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Abstract: In this paper, a reduced-order analytical model for an L-shaped multi-beam structure with
nonlinear joints is presented to investigate the nonlinear responses of the system with three-to-one
internal resonances conditions. Firstly, the global mode shapes are used to obtain an explicit set
of nonlinear ordinary differential equations of motion for the system. Then, the first two natural
frequencies of the system are calculated to determine the specific tip mass that results in three-to-
one internal resonance. Subsequently, an approximation of the analytical solution of the dynamic
model with two-degree-of-freedom is derived by using the multi-scale method. The accuracy of
the approximation solution is verified by comparing it with the numerical solution obtained from
the original motion equations. Based on the nonlinear dynamical model obtained by this paper,
the frequency response curves are given to investigate the nonlinear dynamic characteristic of the
L-shaped multi-beam structure with nonlinear joints. The results show that the nonlinear stiffness of
the joints has a great influence on the nonlinear response of the system with three-to-one internal
resonance conditions.

Keywords: L-shaped multi-beam structure; nonlinear joint; multi-scale method; three-to-one internal
resonance; nonlinear dynamics

1. Introduction

Within the fields of mechanical, aeronautical and civil engineering, L-shaped beams
play an increasingly important role, which makes people very interested in their structural
and dynamic characteristics. Nowadays, L-shaped beams have been widely used, e.g.,
L-shaped beams and L-shaped beam frames are often used in building construction, the
design of ledges of L-shaped beams, and L-shaped beams are also commonly used in the
design of piezoelectric energy harvester and internal structure of acceleration sensors used
for earthquake disaster detection. Moreover, they are usually used as a component in space
shuttles and the large space structures of flexible manipulators.

At present, the applied research on L-shaped beams can be roughly divided into two
categories. Firstly, in the aspect of construction engineering, a typical use of the L-shaped
spandrel is on a simple span that supports precast deck elements, such as double-tee beams.
Nafadi [1], based on the research findings, proposed an experimental program consisting
of full-scale reinforced and pre-stressed concrete L-shaped beams, and to develop compre-
hensive design guidelines for precast concrete L-shaped beam ledges. Hamzelood, et al. [2]
proposed a theoretical model for damage detection of L-shaped beam based on embedded
active sensors of piezoelectric plates and used statistical algorithms such as root mean
square deviation and cross-correlation to conduct damage detection of L-shaped beam.
Rossit, et al. [3] studied an L-shaped beam structure with cracks by analytical method
and obtained the natural frequency of plane vibration of the L-shaped beam structure by
considering cracks at different positions and depths. Secondly, in mechanical engineering,
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L-shaped beams are often used in piezoelectric energy harvesters. In comparison with a
simple beam, an L-shaped beam could have internal resonance (by selecting the appro-
priate dimensions and parameters of the L-shaped beam) and saturation phenomenon.
This advantage in nonlinear systems increases the frequency range of energy harvesting,
and therefore increases output power from the system. Liu, et al. [4] proved that the
frequency range of energy acquisition of an L-shaped beam structure with terminal mass is
much larger than that of the cantilever beam. Sharifi Moghaddam, et al. [5] evaluated the
energy obtained by nonlinear vibration of the L-shaped beam using piezoelectric plates
and obtained the best resistance load and the best effective output power of the system.
McCollum, et al. [6] experimentally measured the power transmission in an L-shaped
beam and obtained the vibration power transmitted through the joint between two beams
forming an L-shaped structure when one beam was excited by the free end force. Finally,
L-shaped beams are often used in the internal structure design of acceleration sensors. An
acceleration sensor is one of the key points in the field of seismic disaster monitoring and
its performance is very important for the monitoring of low-frequency seismic signals.
Wang, et al. [7] designed and produced a triple-axis accelerometer with a double L-shaped
beam structure, providing an effective manufacturing method for further improving the
sensitivity characteristics of the triple-axis accelerometer. Pan, et al. [8] developed an
FBG acceleration sensor with symmetric L-beam structure to detect low-frequency seismic
signals. A symmetric L-beam is added on the basis of the elastic diaphragm. The L-shaped
beam can be regarded as a lever, which can amplify the weak vibration signals well and
the symmetric L-shaped beams can improve the sensitivity of the sensor and improve the
responsiveness of the sensor during strain transfer.

