amplitude
oscillations (SAOs) that are followed by large excursions, or large-amplitude oscillations (LAOs).
The former can frequently be shown to be due to (local) flow past a canard point, while the latter
can be described by a (global) relaxation-like return mechanism. Periodic mixed-mode type orbits
consisting of k SAOs and L LAOs are identified with the signature Lk; knowledge of the possible
signatures in a given system, in combination with estimates for the relevant parameter intervals,
characterises completely the mixed-mode dynamics of the system.

In our case, with 0 . k3 ≪ 1, such a characterisation is conveniently achieved by reducing
Equation (1) to the simplified three time-scale model

εv̇ = −z + f2v
2 + f3v

3,(2a)

ż = v − w,(2b)

ẇ = ε(µ− g1z),(2c)

which was proposed in [12] as representative for that type of system. Here, f2, f3, and g1 denote
fixed parameters, ε is assumed to be a small parameter, as above, and µ is the bifurcation parameter
that unfolds the mixed-mode dynamics of (2).

While no comprehensive theory exists for perturbative scenarios that involve more than one
singular parameter, in the seminal article [12], Krupa et al. characterised the mixed-mode dynamics
that is generated by Equation (2). The authors then argued that their model is prototypical, in
that it reflects the dynamical properties of three time-scale systems with similar local structure, as
described in their article. While the analysis of [12] does not translate verbatim to the context of
the extended Bonhoeffer-van der Pol oscillator, Equation (1), as we encounter additional terms in
the reduced equations that are not present in (2), we nevertheless reach analogous conclusions on
the resulting mixed-mode dynamics. Our study hence underpins the claim made in [12], namely,
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that Equation (2) truly represents a canonical form. (We remark that a reduction of the so-called
Wilson-Calloway model for the dopaminergic neuron [24] to (2) can be found in the related article
[13]; our analysis will be similar in spirit to theirs.)

Finally, we note that the extended Bonhoeffer-van der Pol oscillator has been considered as a
three time-scale system before, in [22], albeit in a slightly different formulation. Based on detailed
asymptotics – which, incidentally, bears some resemblance to our approach – and numerical sim-
ulation, the author of that article was led to conclude the likely absence of stable periodic orbits
of mixed-mode type in the system. Applying geometric singular perturbation theory, we disprove
that conjecture rigorously.

This article is organised as follows. In Section 2, we study Equation (1) in the standard two
time-scale form of geometric singular perturbation theory, with one fast variable x and two slow
variables (y, z). In Section 2.1, we describe the singular flow that is obtained for ε = 0 in (1).
Then, in Section 2.2, we locate so-called ‘folded equilibria,’ which are crucial to the generation of
canard-induced SAOs in the observed mixed-mode time series, and we identify a ‘folded saddle-
node of type II’ (FSN II) [20, 15] as the ‘organising centre’ for the dynamics. In Section 2.3,
we introduce a local formulation for Equation (1) close to that folded equilibrium; moreover, we
define the bifurcation parameter µ – a combination of k1 and B0 – which unfolds the mixed-mode
dynamics of (1). Finally, in Section 2.4, we apply standard geometric theory [6, 10] to approximate
the global return mechanism which resets the flow to the SAO regime after passage through the
fold region, and which hence accounts for the LAO portion of the resulting mixed-mode time series.

In Section 3, we perform a proper three-scale analysis of the transformed ‘localised’ version of
(1) obtained in Section 2, under the additional assumption that k3 = O(ε). (For simplicity, and
in agreement with the parameter regime considered in [18], we will assume k3 = 0.1 = ε.) In
Section 3.1, we study the local dynamics near the folded saddle-node identified in Section 2.2 by
means of a ‘blow-up’ transformation [5, 14] which uncovers the near-integrable structure of the
equations, thus desingularising the flow there. Next, we describe the entry into, and the exit
from, the fold region, which completes our analysis of the local dynamics. In Section 3.2, we
then combine the resulting asymptotic estimates with our description of the global return, thus
obtaining an approximation for the first-return map of the three time-scale Bonhoeffer-van der
Pol oscillator. In Section 3.3, we discuss the bifurcation structure of that map, with a particular
focus on secondary (‘bifurcating’) canards and sectors of rotation; then, in Section 3.4, we outline
a reduction to an essentially one-dimensional map, which we analyse in accordance with [12, 13].

Finally, in Section 4, we discuss our findings, and we illustrate them numerically; moreover, we
present potential pointers for future research.

2. Two time-scale analysis

Assuming, for the time being, that the parameter k3 in Equation (1c) does not scale with ε,
we may interpret the equations in (1) as a fast-slow system in standard form that evolves on two
distinct time-scales, the ratio of which is given by the singular perturbation parameter ε.

2.1. Reduced flow. Setting ε = 0 in (1) and considering the resulting reduced equations, we find
the (two-dimensional) critical manifold

S0 :=
{

(x, y, z)
∣

∣ y = ϕ(x, z) = −x(1− x2)− z, (x, y, z) ∈ D ⊂ R
3
}

,

where D := [−x0, x0]× [−y0, y0]× [−z0, z0] is a compact subset of R3 with z0 >
√
3
9 , y0 >

2
√
3

9 + z0,

and x0 >
2
√
3

3 ; the corresponding layer dynamics is given by horizontal fibres in the x-direction, with

y and z fixed. Solving ∂ϕ
∂x

(x, z) = −(1−3x2) = 0 for x, one then readily verifies that S0 is normally

hyperbolic except at the two fold lines ℓ± :=
{

(x, y, z)
∣

∣x = ±
√
3
3 , y = −z ∓ 2

√
3

9 , z ∈ [−z0, z0]
}

,
3



with z0 as above. Hence, it follows that the manifold S0 can be written as the union of three sheets,
S0 = Sa−

0 ∪ Sr
0 ∪ Sa+

0 , with Sa±
0 attracting and Sr

0 repelling; here, Sa−
0 , Sr

0 , and Sa+
0 are defined

by x < −
√
3
3 , x ∈ (−

√
3
3 ,

√
3
3 ), and x >

√
3
3 , respectively, with y and z varying accordingly. (An

illustration of the resulting geometry – albeit in a transformed coordinate frame, to be introduced
in Section 2.3 below – can be found in Figure 1; here, we remark that the assumptions on x0, y0,
and z0 in the definition of the set D above are made precisely to encapsulate that geometry.) For
ε > 0 sufficiently small, we then denote the corresponding sheets of the slow manifold Sε by Sa−

ε ,
Sr
ε , and Sa+

ε , respectively.
Next, we recall that we have opted to consider only the regime where B0 > 0 in (1); then, it is

easy to verify that the ‘left’ fold line ℓ− is always of jump type in that regime, with a slow flow
that is pointed in the direction of increasing y. As is well known, geometric singular perturbation
theory [6, 10] can be combined with the desingularisation technique known as ‘blow-up’ [4, 14] to
describe the flow near ℓ−; see also [21], where the resulting relaxation dynamics is studied from a
geometric point of view.

The flow near the ‘right’ fold ℓ+, on the other hand, is more involved; in particular, we argue
that the presence of a (singular) Hopf bifurcation [8] near ℓ+ for B0 ≈ 1

2 suggests the occurrence
of complicated canard-type dynamics there, i.e., the existence of solutions that cross from the
attracting sheet Sa+

ε to the repelling sheet Sr
ε , staying near the latter for extended periods of time

before being repelled away. To describe the corresponding dynamics, we first verify the presence
of ‘folded equilibria’ [20, 23] in (1), which are a necessary prerequisite for the existence of canard
trajectories.

2.2. Folded equilibria. To determine the folded equilibria of Equation (1), we proceed as in [13,
Section 2.4]: we set ε = 0 in (1a) and then differentiate the relation ϕ(x, z)− y = 0 with respect to

time τ , obtaining ẏ = ∂ϕ
∂x

ẋ+ ∂ϕ
∂z

ż = −(1− 3x2)ẋ− ż. Substituting for ẏ and ż from (1b) and (1c),
respectively, we have

−(1− 3x2)ẋ = −x+ k1[x(1− x2) + z] +B0 + k3(−x− k1z +B0).

Appending Equation (1c) and desingularising the resulting system by multiplication of the right-

hand sides with a factor of ∂ϕ
∂x

, we find the projection of the reduced flow on S0 onto the (x, z)-plane
in a neighbourhood of ℓ+:

ẋ = −x+ k1[x(1− x2) + z] +B0 − k3(x+ k1z −B0),(3a)

ż = k3(x+ k1z −B0)(1− 3x2).(3b)

Now, ‘folded equilibria’ of Equation (1) [13] correspond to equilibrium points (x+, z+) of (3) that

satisfy ∂ϕ
∂x

(x+, z+) = 0, and that are hence located at

x+ =

√
3

3
and z+ =

3
√
3(1−

√
3B0)(1 + k3)− 2

√
3k1

9k1(1− k3)
.(4)

(‘Regular’ equilibria of (3), i.e., equilibria that do not lie on ℓ+, are found by requiring that
x+ k1z −B0 = 0 and −x+ k1[x(1− x2) + z] +B0 = 0 hold simultaneously.) For future reference,
we note that z+ depends on the parameters k1, k3, and – most importantly – B0. Since, moreover,
∂ϕ
∂x

< 0 for −
√
3
3 < x <

√
3
3 , the desingularisation leading to (3) effectively reverses the direction of

the flow on Sr
0 , allowing for the existence of canard trajectories that can pass from Sa+

0 to Sr
0 via

the folded equilibrium at P+ = (x+, z+); see again [20, 23] for details.
We claim that the point P+ undergoes a saddle-node bifurcation on the fold line ℓ+ for some

critical value B∗
0 of the parameter B0:
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S
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0

S
a+

0
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0

z

w

v

ℓ
+

ℓ−

Γ
0
ε

Γ
1
ε

Figure 1. Geometry of Equation (6).

