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In this paper, we discuss the bifurcation of a limit cycle to a three-torus in a piecewise linear

third-order forced oscillator. A three-torus cannot be generated in third-order autonomous oscil-

lators; our dynamical model exhibits a three-torus of minimal dimension. We adopt a third-order

piecewise linear oscillator that exhibits a two-torus and apply a periodic perturbation to this oscil-

lator. First, appropriate parameter values are selected to induce a limit cycle in the oscillator. In

addition, this limit cycle is synchronized to the periodic perturbation. When the angular fre-

quency of the periodic perturbation decreases, the oscillator is desynchronized, and a two-torus

appears via a saddle-node bifurcation. This was verified by tracking the fixed point corresponding

to the limit cycle on the Poincaré map and calculating the eigenvalues of the fixed point. Fur-

thermore, the variation of a bifurcation parameter results in the generation of a three-torus via

a quasi-periodic Neimark–Sacker bifurcation. This bifurcation is identified as a quasi-periodic

Neimark–Sacker bifurcation from the observation of the second and third degenerate negative

Lyapunov exponents. It was confirmed that all of the three Lyapunov exponents become zero at

the quasi-periodic Neimark–Sacker bifurcation point.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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1. Introduction

The recent increase in computational power has enabled the analyses of higher-order dynami-

cal systems and has naturally attracted considerable attention [1–4,6,7,9–19]. Such higher-order

dynamical systems exhibit notable phenomena, such as torus doubling [1], hyperchaos [3], and

three-tori [4–17]. These phenomena are not observed in low-order systems, such as second-order

nonautonomous oscillators and third-order autonomous oscillators. In particular, in recent years, the

bifurcations relevant to the three-torus have been a subject of intensive research [4–19].

Both numerical simulations and experimental measurements have been conducted for three-

coupled oscillators, and the observations indicated a three-torus [4,12]. However, these oscillators

were not minimal dimensional oscillators that generate a three-torus. We are therefore interested in

three-torus generating oscillators of minimal dimension. It has been shown that a class of fourth-order

autonomous oscillators can have a three-torus near the codimension-two bifurcation point called

the Hopf–Hopf bifurcation [8,9]. Such oscillators are dynamics of minimal dimension generating

a three-torus as autonomous ODEs. In contrast, third-order nonautonomous oscillators under weak

© The Author(s) 2013. Published by Oxford University Press on behalf of the Physical Society of Japan.
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periodic perturbation could generate a three-torus because third-order autonomous oscillators can

exhibit a two-torus [20,21]. However, the bifurcation scenario from a limit cycle to a three-torus in

such nonautonomous oscillators has not yet been investigated.

In this paper, we discuss a mechanism that causes a three-torus in a third-order piecewise lin-

ear forced oscillator. We adopt the third-order piecewise linear autonomous circuit proposed by

Matsumoto et al. [20] as a two-torus-generating circuit of minimal dimension and apply a periodic

perturbation to this oscillator. In the analysis, we employ explicit solutions of the piecewise dynam-

ical equations and their variational forms because the bifurcation transition from a limit cycle to

a three-torus occurs under sensitive circumstances. We must solve the equations numerically when

the solution crosses the boundary of each piecewise linear branch. These equations are not approx-

imated; therefore, these equations can be solved to any degree of precision using a computer. In an

actual calculation procedure, they are solved with an accuracy of 10−15.

Alaggio and Rega asserted that a three-torus occurs as a consequence of two Neimark–Sacker

(Hopf) bifurcations [16]. However, this appears to be incorrect. Fujiwara et al. clearly demonstrated

using simple and natural discrete dynamics that the second Neimark–Sacker bifurcation point does

not agree with the bifurcation boundary at which a two-torus bifurcates to a three-torus [19]. Vitoro et

al. call such a bifurcation boundary from a two-torus to a three-torus a quasi-periodic Neimark–

Sacker bifurcation [18]. In our model, the bifurcation transition from a limit cycle to a three-torus

does not occur as a consequence of a Neimark–Sacker bifurcation and a quasi-periodic Neimark–

Sacker bifurcation because the Poincaré map is of the third order. First, the angular frequency of

the periodic perturbation is equalized to the natural angular frequency of the limit cycle of the

oscillator so that the oscillator is synchronized to the forcing term. Actually, synchronization is

confirmed. As the angular frequency decreases, the oscillator is desynchronized by a saddle-node

bifurcation, and a quasi-periodic solution (a two-torus) is generated. The generation of the saddle-

node bifurcation is confirmed by checking the eigenvalues of the fixed point of the Poincaré map.