It can be seen from the above discussion that L-shaped beams have been the subject of
a very wide range of research in the field of application, so we should have a more in-depth
study of the L-shaped beam. So far, there is little research on three-to-one internal resonance,
and most of the previous research was carried out under the condition of 2:1 internal
resonance. For example, Balachandran, et al. [9] studied the planar dynamic response of the
flexible L-shaped beam-mass structure under the condition of 2:1 internal resonance, and
Erturk, et al. [10] proposed to use the L-shaped beam-mass structure as a new piezoelectric
harvesting device under the condition of 2:1 internal resonance to improve the possibility
of power output in high energy collection. Before these, there have been many studies on
three-to-one internal resonance of other beams, such as Char-Ming, [11] et al., who studied
the nonlinear plane response of joint beams under the condition of three-to-one internal
resonance. Kar, et al. [12] studied the nonlinear behavior of a long thin beam bearing
concentrated mass under the excitation of the principal parameter base. By adjusting the
size of the beam-mass system and the position of the additional mass, the system showed
a three-to-one internal resonance. Tekin, [13] et al. studied the vibration problem of a
multi-order beam with cubic nonlinearity under the condition of three-to-one internal
resonance and found the general approximate solution to the problem with the multi-scale
method. Hegazy [14] studied the nonlinear response of the chord-beam coupling system
to parametric excitation under three-to-one internal resonance. The steady-state solution
of the system is obtained by solving the frequency response equation numerically, and
the influence of different parameters on the system performance is studied. There are
also studies on the nonlinear response of curved beams in the case of 1:1 and three-to-one
internal resonance [15]. In recent years, the research on three-to-one internal resonance
has been further expanded. For example, Garg, et al. [16] conducted a nonlinear dynamic
analysis of the piezoelectric energy harvester of a cantilever beam based on parameter-based
excitation. By adjusting the additional mass at three-to-one internal resonance, an attempt
is made to obtain electrical energy over a wider frequency range. Guillot, et al. [17] obtained
experimental and theoretical results of nonlinear dynamics of homogeneous piezoelectric
thin beams under the conditions of 2:1 and three-to-one internal resonance by using the
same method. Taking the internal resonance of three-to-one as the center, the numerical
harmonic balance method is used to solve the governing equation, the periodic solution
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of the system under harmonic forcing is obtained, and the energy exchange between the
internal resonance modes of three-to-one is observed. Therefore, it is necessary to study the
nonlinear dynamic behavior of an L-shaped beam under three-to-one internal resonance to
better understand the nonlinear vibration of an L-shaped beam.

In this paper, the beam structure with nonlinear joints is adopted. Firstly, at present
many parts of mechanical structure adopt nonlinear joints and the stiffness of nonlinear
joints will affect the resonance response of the structure. Pan, et al. [18] considered the
influence of nonlinear joint stiffness on the response of the double-jointed system and
propose a block mass model to characterize the mechanical properties of bolted flange
joints. In addition, in the very popular research field of the manipulator, there are also many
studies on the nonlinear joint of the manipulator. Liu, et al. [19] developed a nonlinear
model of a special cable in space robotic arms in the space environment. The theoretical
findings revealed in this study are significant to future research on the slow rotations and
oscillations of weak robot joints in space exploration with robotic arms. Park, et al. [20]
proposed a safe joint mechanism (SJM-II)-nonlinear spring system for collision safety. It can
simultaneously provide both positioning accuracy and collision safety. So, in this paper, the
influence of nonlinear joint on the whole system is also considered in the study of L-shaped
beam. Recently, Wei, et al. conducted nonlinear dynamic modeling and analysis on L-
shaped beam structure [21] and double-beam structure [22] with terminal mass connected
by nonlinear nodes, and this paper conducted corresponding theoretical research on this
basis. In addition, the derived low-dimensional high-precision model is also an analytical
method to obtain global modes proposed by Wei, et al. [23]. Based on this model, the
nonlinear response characteristics under the condition of three-to-one internal resonance
are studied by using the multi-scale method.

According to the above, there is little research on the three-to-one internal resonance
of an L-shaped beam, so we have conducted some work on this kind of structure. Firstly,
the L-shaped multi-beam model with nonlinear joints is established. Then, by applying
the dynamic modeling method proposed in the L-shaped beam structure [21], we obtain
the nonlinear ordinary differential equation of motion of the system. Next, the modal
analysis of the beam structure is carried out, mainly considering the influence of the first
two frequencies on the system. Then we make the perturbation analysis of the motion,
analyzing the nonlinear dynamics of the L-shaped multi-beam structure under three-to-one
internal resonance and considering the primary resonance of the first mode and second
mode. Finally, we plot frequency-response curves to describe the nonlinear dynamic
phenomenon under the condition of three-to-one internal resonance.