Lemma 1. The folded equilibrium P+ = (x+, z+), with x+ and z+ defined as in Equation (4),

undergoes a saddle-node bifurcation of type II as B0 passes through B∗
0 ≡

√
3
9 (3− k1).

Proof. Linearising Equation (3) about P+, we obtain

J =

[

−(1 + k3) k1(1− k3)

−4
√
3k3

3
√
3−

√
3k1−9B0

9(1−k3)
0

]

for the Jacobian of the reduced flow at (x+, z+), as given in (4). Since the trace of J is −(1 + k3),
while the determinant is of the order k3, we deduce that one of the eigenvalues of J equals −1 +
O(k3), while the other is O(k3). Solving det J = 0 for B0, we find that the latter eigenvalue equals

zero for 3− k1 − 3
√
3B0 = 0, which yields B0 =

√
3
9 (3− k1) ≡ B∗

0 , as claimed.
Finally, it is straightforward to verify that the eigendirection corresponding to the zero eigenvalue

for B0 = B∗
0 is transverse to the fold line ℓ+, i.e., that P+ is a folded saddle-node of type II; see

[20] for details. (In fact, one calculates that the eigenvalue-eigenvector pairs of J for B0 = B∗
0 are

given by {−(1 + k3), (1, 0)} and {0, (k1
1−k3
1+k3

, 1)}, respectively.) �

Remark 1. Alternatively, one can determine B∗
0 by considering the (2, 1)-entry of the Jacobian

J : B∗
0 is precisely the value of B0 for which that entry equals zero. �

In sum, one hence obtains the following picture for the projected reduced flow of Equation (1):
when B0 > B∗

0 , a stable node equilibrium exists on the ‘right’ (attracting) sheet Sa+
0 of S0, while

P+ is a folded saddle; for B0 = B∗
0 , that equilibrium coalesces with P+ in a transcritical bifurcation

of a saddle and a node, i.e., the point P+ undergoes a saddle-node bifurcation on the fold ℓ+. (In
fact, one can show that P+ is both a regular and a folded equilibrium in that case.) Finally, when
B0 < B∗

0 – which is the regime we are interested in – P+ is a folded node, while a saddle equilibrium
is found on the ‘middle’ (repelling) sheet Sr

0 of S0.

2.3. Local formulation. In this subsection, we rewrite Equation (1) in a form that is more suitable
for the following analysis; to that end, we perform a series of coordinate changes which transform
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(1) into an equivalent set of equations that is centred on the ‘right’ fold line ℓ+. We begin by
translating the folded equilibrium at P+ to the origin by introducing the new variables

v = −(x− x+), p = y + z − (y+ + z+) = y + z +
2

9

√
3, and q = z − z+;

here, x+ and z+ are defined as in Equation (4), while the constant in the definition of p is obtained
by solving 0 = x+(1− x2+) + y+ + z+, as found from (1a), for y+ + z+. (The change of sign in the
definition of v additionally reflects the critical manifold S0 about the q-axis, thus bringing it into
a more familiar configuration; clearly, that reflection reverses the location of the two sheets Sa±

ε ,
with Sa+

ε becoming the ‘left’ attracting sheet and Sa−
ε the ‘right’ one.)

The system of equations resulting from the above transformation is given by

εv̇ =
√
3v2 − v3 − p,(5a)

ṗ = (1 + k3)v + k1(1− k3)q − k1p,(5b)

q̇ = k3(v − k1q − µ),(5c)

where µ = 2
1−k3

(B∗
0−B0) denotes a new parameter, with B∗

0 defined as in the statement of Lemma 1.
Finally, to reduce these equations to a form that is as close as possible to the canonical system

in (2), we rescale q by introducing the new variable w = −k1q, and we abuse notation slightly,
relabelling p as z for consistency with [12]:

εv̇ =
√
3v2 − v3 − z,(6a)

ż = (1 + k3)v − (1− k3)w − k1z,(6b)

ẇ = k1k3(µ− w − v).(6c)

For future reference, we remark that the critical manifold S0 is given by z = f(v) :=
√
3v2 − v3

in the context of Equation (6); the corresponding reduced geometry of (1) in the singular limit of
ε = 0 is sketched in Figure 1.

2.4. Global return mechanism. Before considering in detail the local dynamics of (6) in a
neighbourhood of the fold line ℓ+, we discuss the global return mechanism which reinjects the flow
into the fold region after relaxation has occurred. As in [12, Section 2.1], we first define two sections,
a section Σin : {v = −ρ} through the attracting sheet Sa+

0 and a section Σout : {v = δ} across
the fast foliation of S0, with ρ, δ > 0 small, but fixed, and |z| and |w| bounded; see Figure 2 for an
illustration. The global return from Σout to Σin under the flow of (6) can then be approximated
to leading order via the slow evolution of v along the attracting sheets Sa−

0 and Sa+
0 of the critical

manifold S0, as illustrated in Figure 3; in particular, one may neglect the transition from ℓ+ to
Sa−
0 and from ℓ− to Sa+

0 , respectively, under the corresponding layer flow, as was also done in [12,
Section 2.5].

Thus, we have the following result on the leading-order asymptotics of the map Πret : Σout → Σin,
the proof of which closely follows [12, Section 2.5] and [13, Section 3.3]:

Lemma 2. Let w0 > 0 be sufficiently small; then, the w-component of the global return map
Πret : Σout → Σin satisfies

ŵ := Πret(w) = w + k1k3

[

3
(

1− 1

2
k1

)

µ− 1

2

√
3k1

]

(7)

to leading order in k3 and ε, for any w ∈ [−w0, w0] ⊂ Σout.

Proof. We consider the projection of the reduced flow corresponding to Equation (6) onto the critical
manifold S0, the accuracy of which will be sufficient for deriving the leading-order approximation
for Πret considered here; cf. also [12, Section 2.5]. Proceeding as in Section 2.2, i.e., noting that
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Figure 2. Sections for the flow of (6).

z = f(v) implies ż = f ′(v)v̇ and desingularising the resulting (v, w)-system by multiplication with
a factor of −f ′(v), which is positive on the two attracting sheets Sa±

0 of S0, we find

v̇ = −(1 + k3)v + (1− k3)w + k1f(v),(8a)

ẇ = −k1k3f
′(v)(µ− v − w).(8b)

Next, we note that w = O(1) in the parameter regime which is of interest to us, as 0 . k3 ≪ 1
then, whereas v = O(1) and z = O(1) during the global return phase. (Specifically, numerical
evidence suggests that one may assume w = O(k3) throughout; see also Assumption 1 below.)
Hence, approximating (8a) by v̇ ≈ −v+k1f(v) and neglecting the w-dependence in (8b), we obtain

dw

dv
= k1k3

f ′(v)(µ− v)

v − k1f(v)
,(9)

to lowest order in k3 and ε. Now, we observe that, with k1 fixed, the condition |k1 f(v)v
| < 1 is

certainly satisfied for v in some appropriately chosen (compact) interval. (In fact, for k1 = 0.35, as

in [18], it suffices to take v ∈ [v∗max, v0], where v∗max and v0 are defined below, as |f(v)
v

| ≤ 4
3 on that

interval.) Hence, we may approximate 1
v−k1f(v)

≈ 1
v
[1 + k1

f(v)
v

], which implies

dw

dv
= k1k3

f ′(v)

v
(µ− v)

[

1 + k1
f(v)

v

]

.(10)

Finally, following [12, 13], we define

G(v∗, v, µ) := k1

∫ v

v∗

f ′(σ)

σ
(µ− σ)

[

1 + k1
f(σ)

σ

]

dσ;

then, we may write the leading-order solution to (10) as ŵ = w+k3[G(v0, vmax, µ)+G(v∗max,−ρ, µ)],
where the limits of integration are defined as vmax = 2

3

√
3, v∗max = −1

3

√
3, and v0 =

√
3, with ρ as

in the definition of the section Σin above. (Here, we have adopted the notation of [12], where vmax

is the value of v for which f attains its local maximum, v∗max < 0 is defined by the requirement that
f(v∗max) = f(vmax), and v0 > 0 is the second, non-trivial zero of f ; cf. again Figure 3.) Replacing
G(v∗max,−ρ, µ) with G(v∗max, 0, µ), as was done in [12, Section 2.5], and evaluating the resulting
integrals, we find (7), as claimed, which completes the proof. �
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S0 : {z = f(v)}

∆ : {v = 0}

Figure 3. Geometry of global return.

Remark 2. While Πret is a function of the two variables z and w, it reduces to a one-dimensional
map (in w) to the order considered here, by Equation (7). Hence, we have opted to suppress the
z-dependence of Πret in our notation. �

In particular, given Lemma 2, we may approximate the critical value µc of µ beyond which the
flow of (6) exhibits pure relaxation oscillation: requiring that ŵ = w in (7), as in [12, Section 2.5],
i.e., solving the term in square brackets therein for µ, we have

Corollary 1. The critical µ-value µc for which mixed-mode dynamics ceases to exist in Equation (6)

is given by µc = 1
3

√
3k1

2−k1
, to lowest order in k3 and ε.

Evaluating µ for k1 = 0.35, as in [18], we obtain µc = 0.070
√
3 ≈ 0.12247, which is in good

agreement with numerical simulation; see Section 4 below. (In fact, explicit integration of (9), and
evaluation at the same limits as in the proof of Lemma 2, yields µc ≈ 0.09769, which is well within
O(k23, k3ε) of the estimate given in Corollary 1, as expected.)