The generation of the quasi-periodic oscillation is verified by calculating the Lyapunov exponents.

Before the saddle-node bifurcation, the Poincaré map has one real eigenvalue approximately equal to

1 and a pair of complex-conjugate eigenvalues inside the unit circle. The fixed point on the Poincaré

map disappears at the saddle-node bifurcation point. The largest Lyapunov exponent becomes zero

after this bifurcation. Note that the second and third Lyapunov exponents take the same negative

value, although the fixed point disappears owing to the saddle-node bifurcation. Therefore, the

nature of the pair of complex-conjugate eigenvalues remains in the attractor after the saddle-node

bifurcation.

As the bifurcation parameter is varied further, the two-torus bifurcates to a three-torus via a quasi-

periodic Neimark–Sacker bifurcation. At this bifurcation point, all three Lyapunov exponents become

zero. The bifurcation from the two-torus to a three-torus is identified as a quasi-periodic Neimark–

Sacker bifurcation because the second and third Lyapunov exponents are degenerate before the

bifurcation [5,12]. In addition, the bifurcation structure of a two-torus Arnold tongue [12] is observed

in a three-torus-generating region.

2. Circuit set-up and exact solution of the piecewise linear system

Figure 1 shows the circuit diagram analyzed in this study in which the capacitance of the right capaci-

tor is a negative value −C1. In the figure, if b1 = 0, the circuit is identical to the two-torus generating

oscillator proposed by Matsumoto et al. [20]. The governing equation of the circuit is represented by
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Fig. 1. Circuit diagram.

Fig. 2. v − i characteristics of the piecewise linear nonlinear register i = g(v).

the following third-order nonautonomous ordinary differential equation.

C1

dvC1

dt
= −g(vC2

− vC1
),

C2

dvC2

dt
= −g(vC2

− vC1
) − iL ,

L
diL

dt
= vC2

+ b1 sin(ωt),

(2.1)

where g(·) is a nonlinear term, which is represented by the following three-segment piecewise linear

function.

g(v) = −m0v + 0.5(m0 + m1)[|v + E1| − |v − E1|]. (2.2)

Figure 2 shows the v − i characteristics of the nonlinear function g(v).

By changing each variable and constant as

x = vC1
/E1, y = vC2

/E1, z = iL/C2 E1, α = C2/C1,

β = 1/LC2, a = m0/C2, b = m1/C2, B = b1/LC2 E1,
(2.3)

the normalized equation is derived as follows.

ẋ = −α f (y − x), ẏ = − f (y − x) − z, ż = βy + B sin(ωt), (2.4)

where

f (u) = −au + 0.5(a + b)(|u + 1| − |u − 1|). (2.5)
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The circuit dynamics depends on the six parameters α, β, B, ω, a, and b. We set a, b, and β as

a = 0.07, b = 0.1, β = 1. (2.6)

These parameter values are the same as those used by Matsumoto et al. [20].

Because the circuit dynamics is piecewise linear, the explicit solutions in each piecewise linear

branch are obtained. Let δ1 and λ1 ± iγ1 be the roots of the eigenequation in the region y − x > 1 and

y − x < −1. Further, let δ2 and λ2 ± iγ2 be the roots of the eigenequation in the region −1 < y −

x < 1. Then, the piecewise linear solutions in each region are expressed by the following equations.

If y − x > 1 (Region 1)







x(t)

y(t)

z(t)






= F1(t − t0) ×







A1

B1

C1






+ G1(t), (2.7)

F1(t) =







fx1(t)

fy1(t)

fz1(t)






, G1(t) =







gx1(t)

gy1(t)

gz1(t)







fx1(t) = (eλ1t eδ1t sin(γ1t) eδ1t cos(γ1t)),

gx1(t) = −
a + b

a
+ k11 sin(ωt) + k21 cos(ωt),

fy1(t) = −
1

αa

d

dt
fx1(t) + fx1(t),

gy1(t) = −
1

αa

d

dt
gx1(t) + gx1(t) +

b

a
+ 1,

fz1(t) = −
d

dt
fy1(t) + a fy1(t) − a fx1(t),

gz1(t) = −
d

dt
gy1(t) + agy1(t) − agx1(t) − a − b,

k11 =
Bω(k41ω + k31a(α − 1))

k2
31

+ k2
41

,

k21 =
Bω(k31ω − k41a(α − 1))

k2
31

+ k2
41

,

where

k32 = −ω(ω2 − β), k42 = a(−αβ + ω2(α − 1)),

where A1, B1, and C1 are constants that satisfy the initial condition (t, x, y, z) = (t0, x0, y0, z0).