2. Dynamic Model
2.1. Governing Equations of Motion

The L-shaped beam consists of a horizontal beam, a vertical beam, two nonlinear
torsional joints, and a rigid body, as shown in Figure 1. The horizontal beam is connected to
the support and vertical beams, respectively, through joint S1 and joint S2. The coordinate of
the horizontal beam with length L1 is represented by (x1, y1), the coordinate of the vertical
beam with length L2 is denoted by (x2, y2), and the origin is located at the joint S1 and S2,
respectively. The L-shaped beam is subjected to the vertical acceleration Y0 cos Ωt and the
horizontal acceleration X0 cos Ωt, which make the horizontal beam and vertical beam have
transverse displacement v1 and v2, respectively, where X0 and Y0 are the horizontal and
vertical peak amplitude of the acceleration, respectively, and Ω is the excitation frequency.
The tip mass is located at the end of the vertical beam, m represents the mass of the tip mass,
xm and ym represent the horizontal and vertical displacement of the tip mass, respectively,
which correspond to the displacement v1 and v2 of the L-shaped beam structure. We use
θm to describe the rotational deformation of the tip mass. The coordinates of the tip mass
are (xm, ym), and the origin is at the center of mass of the tip mass.
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Figure 1. Schematic of L-shaped multi-beam structure.

Considering the external vertical excitation and horizontal excitation, the motion equa-
tions of horizontal and vertical beams are derived according to Euler-Bernoulli beam theory.

ρ
..
vi + EIv

′′′ ′
i + ξ

.
vi + η I

.
v
′′′ ′
i = fi(t), i = 1, 2. (1)

where an overdot denotes partial differentiation with respect to time t, a prime denotes
partial differentiation with respect to x. It is assumed that the dimensions of the cross-
section and material property of the two beams are the same. ρ, E and I represent mass
per unit length, elastic modulus and area moment of inertia of the two beams, respectively.
The transverse force on the horizontal beam and vertical beam are f1 = ρ

..
Yb and f2 = ρ

..
Xb,

respectively.
Assuming that the external damping and internal damping are proportional to the

mass and stiffness, respectively and they are denoted by ξ and η. They can be expressed as:

ξ = aρ, η = bE. (2)

where a and b are proportionality constants.
The tip mass and vertical beam can be regarded as attached to the end of the horizontal

beam and the governing equation of motion along the x2-axis is:

(ρL2 + m)
..
ym + cr

.
ym − EIv′′′1 (L1, t) = (ρL2 + m)

..
Yb. (3)

where cr is the damping coefficient of the horizontal beam in the direction of x2 axis
translation, expressed as:

cr = a(ρL2 + m). (4)

From Figure 2, it can be obtained that the motion equation for the tip mass rotation
and translation in horizontal direction are

J
..
θm + cJ

.
θm + EIv′′2 (L2, t)− d

2
EIv′′′2 (L2, t) = 0, (5)

m
..
xm + cm

.
xm − EIv′′′2 (L2, t) = m

..
Xb. (6)

where, J represents the moment of inertia of the tip mass, cJ and cm are the damping of
the tip mass for the rotation and translation in horizontal direction, respectively. They
are proportional to the tip mass moment of inertia and mass, respectively, so they can be
expressed as

cJ = aJ, cm = am. (7)
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1L
2S
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Figure 2. Natural conditions on a rigid body. M is the bending moment of the vertical beam on the
rigid body, M = EIv′′2 (L2, t). Q is the shear force of vertical beam on rigid body, Q = EIv′′′2 (L2, t).
Fm = m

..
Xb is the external force applied to the rigid body.