Remark 3. For future reference, we note that Equation (7) yields an approximation for Πret

which is accurate up to an O(ε2 ln ε)-error when k3 = ε, as is assumed in the following section.
In fact, projecting the flow of (6) onto the slow manifold Sε instead of onto S0, one can show
that the error incurred by Equations (8) and (9) is of the order O(ε2) when w = O(ε), while an
O(ε2 ln ε)-contribution is introduced through passage past the fold line ℓ−; see [21, Theorem 1] for
details. �

3. Three time-scale analysis

Given the parameter regime studied by Sekikawa et al. [18], with k1 = 0.35 and ε = 0.1, it seems
reasonable to set k3 = ε in Equation (6); then, the variable w will vary on a third (‘super-slow’)
time scale, as (6c) implies ẇ = O(ε) throughout. (Since, clearly, v = O(1) and z = O(1) during
relaxation, cf. the proof of Lemma 2 as well as Figure 3, it follows that the variables v and z will
remain ‘fast’ and ‘slow,’ respectively.) Hence, replacing k3 with ε and writing κ instead of k1 for

8



compactness, we obtain the system of equations

εv̇ =
√
3v2 − v3 − z,(11a)

ż = v − w − κz + ε(v + w),(11b)

ẇ = εκ(µ− w − v)(11c)

from (6) which, together with the corresponding fast system

v′ =
√
3v2 − v3 − z,(12a)

z′ = ε[v − w − κz + ε(v + w)],(12b)

w′ = ε2κ(µ− w − v),(12c)

will be the starting point for our study of the three time-scale Bonhoeffer-van der Pol oscillator.
(Here, the prime denotes differentiation with respect to the fast time t = τ

ε
.)

In the remainder of this article, we will characterise the mixed-mode dynamics that is induced
by the flow of Equation (11); as we will show below, the resulting asymptotics will be very similar
‘qualitatively’ to the picture painted in [12], even if some of the specifics of the analysis will differ.
Following [12, 13], we will restrict the parameter µ – which we have identified as the relevant
bifurcation parameter above – to some interval (µ, µ) on which stable ‘mixed’ MMO dynamics can
unfold in (11). Since we will not consider the ‘pure’ relaxation (LAO) regime in (11), where µ > µc,
we must have µ . µc. However, we will also disregard the purely oscillatory (SAO) regime that is
obtained for µ close to zero: as numerical simulation implies the occurrence of a (singular) Hopf
bifurcation [8] O(ε)-close to the fold at ℓ+ – and, hence, the onset of small-amplitude oscillatory
dynamics – for µ ≡ µH ≈ 0.02072, it follows that µ & µH must hold; see Section 4 below for details.

It remains to show that the interval (µ, µ) is non-empty: since µc = O(ε) in the parameter regime
considered here, as stated in Section 2.4 above, while µH = O(ε2), we may conclude that the width
of (µ, µ) is of the order O(εα) for some 1 < α < 2 and, hence, that non-trivial mixed-mode dynamics
will be observed in (11) as µ is varied in that interval; cf. also the discussion towards the end of
[12, Section 2.2].

3.1. Local dynamics. In this subsection, we consider Equation (11) locally, in a neighbourhood
of ℓ+. To that end, we first analyse the dynamics of (11) – or, equivalently, of (12) – in the fold
region itself, by introducing an appropriate rescaling of the variables (v, z, w) near ℓ+; then, we
study the mechanisms which govern the entry of the flow into that region and the exit from it,
respectively.

3.1.1. Fold region. To describe the dynamics of Equation (12) in a neighbourhood of the fold line
ℓ+, we rescale the vector field there by writing

v =
√
εv̄, z = εz̄, w =

√
εw̄, and t̄ =

√
εt.(13)

Substituting into (12) and simplifying, we obtain the desingularised system of equations

v̄′ =
√
3v̄2 − z̄ −

√
εv̄3,(14a)

z̄′ = v̄ − w̄ − κ
√
εz̄ + ε(v̄ + w̄),(14b)

w̄′ = εκ[µ−
√
ε(w̄ + v̄)];(14c)

as pointed out in [12], in the context of Equation (2), the scale separation between v and z has been
eliminated by the rescaling in (13). (Here, the prime now denotes differentiation with respect to
the new time t̄; however, for simplicity of notation, we will frequently omit the bar in the following,
writing again t instead.)

Based on numerical evidence (data not shown), we expect that w = O(ε) in Equation (12),
uniformly in t; see also the proof of Lemma 2 above. Correspondingly, we will henceforth make

9



z̄

v̄

∆+

∆
−

γ̄
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+
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γ̄
h
−

0

(a) ε = 0

z̄

v̄

γ̄h
ε (T

h
−

(w̄)) = (0, z̄h, w̄)

γ̄h
ε (T

h
+
(w̄)) = (0, z̄ĥ, ŵ)

γ̄h
ε

∆
−

γ̄h
ε (0)

(b) ε > 0

Figure 4. Dynamics of Equation (14).

the following assumption on w̄ = w√
ε
, which may be verified a posteriori for the parameter regime

considered here; details can be found in [12, Section 2.2].

Assumption 1. Let ε ∈ [0, ε0], with ε0 > 0 sufficiently small; then, w̄ = O(
√
ε) as ε → 0+ in (14),

uniformly in t̄.

In the singular limit, i.e., for ε = 0, Equation (14) reduces to the planar system

v̄′ =
√
3v̄2 − z̄,

z̄′ = v̄ − w̄,
(15)

in which w̄ is a (constant) parameter. The resulting flow is well-understood, as it underlies the study
of classical two-dimensional canard explosion [5, 14]. In particular, Equation (15) is integrable for
w̄ = 0, with a constant of motion of the form

H(v̄, z̄) =
1

2
e−2

√
3z̄
(

− v̄2 +

√
3

3
z̄ +

1

6

)

;(16)

see also [12, Equation (2.5)]. Thus, level curves for (15) are defined by H(v̄, z̄) = h, with h real;
the singular solution corresponding to h = 0, which is given by

γ̄00(t) = (v̄00, z̄
0
0)(t) =

(

√
3

6
t,

√
3

12
t2 −

√
3

6

)

,(17)

cf. [12, Equation (2.6)], separates the closed level curves of H that are obtained for h > 0 from
the open ones, which are characterised by h < 0. (Clearly, the former yield periodic solutions to
Equation (15), while the latter correspond to trajectories that leave the fold region; see [12] for
details.) The geometry of (14) in the singular limit is illustrated in Figure 4(a).

As in [12, Section 2.2], we introduce the following notation: we write ∆ for the plane v = 0, with
(z, w) in some compact subset of R2; see again Figure 2. Then, ∆ denotes that same plane in the
rescaled coordinates defined in (13), while ∆− stands for the half-plane ∆ ∩ {z̄ < 0}.

Remark 4. Here and in the following, � will denote any object in the original (v, z, w)-coordinates,
while the equivalent ‘blown-up’ object in (v̄, z̄, w̄)-space will be written as �. �
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In our analysis, we will sometimes parametrise trajectories of (15) by their unique h-value; thus,
we will write z̄h for the corresponding (unique) value of z̄ in ∆−. Moreover, denoting by γ̄hε (t) the
solution to (14) which contains the point (0, z̄h, w̄), we will assume that the time parametrisation
is such that γ̄hε (0) lies in ∆+ = ∆\∆−, as shown in Figure 4(b). Let T h

±(w̄) denote the times for

which γ̄hε (T
h
±(w̄)) ∈ ∆−, where we note that, clearly, T h

−(w̄) < 0 < T h
+(w̄); see again Figure 4(b).

Then, we write T h(w̄) := T h
+(w̄)−T h

−(w̄) for the return time to ∆− under the flow of Equation (14);

for brevity, we define T h := T h
+(0). Finally, one can show as in [12, Lemma A.2] that

T h =
√
−2 lnh+O(1);(18)

the above estimate will prove useful, since it implies T h = O(
√
− ln ε) whenever h = O(εM ) for

some M > 0, as will be the case throughout the remainder of this section.
An approximation for the transition map Π : ∆− → ∆−, which describes the dynamics of

(14) in the small-amplitude regime, can then be obtained in analogy to [12, Proposition 2.2]; we
merely outline the derivation here, focussing on points at which the corresponding proof requires
modification:

Proposition 1. Let ε ∈ [0, ε0], with ε0 > 0 sufficiently small, and suppose that h = O(εM ) for
some M > 0. Then, the transition map Π : ∆− → ∆− for (14) is of the form

(ĥ, ˆ̄w) := Π(h, w̄) =
(

h+
√
εdh√ε + w̄dhw̄ +O[(

√
ε+ w̄)2], w̄ + εκµT h(w̄) +O(ε

√
ε)
)

,(19)

where

dh√ε =

∫ Th

−Th

∇H(γ̄h0 (t)) ·
(

− v̄h0 (t)
3,−κz̄h0 (t)

)T
dt(20)

and

dhw̄ =

∫ Th

−Th

∇H(γ̄h0 (t)) · (0,−1)T dt.(21)

Proof. The expression for the h-component of Π is obtained via an adaptation of the argument in
[12, Section 2.2]: due to the presence of an additional term of the order O(

√
εz̄), Equation (14b) is

not in the form of the extended system formulated in [12, Equation (2.8)]. However, denoting by

ĥ the image of h under Π, we still have

ĥ− h = H(0, z̄ĥ)−H(0, z̄h) =

∫ Th
+(w̄)

Th
−
(w̄)

d

dt
H(γ̄hε (t)) dt

∼
∫ Th

+(w̄)

Th
−
(w̄)

∇H(γ̄h0 (t)) · (v̄′, z̄′)T
∣

∣

∣

γ̄h
0 (t)

dt =
√
εdh√ε + w̄dhw̄;

thus, the only difference to the proof of [12, Proposition 2.2] lies in the definition of the coefficient
dh√

ε
in (20), as was also the case in the corresponding Equation (45a) of [13]. (In fact, a straightfor-

ward calculation shows that the contribution from the z̄-dependent term in (14b) to that coefficient
is non-zero.)