They are explicitly given by







A1

B1

C1






= F1(0)−1 ×

















x0

y0

z0






− G1(t0)











. (2.8)
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If |y − x | ≤ 1 (Region 2)






x(t)

y(t)

z(t)






= F2(t − t0) ×







A2

B2

C2






+ G2(t), (2.9)

F2(t) =







fx2(t)

fy2(t)

fz2(t)






, G2(t) =







gx2(t)

gy2(t)

gz2(t)







fx2(t) = (eλ2t eδ2t sin(γ2t) eδ2t cos(γ2t)),

gx2(t) = k12 sin(ωt) + k22 cos(ωt),

fy2(t) = −
1

αb

d

dt
fx2(t) + fx2(t),

gy2(t) = −
1

αb

d

dt
gx2(t) + gx2(t),

fz2(t) = −
d

dt
fy2(t) − b fy2(t) + b fx2(t),

gz2(t) = −
d

dt
gy2(t) − bgy2(t) + bgx2(t),

k12 =
Bω(k42ω − k32b(α − 1))

k2
32

+ k2
42

,

k22 =
Bω(k32ω + k42b(α − 1))

k2
32

+ k2
42

,

where

k32 = −ω(ω2 − β), k42 = b(αβ − ω2(α − 1)),






A2

B2

C2






= F2(0)−1 ×

















x0

y0

z0






− G2(t0)











.
(2.10)

If y − x < 1 (Region 3)






x(t)

y(t)

z(t)






= F3(t − t0) ×







A3

B3

C3






+ G3(t), (2.11)

F3(t) =







fx3(t)

fy3(t)

fz3(t)






, G3(t) =







gx3(t)

gy3(t)

gz3(t)







fx3(t) = (eλ1t eδ1t sin(γ1t) eδ1t cos(γ1t)),

gx3(t) =
a + b

a
+ k13 sin(ωt) + k23 cos(ωt),

fy3(t) = −
1

αa

d

dt
fx3(t) + fx3(t),

gy3(t) = −
1

αa

d

dt
gx3(t) + gx3(t) −

b

a
− 1,
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fz3(t) = −
d

dt
fy3(t) + a fy3(t) − a fx3(t),

gz3(t) = −
d

dt
gy3(t) + agy3(t) − agx3(t) + a + b,

k13 =
Bω(k43ω + k33a(α − 1))

k2
33

+ k2
43

,

k23 =
Bω(k33ω − k43a(α − 1))

k2
33

+ k2
43

,

where

k33 = −ω(ω2 − β), k43 = a(−αβ + ω2(α − 1)),






A3

B3

C3






= F3(0)−1 ×

















x0

y0

z0






− G3(t0)











.
(2.12)

To plot the attractors of Eq. (2.4), the state variables x(t; t0, x0, y0, z0), y(t; t0, x0, y0, z0), and

z(t; t0, x0, y0, z0) must be connected continuously at the boundaries between Regions 1, 2, and 3,

respectively. For example, when the solution in Region 2 hits the boundary y − x = 1 at t = t1, t1 is

derived by solving the following equation:

[−1 1 0] × F2(t1 − t0) ×







A2

B2

C2






+ G2(t1) − 1 = 0. (2.13)

Note that Eq. (2.13) includes no approximation. Therefore, Eq. (2.13) can be solved to any degree

of precision by using a computer. In this study, Eq. (2.13) is solved with an accuracy of 10−15.

Because the exact solutions are given by Eqs. (2.7), (2.9), and (2.11), the obtained solution does

not depend on the integration step-size h. However, this piecewise linear system is required to be

carefully solved. Figure 3 shows a schematic illustration of the piecewise linear solutions. We assume

that when t = t1, y − x is less than 1 in Fig. 3(a). This point is denoted by Q1. If y − x is greater than

1 at t = t1 + h, as indicated by the point Q2, the boundary condition can be appropriately solved;

y − x = 1 can be exactly solved, and the point P1 in Fig. 3(a) is obtained with an accuracy of 10−15.

However, the case illustrated in Fig. 3(b) is also a possibility. As shown in this figure, the genuine

solution reaches the threshold y − x = 1. However, the computed solution with step-size h does not

cross the threshold y − x = 1, i.e., both Q′
1

and Q′
2

in Fig. 3(b) are under y − x = 1. This case causes

a critical numerical error. Such a situation occurs because the objective attractors are tori. Thus, to

prevent this error, we check all extreme values y − x by solving ẏ − ẋ = 0 with an accuracy of

10−15. For example, our code calculated the maximum value P2, as shown in Fig. 3(c).