For the nonlinear torsional joint, it is described as a massless system with a single
degree of freedom nonlinear spring with a damper, as shown in Figure 3. The nonlinear
transfer torque formula of the i-th joint can be expressed as:

MT
i = kLθi + kNθ3

i , i = 1, 2. (8)

where kL and kN are linear stiffness and cubic nonlinear stiffness of nonlinear torsional
joint, respectively, θi is the torsional deformation of the i-th joint Si.
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2.2. Determination of Global Mode Shapes of the L-Shaped Multi-Beam Structure

Firstly, the boundary conditions at the joint S1 and the matching conditions at the joint
S2 and the tip mas are needed to be analyzed. The boundary conditions at the joint S1 are

v1(0, t) = 0, v′1(0, t) = θ1, EIv′′1 (0, t) = MT
1 (9)

As shown in Figure 4a, the geometric match conditions at the joint S2 are

v′1(L1, t) + θ2 = v′2(0, t), v2(0, t) = 0, (10)

As shown in Figure 4b, the moment matching boundary conditions at the joint S2 are

EIv′′1 (L1, t) = MT
2 = EIv′′2 (0, t). (11)

The geometric match conditions of the tip mass are

v1(L1, t) = ym, v2(L2, t)− d
2

θm = xm, v′2(L2, t) = θm. (12)
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Figure 4. Schematic of (a) geometric matching conditions and (b) force matching conditions at
joint S1; v′1 = v′1(L1, t), v′2 = v′2(0, t), Mh and Mv are the bending moments acting at the joint,
Mh = EIv′′1 (L1, t), Mv = EIv′′2 (0, t).

In order to obtain the mode shapes of the L-shaped multi-beam structure, its eigen-
value problem needs to be solved. It is assumed that the displacements of the L-shaped
multi-beam jointed structure are separable in space and time by the following forms:

vi(x, t) = ϕi(x)ejωt, θi = Θiejωt, xm = Xmejωt, ym = Ymejωt, θm = Θmejωt, i = 1, 2. (13)

where ω is an unknown constant corresponding to the natural frequency of the system. By
using the separable solution given in Equation (13), the equations of the motion for the
beams in Equation (1) without the damping and the external force are transformed into the
following form:

EIϕ
′′′ ′
i (x)−ω2ρϕi(x) = 0, i = 1, 2. (14)

The solutions of Equation (14) can be written as

ϕi(x) = Ai cos(βx) + Bi sin(βx) + Ci cosh(βx) + Disinh(βx), i = 1, 2. (15)

where β =
(

ρω2

EI

)1/4
. Let

ψ = [A1 B1 C1 D1 Θ1 A2 B2 C2 D2 Θ2 Xm Ym Θm]
T. (16)

Substituting Equation (15) into the boundary and matching conditions in (9)–(12) and
the dynamic equations of the tip mass in (5) and (6), yields

H(ω)ψ = 0. (17)

The natural frequencies of the system are denoted in ascending order by ω1, ω2, · · · ,
which are the roots of the frequency equation det(H(ω)) = 0. Once the natural frequency
ωs is obtained, the eigenvector ψ(s) can be obtained by Equation (17). Then, the s-th global
mode shapes for the system can be determined by Equation (15).

2.3. Dynamic Model

The global mode shapes and time-varying modal coordinates are used to represent
the displacement of the L-shaped multi-beam structure with nonlinear joint, which can be
expressed as:

vi(xi, t) =
n
∑

j=1
ϕij(xi)qj(t), θi =

n
∑

j=1
Θijqj(t), xm =

n
∑

j=1
Xmqj(t),

ym =
n
∑

j=1
Ymqj(t), θm =

n
∑

j=1
Θmqj(t), i = 1, 2.

(18)

where qj(t) is the modal coordinate of the system.
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Substituting Equation (18) into Equations (1), (3), (5) and (6), the nonlinear ordinary
differential equation of motion of the system was obtained by applying the Galerkin
procedure:

Ms
..
qs(t) + Ksqs(t) + cs

.
qs(t) +

n

∑
j=1

n

∑
j=1

n

∑
j=1

ds
jkrqjqkqr = fs(t), s = 1, 2, · · · n. (19)

where Ms and Ks are the s-th modal mass and stiffness of the system, respectively and cs is
the s-th modal damping. ds

jkr represents the nonlinear stiffness of the joint. The relevant
terms in Equation (19) are given in Appendix A.

3. The Modal Analysis

In this section, the free vibration characteristics of the system with different tip masses
are given to study the three-to-one ratio in the first two natural frequencies of the system.
Physical parameters of L-shaped multi-beam structure are shown in Table 1.

Table 1. Parameter values of L-shaped multi-beam structure.