Similarly, the derivation of the w̄-component of Π has to be adapted slightly, as we cannot simply
integrate Equation (14c). Instead, we express v̄ from (14b) and substitute into (14c), obtaining

w̄′ = −2κε
√
εw̄ + εκ[µ−

√
εz̄′(t)] +O(ε2).(22)
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The solution of the corresponding homogeneous equation is given by w̄h = C e−2κε
√
εt. By variation

of constants, we find C ′(t) = εκ(µ−√
εz̄′)e2κε

√
εt and, hence,

C(t) =
µ

2
√
ε

(

e2κε
√
εt − e2κε

√
εTh

−
(w̄)

)

− κε
√
ε

∫ t

Th
−
(w̄)

z̄′(s)e2κε
√
εs ds

after integration. (Here, T h
−(w̄) is defined as above; in particular, we cannot simply translate the

initial time to zero, as Equation (22) is non-autonomous.) The full solution to (22) can then be
expressed as

w̄(t) = Ce−2κε
√
εt +

µ

2
√
ε

(

1− e−2κε
√
ε[t−Th

−
(w̄)]

)

− κε
√
ε

∫ t

Th
−
(w̄)

z̄′(s)e2κε
√
εs ds · e−2κε

√
εt.(23)

Writing w̄ for the initial value of w̄(t) to determine C = w̄e2κε
√
εTh

−
(w̄) in (23), evaluating the

resulting expression at T h
+(w̄) – i.e., after the return to ∆− has been completed – and expanding

the exponential term via e−2κε
√
εt = 1− 2κε

√
ε t+O(ε3t2), we find

ˆ̄w = w̄[1− 2κε
√
εT h(w̄)] + εκµT h(w̄)− κε

√
ε

∫ Th
+(w̄)

Th
−
(w̄)

z̄′(t)e2κε
√
εt dt · e−2κε

√
εTh

+(w̄) +O(ε2).(24)

(Here, we recall that T h(w̄) = T h
+(w̄) − T h

−(w̄) denotes the return time to ∆−, as before.) Since

w̄ = O(
√
ε), and since we may assume T h(w̄) = O(

√
− ln ε), see also Equation (18), we can neglect

the 2κε
√
εw̄T h(w̄)-term in (24). Hence, it remains to estimate the integral term therein: integrating

by parts, we obtain

∫ Th
+(w̄)

Th
−
(w̄)

z̄′(t)e2κε
√
εt dt · e−2κε

√
εTh

+(w̄)

= z̄(t)e2κε
√
εt
∣

∣

∣

Th
+(w̄)

Th
−
(w̄)

· e−2κε
√
εTh

+(w̄) − 2κε
√
ε

∫ Th
+(w̄)

Th
−
(w̄)

z̄(t)e2κε
√
εt dt · e−2κε

√
εTh

+(w̄).

Now, taking into account that z̄ = O(1) in the fold region, as well as that the exponential factor
multiplying the second (integral) term on the right-hand side is bounded by one, the contribution
from the latter is clearly of higher order; the first (boundary) term gives

z̄(t)e2κε
√
εt
∣

∣

∣

Th
+(w̄)

Th
−
(w̄)

· e−2κε
√
εTh

+(w̄) =
[

z̄(T h
+(w̄))e

2κε
√
εTh

+(w̄) − z̄(T h
−(w̄))e

2κε
√
εTh

−
(w̄)

]

e−2κε
√
εTh

+(w̄)

= z̄(T h
+(w̄))− z̄(T h

−(w̄)) +O(ε
√
εT h

±(w̄))

to leading order, since any exponential factors that occur can again be approximated by 1 +
O(ε

√
εT h

±(w̄)), and since z̄(T h
±(w̄)) = O(1). Finally, we claim that z̄(T h

+(w̄))− z̄(T h
−(w̄)) = O(

√
ε),

which is easily verified by considering the constant of motion H, as defined in Equation (16):
assuming that H(0, z̄(T h

+(w̄)))−H(0, z̄(T h
−(w̄))) = O(

√
ε) in ∆−, one can solve perturbatively for

z̄(T h
+(w̄)) in terms of z̄(T h

−(w̄)). (Alternatively, one may resort to the well-known asymptotics of
the Lambert W function [17, Section 1.5].)

In sum, it follows that the integral term in (24) is of the order O(ε2), which implies ˆ̄w =
w̄ + εκµT h(w̄) +O(ε

√
ε), as claimed, completing the proof. �

3.1.2. Entry mechanism. Next, we consider the entry of the flow induced by Equation (12) into
the fold region; in other words, we will approximate the transition between the sections Σin and
∆−, as defined in Sections 2.4 and 3.1.1, respectively. Following [12, Section 2.3], we introduce an

‘intermediate’ section ∆
in

: {v̄ = −α} (in rescaled coordinates), with 0 < α < ρ small and fixed.
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Correspondingly, in the proof of Proposition 2 below, we first study the transition between Σin and

∆in, followed by that between ∆
in

and ∆−:

Proposition 2. Let (zin, win) ∈ Σin; then, for ε ∈ [0, ε0] sufficiently small, the transition map
Πin : Σin → ∆− satisfies

(25) (h−, w̄−) := Πin(zin, win)

=
(√

εd−√
ε
+

win

√
ε
d−w̄ +O[(

√
ε+ w̄)2],

win

√
ε
+ win

√
3κµ

√
ε ln ε+O(

√
ε)
)

,

where

d−√
ε
=

∫ 0

−∞
∇H(γ̄00(t)) ·

(

− v̄00(t)
3,−κz̄00(t)

)T
dt and d−w̄ =

∫ 0

−∞
∇H(γ̄00(t)) · (0,−1)T dt.

Proof. As in the proof of [12, Proposition 2.3], we consider a projectivisation of the flow of (11); how-
ever, due to the z-dependence of Equation (11b), we cannot a priori discount the O(ε)-correction
to the reduced flow on Sa+

0 in our case. Hence, we write z = z(v, w, ε) = Z0(v)+εZ1(v, w)+O(ε2),

where Z0(v) = −v3 +
√
3v2 = f(v). Substituting the above Ansatz into (11b), noting that

ż = ∂Z0
∂v

v̇ + ε
(

∂Z1
∂v

v̇ + ∂Z1
∂w

ẇ
)

+O(ε2), and making use of Equation (11a), we find

Z1(v, w) = −v − w − κf(v)

f ′(v)
= −v − w − κ(

√
3v2 − v3)

2
√
3v − 3v2

.

Since, moreover, ż =
(

∂Z0
∂v

+ε∂Z1
∂v

)

v̇+O(ε
√
ε), as ∂Z1

∂v
= O(1) and ∂Z1

∂w
= O(ε−

1
2 ) for v ∈ [−ρ,−α

√
ε]

and w = O(ε), while ẇ = O(ε) due to Equation (11c), a straightforward calculation yields the
following projection of (11a) onto the slow manifold Sa+

ε :

[2
√
3v − 3v2 +O(ε)]v̇ = v − w − κ

[√
3v2 − v3 − ε

v − w − κ(
√
3v2 − v3)

2
√
3v − 3v2

]

+ ε(v + w) +O(ε
√
ε).

The corresponding projected system on Sa+
ε that is obtained from (11) is then given by

v̇ = −
{

v − w − κ
[√

3v2 − v3 − ε
v − w − κ(

√
3v2 − v3)

2
√
3v − 3v2

]

+ ε(v + w)
}

,(26a)

ẇ = −εκ(µ− w − v)(2
√
3v − 3v2)(26b)

after desingularisation, i.e., multiplication with a factor of −∂z
∂v

= −[2
√
3v − 3v2 +O(ε)], which is

certainly positive for ε sufficiently small and v ≤ −α
√
ε, as above. (Here, we have neglected the

resulting O(ε2)-correction in (26b), as well as terms of order O(ε
√
ε) and upwards in (26a), as both

are irrelevant to the order considered here.)
Next, we define the new (projective) variable W = w

v
, and we rewrite Equation (26) in terms of

W to obtain

v̇ = −vF(v,W, κ, ε),(27a)

Ẇ = WF(v,W, κ, ε)− εκ(µ− vW − v)
[

2
√
3− 3v +O(

√
ε)
]

.(27b)

Since the function F , which is defined as

F(v,W, κ, ε) = 1−W − κ
[√

3v − v2 − ε
1−W − κ(

√
3v − v2)

2
√
3v − 3v2

]

+ ε(1 +W ),

is non-zero – and, in fact, positive – for (v,W, κ, ε) sufficiently small, we may perform a transforma-
tion of time in Equation (27) to cancel a factor of F from the right-hand sides therein. (Without
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loss of generality, and with an abuse of notation, we again denote the new rescaled time by τ .)
Next, we expand the resulting equations, taking into account that

Z1(v,W ) ≡ Z1(v, vW ) =
1

2v

[

√
3

3
−

(

κ− 1

2

)

v +O(v2)
]

,

to leading order in W , and noting that W = O(
√
ε) due to v ∈ [−ρ,−α

√
ε] and w = O(ε).

