
Three Tools for Language Processing:

BNF Converter,
Functional Morphology, and Extract

Markus Forsberg

Thesis to be defended in public at 10:15, Sept. 25, 2007

in EE, EDIT building, Göteborg

for the Degree of Doctor of Engineering.

The defense will be held in English.

Opponent: Directeur de Recherche de Classe Exceptionnelle
Gérard Huet, INRIA Rocquencourt, France

Department of Computer Science and Engineering

Chalmers University of Technology and Göteborg University
SE-412 96 Göteborg, Sweden

Telephone +46-31-772 10 00



Abstract

Purely functional programming and meta programming based on declara-
tive models are productive approaches to language processing and language
resource building. Three tools are presented as evidence of this: BNF Con-

verter, Functional Morphology, and Extract.
BNF Converter is a multi-lingual compiler tool. BNFC accepts as its

input a grammar written in Labelled BNF (LBNF) notation, and generates
a compiler front end: an abstract syntax, a lexer, and a parser. Further-
more, it generates a case skeleton usable as the starting point of back end
construction, a pretty printer, a test bench, and a LATEX document usable
as a language specification. The program components can be generated in
Haskell, Java, C, C++, Objective Caml, and C#, and their standard parser
and lexer tools.

Functional Morphology and Extract are tools for creating lexical re-
sources. Lexical resources, i.e. systematic computational descriptions of
words in a natural language, are fundamental resources for any language
technology application and it is imperative that they are of high quality.
Moreover, since the development of lexical resources is such a time-consuming
task, it is important that they can be created efficiently. The tools have been
created to address these issues.

Functional Morphology (FM) is a Haskell library for defining lexical re-
sources. A lexical resource in FM is defined using the word-and-paradigm

model. Paradigms are abstractions of inflection tables, represented as func-
tions over hereditarily finite algebraic data types, and the lexicon consists of
a list of words in citation form annotated with paradigm identifiers. The run-
time system of FM consists of an inflection engine, an analyzer, a synthesizer
and a compiler to many standard lexicon formats.

Extract is a special-purpose tool for extracting annotated words from
raw text data. The extraction is based on a set of rules, where a rule is a
propositional formula where the atoms of the formula are regular expressions.
The regular expressions, corresponding to a subset of the word forms in a
paradigm, contain variables used for capturing substrings. A recent addition
to Extract is Constraint Grammar constructs together with the possibility
of a structured input format. This addition enables a rule to refer to the
contexts of the word forms and additional information added to them, such
as part of speech (POS) tags.