Parameter Value

Mass density ρ (kg/m3) 7800
Elastic modulus E (GPa) 200

Horizontal beam length L1 (m) 0.3
Vertical beam length L2 (m) 0.4

Beam width b1 = b2 (m) 0.02
Beam thickness h1 = h2 (m) 0.006

Linear stiffness kL (N·m/rad) 240

The ratio of the first two natural frequencies is three-to-one when the tip mass is
determined. As shown in Figure 5, under different rigid body masses, the first four natural
frequencies of L-shaped multi-beam structure are obtained. From Figure 5, it is shows that
the third and fourth natural frequencies are much larger than the second nature frequency.
The resonance response of the third mode frequency has little effect on the first two modes.
Therefore, only the first two modes are taken to calculate the dynamic response of the
L-shaped multi-beam structure with nonlinear joints. It can be seen from Figure 5a that
the natural frequency decreases gradually with the increase in m, and when m ≈ 1.32 the
second natural frequency is three times that of the first natural frequency. Figure 5b shows
the variation in the detuning parameter σ1 with m, where εσ1 = ω2 − 3ω1, ε is a small
dimensionless parameter and σ1 is a tuning parameter.

Next, the nonlinear dynamics of the system with three-to-one internal resonance at
m ≈ 1.32 are analyzed. The parameters of the first two frequencies of m ≈ 1.32 are shown
in Table 2. It can also be seen from Table 2 that the end displacement of the vertical beam is
mainly caused by the torsional deformation of the joint.
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Table 2. Parameter values of the first two frequencies ω(rad/s) when m ≈ 1.32.

Mode Shape Coefficient σ = 0.01
ω1 = 16.79 ω2 = 50.38

The first joint mode displacement Θ1j −1.15 −3.45
The second joint mode displacement Θ2j −0.83 3.38

Tip mas horizontal mode displacement Xm −1.18 0.49
Tip mass vertical mode displacement Ym −0.50 −1.20

4. Perturbation Analysis of Motion

In this section, we focus on the nonlinear dynamics of L-shaped multi-beam structure
under three-to-one internal resonance. Then, the first two modes are taken to reduce the
dynamical model of the L-shaped beam structure to a two degree of freedom nonlinear
system. Thus, the nonlinear ordinary differential equations of motion of the system in
Equation (19) become

..
q1 + ω2

1q1 + 2µ̂1
.
q1 + α̂11q3

1 + α̂12q2
1q2 + α̂13q1q2

2 + α̂14q3
2 = f̂1(t), (20)

..
q2 + ω2

2q2 + 2µ̂2
.
q2 + α̂21q3

1 + α̂22q2
1q2 + α̂23q1q2

2 + α̂24q3
2 = f̂2(t). (21)

where ω1 and ω2 are the first and second natural frequencies of the system, respectively.
The meanings of all coefficients in Equations (20) and (21) are given in Appendix B.

The multi-scale method is used to analyze the motion of two coupled nonlinear
ordinary differential equations. By introducing a time scale Tn = εnt, n = 0, 1 . . ., The first
order uniform expansion can be assumed to be:

q1 = q10(T0, T1, . . .) + εq11(T0, T1, . . .) + · · · , (22)

q2 = q20(T0, T1, . . .) + εq21(T0, T1, . . .) + · · · . (23)
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where ε is a small perturbation parameter. The damping coefficient, nonlinearity and force
terms are set to the form of the same order as the nonlinear terms.

µ̂s = εµs, α̂si = εαsi, f̂s = ε fs, s = 1, 2, i = 1, 2, 3, 4. (24)

Substituting Equations (22) and (23) into Equations (20) and (21), and balancing
coefficients of ε0 and ε1 on both sides, we obtain:

ε0 order
D0q10 + ω2

1q10 = 0, D0q20 + ω2
2q20 = 0. (25)

ε1 order

D2
0q11 + ω2

1q11 = −2D0(D1q10 + µ1q10)− α11q3
10 − α12q2

10q20 − α13q10q2
20 − α14q3

20 + f1(t), (26)

D2
0q21 + ω2

2q21 = −2D0(D1q20 + µ2q20)− α21q3
10 − α22q2

10q20 − α23q10q2
20 − α24q3

20 + f2(t). (27)

The general solution of Equation (25) can be expressed as:

q10 = A1(T1) exp(iω1T0) + cc, q20 = A2(T1) exp(iω2T0) + cc. (28)

where A1(T1) and A2(T2) are functions to be determined by eliminating the secular terms
from q11 and q21. Here, cc represents the complex conjugate of the preceding terms.

Next, two cases of the harmonic excitation Ω ≈ ω1 and Ω ≈ ω2 are considered. Ω are
the frequency of excitation.