Neglecting terms of second order and upwards in (v,W ), we thus have the following approximation
for (27), which is analogous to [12, Equation (2.25)]:

v̇ = −v,(28a)

Ẇ = (1− 2
√
3κµε)W − 2

√
3κµε+ (3µ+ 2

√
3− 6κµ)κεv.(28b)

Since Equation (28a) can be integrated explicitly, with v(τ) = −ρe−τ , we may substitute into (28b)
and solve for W (τ); given the (rescaled) transition time T = ln ρ

α
√
ε
between Σin and ∆in, we then

evaluate the resulting solution to obtain

W (T ) =
ρ

α
√
ε
W in

(

1 +
√
3κµε ln ε

)

+O(
√
ε),

as sketched in Figure 5(a). Finally, we make use of the fact that w(T ) = −α
√
εW (T ), as well as of

win = −ρW in, to find w(T ) = win(1 +
√
3κµε ln ε) +O(ε).

It remains to consider the transition from ∆
in

to ∆−; in analogy to [12], we denote the corre-

sponding map by Π
in
. To that end, we recall the proof of Proposition 1 from the previous sub-

section, taking into account that we need to transform between original and rescaled (‘blown-up’)
coordinates; cf. Equation (13). Then, it is easy to see that

(h−, w̄−) = Π(z̄, w̄) =
(√

εd−√
ε
+ w̄d−w̄ +O[(

√
ε+ w̄)2], w̄ + 2

√
3ακµε+O(ε2)

)

,(29)

where d−√
ε
and d−w̄ are defined as in the statement of the proposition; see also [12, Equation (2.30)].

(In particular, one observes that these coefficients correspond to the solution curve γ̄00 defined in

Equation (17), as well as that the transition time between ∆
in

and ∆− is given by T
in
= 2

√
3α, as

in [12].)
Finally, we combine the estimate for w̄− in (29) with the asymptotics of w(T ) derived above,

noting that the condition for (v̄, z̄, w̄) to lie on a trajectory originating in Sa+
ε is, in fact, expressed

by the h−-component of Π(z̄, w̄). Taking into account that w̄ = w√
ε
, we obtain Equation (25), as

claimed. �

We remark that the term win
√
ε
in (25) remains bounded as ε → 0+, since win = O(ε) by Assump-

tion 1; hence, (h−, w̄−) → (0, 0) in that limit, which is consistent with the definition of the singular
solution γ̄00 .

Remark 5. It follows from the first part of the proof of Proposition 2 that the flow between Σin

and ∆in can, in fact, be approximated by the reduced dynamics on the critical manifold Sa+
0 , as

was also done in [12, Proposition 2.3]. (Specifically, our expression for w(T ) agrees with the one
obtained there, i.e., the O(ε)-correction due to Z1 turns out to be irrelevant a posteriori.) Similarly,

the second part of that proof implies that our approximation of the transition between ∆
in
and ∆−

via the singular (integrable) system in (15) is sufficiently accurate, as the resulting T
in
-dependent

correction to w̄− does not even enter Equation (25) to the order considered here. �
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(a) Geometry of Equation (28)

v

Z
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(b) Geometry of Equation (31)

Figure 5. Illustration of entry and exit mechanisms.

3.1.3. Exit mechanism. As in the previous subsection, the analysis of the exit from the fold region
is divided into two portions: first, we consider the transition between the section ∆− and its image

under the flow of (14) at time T h,out(w̄) := −T−h
− (w̄), which we denote by ∆

out
; then, we study

the transition from ∆
out

to the section Σout defined in Section 2.4. (Naturally, we are interested in
h < 0 here, since trajectories with h > 0 cannot leave the fold region, as noted in Section 3.1.1.)

We require the following notation: we write Ca
ε and Cr

ε for the intersection curves of Sa+
ε and Sr

ε

with the Poincaré section ∆ that was defined in Section 3.1.1. (Here, we remark that these curves
were denoted by C±

ε in [12]; however, due to the fact that the canard phenomenon is observed at ℓ+

instead of at ℓ− in our case, recall Section 2, we had to adapt our notation accordingly.) Finally, as
in [12, Section 2.4], we introduce a change of variable in z̄ such that the curve Cr

ε becomes parallel
to the w̄-axis in ∆ when written in terms of the new variable z̃:

Proposition 3. Let (h, w̄) ∈ ∆−, with h < 0 and h = O(εM ) for some M > 0, and let ε ∈ [0, ε0]
be sufficiently small. Then, the transition map Πout : ∆− → Σout is of the form

(zout, wout) := Πout(h, w̄) =
(

εz̃out +O(ε ln ε),
√
εw̄ + ε

√
εκµT h,out(w̄) +O(ε

√
ε)
)

,(30)

where z̃out is the z̃-value corresponding to hout = h+
√
εdout√

ε
+ w̄doutw̄ , with

dout√
ε = −

∫ Th,out(w̄)

0
∇H(γ̄h0 (t)) · (−v̄h0 (t)

3,−κz̄h0 (t))
T dt

and

doutw̄ = −
∫ Th,out(w̄)

0
∇H(γ̄h0 (t)) · (0,−1)T dt.

Proof. As the proof is very similar to that of [12, Proposition 2.4], we merely sketch it here,
emphasising the requisite modifications.

Let (h, w̄) ∈ ∆−, and let Π
out

denote the time-T h,out(w̄) transition map between ∆− and the (im-

plicitly defined) section ∆
out

:= Π
out

(∆−). Then, it follows immediately from the near-integrability
of Equation (14) that

(hout, w̄out) := Π
out

(h, w̄) =
(

h+
√
εdout√

ε + w̄doutw̄ +O[(
√
ε+ w̄)2], w̄ + εκµT h,out(w̄) +O(ε

√
ε)
)

,
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where dout√
ε
and doutw̄ are defined as in the statement of the proposition; see also the proof of Propo-

sition 1.
The second part of the transition – from ∆

out
to Σout – is studied via a change of variables,

with z = v2Z, which can be considered as a ‘phase-directional’ chart in ‘blown-up’ phase space;
see again [12] for details. Rewriting (12) in terms of (v, Z,w) and rescaling time by dividing out a
(positive) factor of Φ(v, Z) = v2(−Z+

√
3−v) from the right-hand sides of the resulting equations,

we obtain

v′ = 1,(31a)

Z ′ = −2
Z

v
+

ε

vΦ(v, Z)

[

1− w

v
− κvZ + ε

(

1 +
w

v

)]

,(31b)

w′ =
ε2

Φ(v, Z)
κ(µ− w − v).(31c)

(With an abuse of notation, the prime now denotes differentiation with respect to the new, rescaled
time.) To leading order, Equations (31a) and (31b) are identical to [12, Equations (2.45a) and
(2.45b)]. Also, as there, vout = O(

√
εT h,out) = O(

√
−ε ln ε) and w = O(ε) imply w

v
= O(

√
ε) and

dw
dt

= O(ε(ln ε)−1). Expanding Φ, we then find Z ′ = − 2
v
Z + ε

v3

√
3
3 [1 − κvZ + O(v, Z)]; moreover,

as vZ = O(1), we obtain z(T ) = εz̃out + O(ε ln ε) for the corresponding leading-order solution,
in analogy to [12]. (Here, T denotes the transition time from ∆out to Σout, as illustrated in
Figure 5(b).)

It remains to consider the evolution of w: to that end, we integrate Equation (12c) directly.

Expanding the solution and noting that T ≤ 2
√
3

3vout +
1
3 ln ε+O(1), again by [12], we deduce

w(T ) =
√
εw̄out + ε2

(

κµT −
√
εκw̄outT +

∫ δ

vout

v

Φ(v, 0)
dv

)

+O(ε3)

=
√
εw̄ + ε

√
εκµT h,out(w̄) +O(ε

√
ε).

(As in the proof of [12, Proposition 2.4], one easily sees that the integral term in the above expression

is of higher order, by combining the fact that
∫

v
Φ(v,0) dv = −

√
3
3 ln v√

3+v
+ c with the asymptotics

of vout.) Finally, collecting the above estimates, we have Equation (30), as claimed. �

3.2. Return map Π. In this subsection, we approximate the ‘composite’ return map Π that
is induced by the flow of (11) in the three time-scale regime considered here: combining the
asymptotic formulae for Πret, Π, Πin, and Πout, as obtained in Lemma 2 and Propositions 1 through
3, respectively, we may write

Π(h, w̄) =

{

Π(h, w̄) if h > 0,

Πin ◦Πret ◦Πout(h, w̄) if h < 0;
(32)

for future reference, we note that Π is defined as a Poincaré map from ∆− – or, rather, its ‘blown-up’
analogue ∆− – to itself.

Obviously, the definition of Π thus depends on the sign of h: for positive h, the point of inter-
section of the corresponding trajectory with ∆ lies above Cr

ε , forcing the flow back into the fold
region; for negative h, on the other hand, that point lies below Cr

ε , allowing the trajectory to leave
and undergo relaxation. Correspondingly, in the resulting time series, one hence obtains an SAO
in the former case and an LAO in the latter; since, moreover, the sign of h may change after each
application of Π, iteration of the above procedure generates the mixed-mode patterns that are
observed in Equation (11). A cartoon illustration of how the segment 12 – in which two SAOs are
followed by one LAO – is produced by iterating Π can be found in Figure 6.
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Figure 6. Generation of mixed-mode dynamics by Π.

While the Poincaré map Π in (32) is a function of the two variables h and w̄, a simplification
can be achieved by eliminating the h-dependence of Π, as in [12, Section 3]. The derivation of the
corresponding ‘partially reduced’ map, which is sufficiently accurate for our purposes, is outlined
below.

In a first step, a union of curves Cj
ε is inductively defined as follows: we write Cj

ε := Π({(h, w̄) ∈
Cj−1
ε |h > 0}), with C0

ε ≡ Ca
ε . (Hence, for j ≥ 1, one may simply interpret Cj

ε as the image of Ca
ε

under the jth iterate Π
j
of Π.) Then, it can be shown as in [12, Section 3.1] that the curve Cj

ε may
be written as the graph of a function hj(w̄) which is ‘almost linear’ in w̄, at least for |w̄| sufficiently
small; the resulting geometry of these curves is summarised in Figure 7. Finally, following [12,
Proposition 3.1], it is possible to prove that there exists some positive integer k such that, for

1 ≤ j ≤ k, Πj will be exponentially close in ε to the union of the curves
⋃k

j=1 C
j
ε ; in other words,

the restriction of Π to the set
⋃ Cj

ε will incur (at most) an exponentially small error.
Gathering the results of Section 2.4 and Sections 3.1.1 through 3.1.3 and assuming (w̄, hj(w̄)) ∈

⋃

Cj
ε , we thus have the following approximation for the partially reduced map Π(w̄) ≡ Π(hj(w̄), w̄):

Π(w̄) =











w̄ + εκµT hj(w̄)(w̄) +O(ε
√
ε) if hj(w̄) > 0,

w̄ + εκµT hj(w̄),out(w̄) + w̄
√
3κµε ln ε

+
√
εκ

[

3(1− 1
2κ)µ− 1

2

√
3κ

]

+O(ε) if hj(w̄) < 0;

(33)

cf. also [12, Equation (3.5)]. (Here, we have replaced k3 with ε in Equation (7), by assumption,
and we have again written κ instead of k1; moreover, we note that the error incurred by (7) is of
the order O(ε), by Remark 3.) Since, trivially, none of the w̄-independent terms in (33) will enter
the derivative of Π with respect to w̄, to be considered below, such terms will not be relevant for
the following analysis.
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Figure 7. Curves Cj
ε for j ≥ 0.

3.2.1. Derivative of Π. Given Equation (33), we immediately conclude that

dΠ

dw̄
∼







1 + εκµ
dThj(w̄)(w̄)

dw̄
if hj(w̄) > 0,

1 + εκµ
dThj(w̄),out(w̄)

dw̄
if hj(w̄) < 0,

(34)

to leading order in ε. Estimates for the derivatives of the transition times T hj(w̄) and T hj(w̄),out

can be obtained verbatim as in [12, Section 3.2], as they are based on the asymptotics of the
near-integrable system in (14). (Here, we recall that the only difference to the corresponding Equa-
tion (2.3) in [12], to the order considered here, is due to the z̄-dependence of (14b). Thus, the
definition of the coefficient dh√

ε
includes an additional contribution from z̄h0 in our case; cf. Equa-

tion (20).) In sum, we thus find

dT hj(w̄)(w̄)

dw̄
∼ − 2

hj(w̄)

1
√

−2 lnhj(w̄)
(j + 1)d0w̄

and

dT hj(w̄),out(w̄)

dw̄
∼ 1

hj(w̄)

1
√

−2 lnhj(w̄)
(j + 1)d0w̄.

3.3. Secondary canards and sectors of rotation. Following [12, Section 1], we define the strong
canard Γε(≡ Γ0

ε) as the trajectory of Equation (12) which lies in the the transverse intersection
of the attracting sheet Sa+

ε and the repelling sheet Sr
ε of the slow manifold Sε, for ε positive and

sufficiently small. (As discussed in Section 3.1.1, Γε is to lowest order described by the ‘special’
solution γ̄00 in the fold region, cf. (17), which organises the flow of the rescaled Equation (14) in the
singular limit.) Clearly, the strong canard corresponds to a ‘critical’ value w̄c

0 of w̄ which equals,
in fact, the w̄-coordinate of the point of intersection of the curves Ca

ε and Cr
ε defined in Section 3.2;

details can be found in [12, Section 1]. Similarly, for j ≥ 1, we may define w̄c
j as the w̄-coordinate

of the point of intersection of Cj
ε with Cr

ε ; see again Figure 7. The corresponding trajectory of (12)

is called the jth secondary canard Γj
ε, and undergoes j SAOs (‘loops’) in the fold region before

relaxation; recall Figure 1, where the trajectories Γj
ε are sketched for j = 0, 1. Correspondingly, we

call the w̄-interval (w̄c
j , w̄

c
j−1) the jth sector of rotation, and we denote it by RSj [12, Section 3.3].
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To estimate w̄c
0 to leading order in ε, we follow [12], demanding that ĥ = h; recall Proposition 1.

Approximating ±T h ∼ ±T 0 = ±∞ in Equations (20) and (21) and evaluating ∇H at γ00 , as defined

in (17), we find d0√
ε
= 1

48(1+ 2κ)
√
2πe and d0w̄ = − 1

2
√
3

√
2πe – see also [12, Equation (2.18)] – and,

hence,

w̄c
0 = −

d0√
ε

d0w̄

√
ε+O(ε) =

√
3

24
(1 + 2κ)

√
ε+O(ε).(35)

Numerical simulation (data not shown) suggests excellent agreement with the above estimate for
w̄c
0, even for the ‘large’ value of ε = 0.1 considered here. (Specifically, taking κ = 0.35, as before,

we find w̄c
0 ∼ 2651

68330

√
3 ≈ 0.03880.)

The other key quantity of interest, apart from the critical value w̄c
0 of w̄, concerns the width of

the sectors of rotation RSj , as defined above. To obtain the corresponding estimate, we need to
account for additional terms in the expansion for the transition map Π introduced in Section 3.1.1.
(In fact, by combining the resulting two estimates, we may approximate the critical w̄-values {w̄c

j}
for j = 1, . . . , k.)

Thus, we now consider the partially decoupled truncated system of equations

v̄′ =
√
3v̄2 − z̄ −

√
εv̄3 +

√
εF (0, 0) + w̄G(0, 0),(36a)

z̄′ = v̄ − w̄ − κ
√
εz̄ + ε(v̄ + w̄),(36b)

w̄′ = εκµ,(36c)

which is defined in analogy to [12, Equation (3.15)]. We note that Equation (36) differs from
the ‘rescaled’ system in (14) in two points: first, w̄(t) is not assumed to be constant; rather,
Equation (14c) is approximated by w̄′ ∼ εκµ, which yields w̄(t) ∼ w̄+εκµt after integration, where
w̄ is some initial value. Second, the inclusion of higher-order terms in

√
ε and w̄ in the v̄-equation

– which are multiplied by appropriately defined functions F (w̄,
√
ε) and G(w̄,

√
ε), respectively,

that are, to leading order, evaluated at (w̄,
√
ε) = (0, 0) – is due to the transformation to the new

variable z̃; see Section 3.1.3 and [12, Proposition 2.4] for details.
Finally, let Π0 denote the ‘reduced’ transition map for the system that is obtained by appending

w̄′ = 0 to Equations (36a) and (36b). Then, one has the following result; cf. also [12, Proposi-
tion 3.2]:

Proposition 4. Let Π : ∆− → ∆− denote the return map for (14), and let ε ∈ [0, ε0] be sufficiently
small. Then,

Π(h, w̄) =

(

PhΠ0(h, w̄) + εκµK(h) +O(ε
√
ε)

w̄ + 2εκµT h +O(ε
√
ε)

)

,(37)

where Ph̄ is the projection onto the h̄-coordinate, with PhΠ0(h, w̄) = ĥ as in Proposition 1, and

K(h) =

∫ Th

−Th

∇H(γ̄h0 (t)) ·
(

G(0, 0),−1
)T

(t+ T h) dt.

(In particular, one can show that K(h) = 2d0w̄T
h +O(1), where d0w̄ is defined as in Equation (21);

see [12, Lemma A.5].)

Proof. As in the proof of [12, Proposition 3.2], one considers the partially decoupled truncated
equations

v̄′ =
√
3v̄2 − z̄ −

√
εv̄3 +

√
εF (0, 0) + (w̄ + εκµt)G(0, 0),

z̄′ = v̄ − w̄ − εκµt− κ
√
εz̄ + ε(v̄ + w̄ + εκµt).

(38)
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Since the above system agrees with [12, Equation (3.17)] to leading order – apart from the additional
κ
√
εz̄-term, which, however, only affects the definition of dh√

ε
, as seen in the proof of Proposition 1

– we find

PhΠ ∼ PhΠ0 + εκµK(h) + ε

∫ Th

−Th

∇H(γ̄h0 (t)) · (0, v̄h0 ) dt.

Here, we have neglected terms of second order and upwards in (ε, w̄); moreover, we note that any
contribution coming from terms involving F (0, 0) and G(0, 0) evaluates to zero by symmetry: as in
the proof of [12, Proposition 2.2], we have (v̄h0 , z̄

h
0 )(−t) = (−v̄h0 , z̄

h
0 )(t) on γ̄h0 . Finally, making again

use of the oddness of v̄h0 , one can show that the integral term in the above expression vanishes. In
sum, one hence obtains the refined expansion for Π in Equation (37), as claimed, which completes
the proof. �

Given the result of Proposition 4, as well as Equation (18), one can show as in [12, Proposition 3.3]
that the width of the jth sector of rotation RSj is approximately given by

∆w̄ := w̄c
j − w̄c

j−1 ∼ −2εκµ
√
−2 ln ε.(39)

The above estimate is confirmed by numerical simulation (data not shown) and implies, in partic-
ular, that all sectors of rotation are of the same width to leading order for ε fixed, as well as that
the sector RSj is located ‘to the left’ of RSj−1 for any j ≥ 1 due to ∆w̄ < 0; see [12, Section 3.3]
for details. (Undoing the rescaling in (13), one finds ∆w = O(ε

√
−ε ln ε) for the corresponding

estimate in terms of the original w-variable.) Consequently, it follows again as in [12, Section 3.3]
that we will always observe a finite number of SAOs in any mixed-mode time series of (12); cf. also
Section 4 below.