4.1. When Ω ≈ ω1

Here, considering the case of one to three internal resonances and a primary resonance
for the first mode. We introduce two detuning parameter σ1 and σ2 to quantitatively
describe the proximity of ω2 to 3ω1 and Ω to ω1. The resonant relations are described
as follows:

ω2 = 3ω1 + εσ1, Ω = ω1 + εσ2. (29)

By substituting Equations (28) and (29) into Equations (26) and (27) and eliminating
the secular terms from q11 and q21, the following equations can be obtained.

2iω1
(

A′1 + µ1 A1
)
+ 3α11 A2

1 A1 + 2α13 A2 A2 A1 + α12 A2
1 A2 exp(iσ1T1)−

1
2

X0 exp(iσ2T1) = 0, (30)

2iω2
(

A′2 + µ2 A2
)
+ 2α22 A1 A1 A2 + 3α24 A2

2 A2 + α21 A3
1 exp(−iσ1T1) = 0. (31)

Denoting A1 and A2 in polar coordinates.

A1 =
1
2

a1(T1) exp(iβ1), A2 =
1
2

a2(T1) exp(iβ2). (32)

Substitute Equation (32) into Equations (30) and (31) and separate the real and imagi-
nary parts of the resulting equations. For the steady-state equation, we get

8ω1µ1a1 + α12a2
1a2 sin γ1 − 4 f1 sin γ2 = 0, (33)

8ω2µ2a2 − α21a3
1 sin γ1 = 0, (34)

8ω1a1σ2 − 3α11a3
1 − 2α13a1a2

2 − α12a2
1a2 cos γ1 + 4 f1 cos γ2 = 0, (35)

8ω2a2(3σ2 − σ1)− 3α24a3
2 − 2α22a2

1a2 − α21a3
1 cos γ1 = 0, (36)

where γ1 = σ1T1 + β2 − 3β1, γ2 = σ2T1 − β1.
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4.2. When Ω ≈ ω2

Here, considering the case of one to three internal resonances and a primary resonance
for the second mode. The resonant relations are described as follows:

ω2 = 3ω1 + εσ1, Ω = ω2 + εσ2. (37)

Applying the procedure in Section 4.1, we can obtain the following four equations:

8ω1µ1a1 + α12a2
1a2 sin γ1 = 0, (38)

8ω2µ2a2 − α21a3
1 sin γ1 − 4 f2 sin γ2 = 0, (39)

8ω1a1(σ1 + σ2)− 9α11a3
1 − 6α13a1a2

2 − 3α12a2
1a2 cos γ1 = 0, (40)

8ω2a2σ2 − 3α24a3
2 − 2α22a2

1a2 − α21a3
1 cos γ1 + 4 f2 cos γ2 = 0. (41)

where γ1 = σ1T1 + β2 − 3β1, γ2 = σ2T1 − β2.

5. Results Analysis

In this part, we use two methods to calculate the nonlinear response of the system, one
is the modulation equations obtained by the multi-scale method, and the other is obtained
from Equations (20) and (21) by the numerical method. The accuracy of the approximation
solution is verified by compared the results obtained by the two methods. Then, we plot
frequency-response curves to describe the nonlinear dynamic phenomenon under the
condition of three-to-one internal resonance.

According to Equation (18), the horizontal displacement and vertical displacement of
the L-shaped beam structure can be expressed:

xm =
n

∑
j=1

xj
m =

n

∑
j=1

X j
mqj, ym =

n

∑
j=1

yj
m =

n

∑
j=1

Y j
mqj, n = 2. (42)

where xj
m and yj

m, j = 1, 2 are j-th displacement of the tip mass.
First of all, we analyze the phenomenon generated when the firs mode primary

resonance is performed, namely Ω = ω1 + εσ2. In these figures, solid blue lines represent
stable solutions, while dotted pink lines represent unstable solutions. They are obtained by
the modulation equation. The numerical solutions obtained from the original Equations
(20) and (21) using the fourth-order Runge-Kutta algorithm are represented by small circles.
The unit of kN values in the figures is N·m/rad3.