3.4. Reduced return map Φ. The final step in our analysis of the return map Π consists in
a further reduction to a simplified, one-dimensional map Φ : Ca

ε → Ca
ε , which can be defined as

follows [12, Section 3.4]: for k ≥ 0,

Φ(w̄) = Pw̄

(

Πin ◦Πret ◦Πout ◦Πk
(h0(w̄), w̄)

)

if (h0(w̄), w̄) ∈ RSk.

(Here, Pw̄ denotes the projection onto the w̄-coordinate, as before.) While the map Φ is hence

defined on the single curve Ca
ε instead of on a union of curves

⋃ Cj
ε , and while it is unimodal on

each of the sectors of rotation RSk, it has discontinuities at the boundaries between these sectors.
The dynamics of Φ was studied in detail in Section 3.6 of [12]; here, we merely sketch the derivation
of some of its properties that are relevant to us.

One such property concerns the derivative of Φ (with respect to w̄) on RSk; the resulting estimate
will allow us to characterise the contraction, or expansion, under Φ. Making use of the definition of
Πin, Πret, Πout, and Π, in combination with the Chain Rule and the fact that hj(w̄j) = O(ε

√
− ln ε),

we conclude as in [12, Lemma 3.5] that

Φ′(w̄) = 1− εκµd0w̄
1√

−2 ln ε

( k−1
∑

j=0

2(j + 1)

hj(w̄j)
+

k + 1

hk(w̄k)

)

∼ 1− ωk(ν)

4 ln ε
;(40)

see, in particular, [12, Equations (3.32) and (3.33)]. Here, w̄j is the jth iterate of some initial
w̄-value w̄0 under Π, and the auxiliary function ωk is defined as

ωk(ν) =
k−1
∑

j=0

1

k − j − ν
− 1

2ν
,

where ν ∈ [0, 1] for k ≥ 1, while ν > 0 when k = 0.
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Figure 8. Reduced return map Φ.

Given the above estimate for Φ′, one can, for instance, show that the map Φ has a (local)
minimum in each sector RSk, i.e., at some w̄-value w̄k

min. Moreover, one may write Φ(w̄k
min) =

Φmin +O(ε), with

Φmin ∼ w̄c
0 +

√
ε
[

G(v0, vmax, µ) + G(v∗max, 0, µ)
]

+ εκµT h(w̄0
min),out

∼
√
ε
[

3κ
(

1− 1

2
κ
)

µ− 1

2

√
3
(

κ2 − 1

6
κ− 1

12

)]

+ εκµ
√
−2 ln ε;

recall Equations (35), (7), (33), and (18), where the latter implies, in particular, T h ∼
√
−2 ln ε.

Hence, it follows that Φ assumes the same minimum value (to leading order) for any k = 0, 1, 2, . . . ;
cf. [12, Equation (3.36)]. A qualitative illustration of the map Φ is given in Figure 8.

Next, we investigate the existence and stability of ‘regular’ mixed-mode periodic orbits with
signature 1k; specifically, we estimate the width of the corresponding µ-interval (µk, µk). In analogy
to [12, Theorem 3.7], we obtain

Proposition 5. Let K > 0 be arbitrary, but fixed; then, there is some (small) ε0 > 0 such that,
for k = 1, . . . ,K and ε ∈ [0, ε0], the periodic orbit of type 1k exists and is stable when µ ∈ (µk, µk),
with

∆µk := µk − µk ∼ − µkκ√
2Dµ

√
ε√

− ln ε

∫ νk0

νk
−2

ωk(ν) dν.(41)

Here, νk−2 and νk0 are defined by ωk(ν
k
−2) = 8 ln ε and ωk(ν

k
0 ) = 0, respectively, and

Dµ =
d

dµ

[

G(v0, vmax, µ) + G(v∗max, 0, µ)
]

is found by differentiating Equation (7) with respect to µ.

Proof. The proof of Equation (41) is based on the observation that periodic orbits with signature
1k correspond to fixed points of Φ, i.e., to solutions of Φ(w̄, µ) = w̄. The stability of those points
follows from the second estimate for Φ′ in Equation (40), as one can show that |Φ′(w̄, µ)| < 1 if and
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only if ν ∈ (νk−2, ν
k
0 ) in ωk, with νk−2 and νk0 as defined above. Implicit differentiation then gives

dµ

dw̄
= −

∂
∂w̄

Φ(w̄, µ)− 1
∂
∂µ

Φ(w̄, µ)
∼

1
4 ln ε

ωk(ν)

Dµ

√
ε

;

here, we have again used (40) as well as the estimate ∂
∂µ

Φ(w̄, µ) ∼ Dµ

√
ε.

Finally, applying the Fundamental Theorem of Calculus, we find

∆µk =

∫ w̄(µk)

w̄(µk)

dµ

dw̄
dw̄ ∼ ∆w̄k

4Dµ

√
ε ln ε

∫ νk0

νk
−2

ωk(ν) dν.

Approximating ∆w̄k by ∆w̄ ∼ −2εκµ
√
−2 ln ε, recall Equation (39), we obtain (41), as claimed. �

(The restriction to k ≤ K in the statement of Proposition 5 is due to the fact that our asymptotics
is not uniform in k with respect to ε; see [12, Proposition 3.4].) Since the remainder of the analysis
presented in [12, Section 3.6] carries over mutatis mutandis to the context of Equation (12), we
do not retrace it here. Rather, we emphasise that the resulting mixed-mode dynamics, which
will be discussed in detail in Section 4 below, is qualitatively equivalent to that of the canonical
Equation (2).

4. Discussion

In this article, we have studied mixed-mode oscillatory behaviour in a three-dimensional ex-
tended Bonhoeffer-van der Pol oscillator whose dynamics evolves on three distinct time-scales, thus
complementing results previously obtained in [18]. To that end, we have transformed the governing
equations into a form that is close to a simplified ‘prototypical’ model system which was proposed
by Krupa et al. [12]; in the process, we have identified one bifurcation parameter that unfolds
the mixed-mode dynamics generated by Equation (1), expressing it as a function of two of the
original parameters in the system. (An alternative approach, which was suggested recently [16]
and which we are currently considering, involves ‘mapping’ (1) onto a prototypical model proposed
by Koper [11]; see also [3] for details.) We have sketched how the analysis of [12] can be adapted
to the present context, which has allowed us to characterise the mixed-mode patterns that will
‘generically’ occur in (1), as well as to estimate the relevant parameter intervals. Recalling that the
signature Lk encodes the segment consisting of k SAOs and L LAOs, and consulting Section 3.6 of
[12], we may conclude that,

(i) for L = 1, orbits contain segments of the form
(a) 1k (possibly repeated some number of times),
(b) 1k−1 (possibly repeated some number of times), and
(c) 1k−2, preceded by 1k and followed by 1k−1 or 1k;

(ii) for L = 2, only segments of the type 21 or 22 will occur;
(iii) for L ≥ 2, only segments of the form L1 will be observed;

see Theorem 3.10, Proposition 3.11, and Corollary 3.12 of [12]. (For a detailed interpretation,
and discussion, of the resulting mixed-mode dynamics, the reader is referred to [12, Section 4]
and [13, Section IV].) The above predictions are supported by numerical simulation, which was
performed in Maple for the parameter regime considered by Sekikawa et al. [18] – with ε = 0.1,
k1 = 0.35, and B0 close to 1

2 in (1) – under the additional assumption that k3 = 0.1(= ε).
(Specifically, we have simulated the corresponding transformed system of equations in (12) for
values of µ close to µc, where we recall that κ ≡ k1.) Throughout, we have set the initial condition
to (v, z, w)(0) = (0, 0,−0.01), unless explicitly stated otherwise; moreover, we have illustrated the
resulting time series starting at time t = 103, after all transients have subsided.
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As expected, we observe the unfolding of an entire family of non-trivial MMOs upon variation
of the parameter µ: in Figure 9(a), we still have relaxation, while (periodic) orbits with signature
L1 for L = 6, 4, 3, and 2 – the latter two of which are separated by a ‘mixed’ pattern of the form
3121 – occur with decreasing µ, as shown in Figures 9(b) through 9(f).

Then, as µ is decreased further, a transition is observed towards L = 1, beginning with the 2111-
type pattern displayed in Figure 10(a). That pattern is followed by stable orbits of type 1k, k =
1, 2, . . . , which are again interspersed with mixed patterns of the form 1k(1k−1)ℓ; see Figures 10(b)
through 10(f) and Figures 11(a) through 11(f) for representative examples. (In fact, it follows
from items (i) through (iii) above that the signatures 1k and 1k1k−1 will dominate the mixed-mode
dynamics of (1), with a transition that is roughly of the form · · · → 1k → 1k1k−1 → 1k−1 → . . . , in
accordance with our findings.) Finally, it is obvious from Figures 12(a) and 12(b) that the ‘highest’
1k-type pattern – at least with the chosen initial condition, and to the accuracy considered here –
is achieved for k = 8, after which point pure SAO dynamics of type 01 takes over, in agreement
with our claim that only a finite number of SAOs can occur in any given mixed-mode time series
in (12).

Remark 6. Our numerics suggests that some variation in k1 and k3 does not qualitatively alter
our conclusions on the mixed-mode dynamics of Equation (1) as long as the condition k3 = O(ε)
is satisfied; examples can be found in Figures 13(a) and 13(b). �

While the above observations are of a qualitative nature, it is nevertheless possible to obtain
some insight into the quantitative properties of the mixed-mode dynamics of Equation (12) from
our analysis. On the basis of Proposition 5, one can thus show that, for each k ≥ 1 and ε

sufficiently small, the width of the µ-interval corresponding to stable 1k-type dynamics will be of

the order O[
√
ε(− ln ε)−

1
2 ]. Specifically, approximating the integral term in Equation (41) as in [12,

Section 3.6], one finds

∆µk =
µkκ√
2Dµ

√
ε√

− ln ε

[

ln(
√
− ln ε) +O(1)

]

.

Evaluating the above estimate for k1(= κ) = 0.35, ε = 0.1, and µ = µc and noting that Dµ =

0.86625
(

= 693
800

)

then, we obtain ∆µk ≈ 0.00545[0.41702 + O(1)], which agrees well with the

corresponding numerical values of ∆µk of about 0.004 to 0.005 that were inferred visually by
simulating Equation (12) for varying values of µ, as above, and by recording the observed mixed-
mode patterns. (The degree of agreement seems particularly encouraging given the ‘large’ value
of ε = 0.1 considered here.) In sum, numerical simulation hence suggests that the µ-interval
on which the mixed-mode dynamics of Equation (12) unfolds is approximately given by (µ, µ) ≈
(0.0465, 0.1125), which implies, in particular, ∆µ ≈ 0.0660. Finally, it is worth noting that our
numerical estimates for µ and µ satisfy µH < µ < µ < µc, as predicted. (Here, µH and µc are
defined as at the beginning of Section 3.)

The parameter regime considered in this article motivated a simple scaling of k3 with ε; in fact,
we set k3 = ε. More generally, however, one could interpret k3 – or even k1k3 – as an effective small
parameter that is independent of ε; correspondingly, Equation (6) could then be studied as a true
two-parameter singular perturbation problem. While geometric singular perturbation theory [6, 10]
has matured as a field, however, the mathematics of such problems remains rudimentary; hence, we
decided not to pursue that line of enquiry here. Still, further investigation into whether our results
can be extended accordingly seems warranted, as preliminary analysis has revealed interesting
dynamics in a similar generalisation of the canonical Equation (2). In particular, co-existence
of mixed-mode oscillatory behaviour and delayed passage through Hopf bifurcation [15] has been
observed, and will be elaborated on in an upcoming publication. Intuitively, such dynamics is due
to a change in the strength of the global return mechanism: when ε = O(k3), w is not necessarily
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(a) µ = 0.1125: 10 (b) µ = 0.11: 61

(c) µ = 0.1075: 41 (d) µ = 0.105: 31

(e) µ = 0.1025: 3121 (f) µ = 0.1: 21

Figure 9. Mixed-mode dynamics of Equation (12) for varying values of µ.
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(a) µ = 0.095: 2111 (b) µ = 0.09: 11

(c) µ = 0.085: 12(11)4 (d) µ = 0.08: 1211

(e) µ = 0.075: 12 (f) µ = 0.07: 1312

Figure 10. Mixed-mode dynamics of Equation (12) for varying values of µ.
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(a) µ = 0.065: 13 (b) µ = 0.06: 14

(c) µ = 0.0575: 1514 (d) µ = 0.055: 15

(e) µ = 0.0525: 16 (f) µ = 0.05: 17

Figure 11. Mixed-mode dynamics of Equation (12) for varying values of µ.

26



(a) µ = 0.0475: 18 (b) µ = 0.0465: 01

Figure 12. Mixed-mode dynamics of Equation (12) for varying values of µ.

(a) k1 = 0.5, k3 = 0.1, and µ = 0.075: 14 (b) k1 = 0.35, k3 = 0.05, and µ = 0.110: 21(11)2

Figure 13. Effect of varying k1 and k3 on the dynamics of Equation (12).

reset to a neighbourhood of the strong canard Γε; rather, the corresponding return point may lie
well away from the folded equilibrium P+ in that case.

Remark 7. We note that we chose to fix the parameter k1, rather than to scale it with ε, as was
also done in [18] – in spite of the fact that k1 = O(

√
ε). That choice complicates our analysis

slightly, as it necessitates a correction to the return map Π in the fold region that was not present
in [12]; recall the proof of Proposition 1. However, it seems in keeping with the assumptions made
in [18]. �

The ‘folded saddle-node of type II’ [20] uncovered in Equation (1) has also been studied in con-
nection with a so-called ‘singular Hopf bifurcation;’ see [8] and the references therein for details.

27



(a) Orbits in (v, z, w)-space (b) Time series of v(t)

Figure 14. Co-existence of type-16 MMO (red) and canard cycle after period dou-
bling (black) for µ = 0.051.

Roughly speaking, such bifurcations are observed in an ε-neighbourhood of a fold curve (for suf-
ficiently small values of ε), and have been suggested as an alternative mechanism for generating
mixed-mode dynamics; the relationship between folded saddle-node equilibria and singular Hopf
bifurcation has been investigated in detail in [2]. In our case, it is straightforward to show that (1)
has an equilibrium point at P ∗ = (x∗, y∗, z∗), with y∗ = z∗ = −1

2x∗(1−x2∗); following the procedure
outlined in [8, Section 3.1], one can verify that P ∗ undergoes a Hopf bifurcation if the characteristic
polynomial of the corresponding Jacobian,

λ3+
1

ε

[

εk1(1+k3)− (1−3x2∗)
]

λ2+
1

ε

[

εk21k3+(1−k1+3k1x
2
∗)(1+k3)

]

λ+
1

ε
k1k3

[

2−k1(1−3x2∗)
]

≡ λ3 + a2(x∗, k1, k3, ε)λ
2 + a1(x∗, k1, k3, ε)λ+ a0(x∗, k1, k3, ε) = 0,

satisfies a1 > 0 and a1a2 = a0. The former condition holds in the parameter regime considered
here, while the latter is met for the unique value xH ≈ 0.56801 of x∗ ≡ x∗(k1, k3, ε). Finally, solving
for the corresponding B0-value in (1), we find BH

0 ≈ 0.50067 which, incidentally, is equivalent
to the value for µH obtained in Section 3, in the context of (11). (Similarly, one can show that
the critical µ-value µc defined in Section 2.4 corresponds to Bc

0 = 0.26
√
3 ≈ 0.45488 and, hence,

that the mixed-mode dynamics of the three time-scale Bonhoeffer-van der Pol oscillator will unfold
approximately over the interval (Bc

0, B
H
0 ).) Since, however, the asymptotics obtained in this article

is, by definition, only valid in an ‘intermediate’ µ-regime – away from both ‘pure’ SAO and LAO
dynamics – we do not consider mixed-mode behaviour that may be induced by a singular Hopf
bifurcation in (1).

While our analysis is mostly precise, as we have systematically accounted for the orders of
any terms omitted in the process, a fully rigorous study would have to rely on the ‘blow-up’
technique, or geometric desingularisation [5, 14]. In fact, the discussion in Section 3.1 could equally
be recast in terms of a ‘rescaling’ chart that covers the fold region and two ‘phase-directional’
charts which describe the entry and exit mechanisms, respectively, as is routinely done in the
application of blow-up; see again [5, 14] for but two examples. However, in the interest of keeping
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our presentation accessible, and in following [12] and [13], we have opted to formulate our results
in terms of equivalent coordinate rescalings and projectivisations, and thereby to sacrifice some
rigour.

Our approach has its inherent limitations, of course: thus, for instance, the asymptotics of
the return map Π derived in Section 3 – as well as of its one-dimensional reduction Φ – breaks
down at the boundaries between sectors of rotation; see [12, Section 4] for details. While we have

hence excluded a neighbourhood of the corresponding secondary canards Γj
ε from our analysis, it is

there that complicated mixed-mode patterns can arise due to ‘jumps’ between non-adjacent sectors
and period-doubling bifurcation, both of which may yield chaotic dynamics. In fact, the proof of
Proposition 1 already assumes that the flow of Equation (14) stays away from the strong canard Γε,
which is reflected in our assumption that h = O(εM ) is small, but not exponentially so. Dynamics
resulting from a violation of that condition is illustrated in Figure 14, where a stable mixed-mode
pattern is shown to co-exist with a canard cycle undergoing period doubling; the latter is realised
for initial w-values close to the ‘critical’ value wc

0 =
√
εw̄c

0 of w, with w̄c
0 defined as in (35), which

implies that the corresponding h-value must be near-exponentially small.
Period-doubling in the extended Bonhoeffer-van der Pol oscillator has been studied in detail in

[7]; in the process, the mixed-mode dynamics that is generated upon variation of the two param-
eters k3 and B0 was described numerically in a number of regimes, down to k3 = 0.2. However,
and in contrast to standard convention, mixed-mode patterns were organised in terms of ‘isospike
diagrams,’ i.e., distinguished in terms of the total number of ‘spikes’ within a period, rather than
their signature Lk; interestingly, it was shown that the underlying hierarchical structure is well-
represented by a Stern-Brocot tree, instead of the Farey tree which is usually invoked in that
context. In particular, and in agreement with [18], period-doubling cascades were found to be
interspersed with chaotic phases which unfold over very narrow B0-intervals; the latter may well
correspond to the boundaries between our sectors of rotation. Further investigation is necessary to
establish fully how their results relate to those obtained in this article.

Finally, in a recent study by Shimizu et al. [19], the dynamics of a modification of Equation (1)
was considered subject to a weak periodic perturbation close to Hopf bifurcation. In analogy to
the approach developed here, a one-dimensional reduction was obtained for the return map that
is induced by the resulting flow; however, that reduced map was not found to be unimodal, as
in our case, but circle-like. A novel type of bifurcation, termed ‘MMO-incrementing bifurcation’
(MMOIB), was reported by the authors; moreover, highly complex, intermittently chaotic mixed-
mode patterns that include rare bursts over long time intervals were observed in the corresponding
time series. It would seem worthwhile to explore whether the geometric framework applied in this
article can be extended to the modified Bonhoeffer-van der Pol oscillator studied in [19].
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