Figures 6 and 7 show the variation in the horizontal and vertical displacement of
the L-shaped beam with harmonic excitation Ω when the nonlinear stiffness levels of the
joint are kN = 1.2× 104 N·m/rad3 and kN = 2.4× 104 N·m/rad3, respectively. With the
increase in nonlinear stiffness kN and excitation amplitude F, the horizontal and vertical
displacements increase.
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Figure 6. Frequency response curves for the first mode at Ω = ω1 + εσ2 and σ1 = 0.01: (a): horizontal
displacement for F = 0.05, (b): vertical displacement for F = 0.05, (c): horizontal displacement for
F = 0.1, (d): vertical displacement for F = 0.1.
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Figure 7. Frequency response curves for the second mode at Ω = ω1 + εσ2 and σ1 = 0.01: (a): horizontal
displacement for F = 0.05, (b): vertical displacement for F = 0.05, (c): horizontal displacement for
F = 0.1, (d): vertical displacement for F = 0.1.

By comparing the linear system and nonlinear system, it can be seen from Figure 6
that the linear system (kN = 0) is all stable solutions and without the occurrence of multiple
solutions, while the nonlinear system is much more complex. The fundamental difference
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between the two is that the transverse value of the frequency corresponding to the peak
value of the resonance frequency in the linear system remains unchanged, while the
amplitude of the re-resonance frequency in the nonlinear system tends to move to the right
with the increase in the excitation amplitude F, so the range of the unstable solution will
also become larger.

Figure 7 shows the curve of the displacements x2
m and y2

m of the tip mass, which is
consistent with the change trend of the displacement. The difference is that in a linear
system, when the excitation frequency is near the first frequency, the first mode plays
a major role, and the second mode cannot be excited. Therefore, the influence of the
second mode is very small, so the change trend of the linear system under the second
mode is not considered. By comparing the curves of the first mode and the second mode
in Figures 6 and 7, it is obvious that the displacements generated in the two modes are
very different, and the displacements of the second mode are very small. In order to
test whether the displacements generated in the second mode can be ignored, we do the
following experiments.

Figure 8 shows the difference in frequency response between 1-dof and 2-dof systems
in the case of three-to-one internal resonance. There is only one mode in the one degree of
freedom system, that is, the terms containing the second modal coordinate q2 are removed
from Equation (20). For the two degree of freedom system, the influences of two modes on
the system are considered, namely, Equations (20) and (21) are quoted. It can be seen from
Figure 8 that there is a significant difference between the frequency response of the one-
degree-of-freedom system and the two-degree-of-freedom system. Meanwhile, it can also
be seen that the difference increases with the increase in excitation amplitude F under the
same nonlinear stiffness. With the increase in nonlinear stiffness, the greater the excitation
amplitude, the greater the difference will be. This indicates that the coupling of the first
two modes is very strong. Although the displacement of the second mode is very small, it
will also have a great influence on the overall displacement, so the influence of the second
mode cannot be ignored.
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Figure 8. Frequency response curves for the first mode at Ω = ω1 + εσ2 and σ1 = 0.01:
(a,b) kN = 1.2× 104 N·m/rad3; (c,d) kN = 2.4× 104 N·m/rad3.

To prove the particularity of the three-to-one internal resonance case, we consider
the following case. Figure 9 shows the differences between 1-dof and 2-dof systems in
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the frequency-response under different nonlinear stiffness and excitation amplitude when
the first two natural frequencies are far away from three-to-one radio. In this case, the
results of the 1-dof system are represented by ◦, and the results of the 2-dof system are
represented by ∗. The beam length is L1 = 0.6 and L2 = 0.2, respectively, and the first two
modes are ω1 = 20.41 and ω2 =86.83, with a ratio of about 4:1. By comparing the case of
three-to-one internal resonance, it can be seen that under the same excitation amplitude F,
there is the difference only when the value of nonlinear stiffness KN is very large, even so,
the difference of the two cases is very small. From this, it can be concluded that in the case
without three-to-one internal resonance, there is little or very weak coupling between the
first two modes and it is the first mode that plays a major role.
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Figure 9. Frequency response curves for the first mode at Ω = ω1 + εσ2 and σ1 = 0.01 without
three-to-one internal resonance: (a,b) kN = 1.2× 104 N·m/rad3; (c,d) kN = 2.4× 104 N·m/rad3.

In the frequency response diagrams shown in Figures 10 and 11, it can be seen that
the case of the second mode primary resonance is opposite to that of the first mode. In the
figure, when the displacement x2

m is not zero, the displacement x1
m has two cases. The first

case is displacement x1
m is not zero, we can see that the first order displacement x1

m is much
larger than its displacement x2

m. Since internal resonance has the mechanism of transferring
energy from high mode to low mode. That means there is resonance occurring inside the
system. It can also be said that excitation in the high mode does bring significant response
in low order modes. It can also be seen from the figure that when internal resonance
occurs, with the increase in excitation amplitude F and nonlinear stiffness kN of joint, the
displacement x2

m will increase, and the frequency range causing internal resonance will
also increase. In the other case, the displacement x1

m is zero. In this case, the result is similar
to the result of single degree of freedom. With the increase in excitation amplitude F and
nonlinear stiffness kN of joint, the multi-solution region will become larger.
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6. Conclusions

In this paper, the nonlinear responses of the first two primary resonances of the L-
shaped multi-beam structure with nonlinear joints have been investigated analytically
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under three-to-one internal resonances condition. The global mode shapes are used to
obtain the dynamic model with two-degree-of-freedom. Then, by using the multi-scale
method, the approximate analytical solutions of the nonlinear equations are obtained to
investigate the influence of the joint nonlinear stiffness on dynamic response behavior of
the system.

For the primary resonance of the first mode, when the nonlinear system is under the
three-to-one internal resonance condition, the nonlinear stiffness of the joint leads to a
very strong coupling effect of the first two modes. Even if the displacement excited by the
second mode is very small, its effect on the system cannot be ignored. At the same time, the
nonlinear vibration phenomena are also more likely to occur, such as jumping and multiple
solutions. When the system is far away from the three-to-one internal resonance conditions,
even if the nonlinear stiffness of the joint is large, the effect of the second mode on the
system is weak, and it is generally negligible. For the primary resonance of the second
mode, the displacement of the system at the excitation frequency away from the second
natural frequency may be much greater than those at the excitation frequency near the
second natural frequency. At this point, the displacement excited by the first mode is much
larger than the displacement excited by the second mode. As the excitation amplitude and
joint nonlinear stiffness increase, the excitation frequency in which this occurs is further
away from the second natural frequency.

In summary, the nonlinear dynamic model derived in this paper is very suitable
for studying the nonlinear dynamic response of the system analytically. Compared with
numerical analysis, the approximate analytical solution obtained by analytical method
can not only quickly and comprehensively analyze the influence of joint nonlinearity
on the nonlinear response of the system, but also better help the design of the joint in
such structures.

Author Contributions: Conceptualization, J.W., Z.W. and Y.S.; methodology, J.W. and Y.S.; software,
Z.W. and W.L.; investigation, writing—original draft, Y.S. and Z.W.; writing—review and editing, Y.S.
and Z.W.; visualization, Z.W. and W.L.; supervision, J.W.; project administration, J.W. and Y.S. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (Grant
No. 12002298), the China Postdoctoral Science Foundation (Grant No. 2020M681578), the Shandong
Provincial Natural Science Foundation, China (Grant No. ZR2020QA038).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

The relevant terms in Equation (19)

Ms = ρ(
∫ L1

0
ϕ1s

2dx +
∫ L2

0
ϕ2s

2dx) + mXms
2 + (ρL2 + m)Yms

2 + JΘms
2, (A1)

Ks = EI(
∫ L1

0
ϕ
′′
1s

2dx +
∫ L2

0
ϕ
′′
2s

2dx) + kL(Θ1s
2 + Θ2s

2), (A2)

ds
jkr =

1
Ms


∫ L1

0 ϕ1s

[
ρ
(

ϕ′1j
∫ x

L1

∫ x
0 ϕ′1k ϕ′1rdxdx

)′
− (ρL2 + m)ϕ

′′
1j

∫ L1
0 ϕ′1k ϕ′1rdx

]
dx

+
∫ L2

0 ϕ2s

[
ρ
(

ϕ′2j
∫ x

L2

∫ x
0 ϕ′2k ϕ′2rdxdx

)′
−mϕ

′′
2j

∫ L2
0 ϕ′2k ϕ′2rdx

]
dx

, (A3)

fs(t) =
1

Ms

{
..
Yb

[∫ L1

0
ρϕ1sdx + (ρL2 + m)Yms

]
+

..
Xb

[∫ L2

0
ρϕ2sdx + mXms

]}
. (A4)
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Appendix B

The coefficients lists in Equations (20) and (21) are

µ̂s =
1
2
(a + bω2

s ), α̂s1 =
1

Ms
d111

s , α̂s2 =
1

Ms
(d112

s + d121
s + d211

s ), (A5)

α̂s3 =
1

Ms
(d122

s + d212
s + d221

s ), α̂s4 =
1

Ms
d222

s , f̂s(t) =
1

Ms
fs(t). (A6)
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