Figure 4 shows the attractor in the absence of perturbation (B = 0). Figure 4(a) shows a limit cycle,

while Fig. 4(b) shows a two-torus.

3. Mechanism causing a three-torus in the oscillator under weak

periodic perturbation

Because a two-torus is generated by the circuit dynamics of Eq. (2.4) at B = 0, Eq. (2.4) can generate

a three-torus with a positive value of B. In this section, we investigate the bifurcation scenario for

the transition of a limit cycle to a three-torus.
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Fig. 3. Important points for the application of piecewise linear explicit solutions with integration step-size

h. (a) Upper left: case where a piecewise linear solution is connected without problems. (b) Upper right: case

where a piecewise solution with a step-size h is not connected successfully. This causes a critical numerical

error. (c) Lower left: our code avoids the critical numerical error shown in the upper right case. The code always

monitors the extrema of y − x (P2 in the figure) to avoid such errors.
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Fig. 4. Trajectory of attractors projected onto the y − z plane when no perturbation is applied. (a) Left: limit

cycle (B = 0, α = 0.5). (b) Right: two-torus (B = 0, α = 3).

Because the perturbation is periodic, the Poincaré map is naturally defined as follows.

Tδ :R3 → R3

(x, y, z)⊤ �→ Tδ(x, y, z)⊤ = ϕ(2π/ω; (x, y, z)⊤, δ),
(3.1)

where the superscript ⊤ denotes the transpose of the vector, ϕ(t; (x, y, z)⊤, δ) is the solution for

which (x, y, z)⊤ is the initial condition, and δ is the parameter set. To calculate the Lyapunov

exponents, the variational equations must be derived and evaluated, and are represented as follows.

If y − x > 1 (Region 1)

δ̇x = αa(δy − δx), δ̇y = a(δy − δx) − δz, δ̇z = βδy,

If |y − x | ≤ 1 (Region 2)

δ̇x = −αb(δy − δx), δ̇y = −b(δy − δx) − δz, δ̇z = βδy, (3.2)
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ω

α

0.99946450.999459

2.5

0.5

saddle-node
bifurcation point

quasi-periodic
Neimark–Sacker
bifurcation point

limit cycle
two-torus

three-torus

Fig. 5. Direction in which the bifurcation parameter is varied.

If y − x < 1 (Region 3)

δ̇x = αa(δy − δx), δ̇y = a(δy − δx) − δz, δ̇z = βδy,

where δx, δy, and δz are variations. Because Eqs. (3.2) are also piecewise linear, the explicit solution

can be obtained in a manner similar to the case of Eq. (2.4).

In fact, Tδ and its Jacobian matrix can be theoretically represented by the exact expression because

we employ the piecewise linear explicit solutions of Eqs. (2.4) and (3.2). Bifurcation equations are

solved with an accuracy of 10−15 as shown below. However, it is impractical to express Tδ and its

Jacobian matrix explicitly in terms of equations because their domain is separated by Regions 1, 2,

and 3. Furthermore, the solution begins at t = 0 and wanders throughout these regions until it returns

to the initial position at t = 2π/ω.

To investigate the bifurcation scenario, we first select an angular frequency for the periodic per-

turbation equal to the natural angular frequency of the oscillator in the absence of perturbations. In

this case, the oscillator is naturally synchronized to the forcing term. We select the following value

as the amplitude of the periodic perturbation:

B = 0.000 01. (3.3)

Matsumoto et al. successfully observed chaos induced by the torus breakdown in the laboratory

measurements [20]. However, B is required to be small in the numerical experiments because the

solution tends to diverge for larger values of B near the Neimark–Sacker bifurcation of the limit

cycle.

We vary the bifurcation parameter in the direction illustrated in Fig. 5. We set the initial parameters

to ω = 0.999 4645 and α = 0.5, corresponding to the point marked with � (red) in Fig. 5. The three

eigenvalues in the complex plane for this initial parameter set are illustrated in Fig. 6. The absolute

value of these three eigenvalues is slightly less than 1. In this way, synchronization of the oscillator

to the forcing term was confirmed by setting the parameters to appropriate values.

Figure 7(a) shows a stable fixed point that corresponds to a limit cycle of the original Eq. (2.4).

Figures 7(b) and (c) are explained later in the paper.

First, we consider ω as the bifurcation parameter. As shown in Fig. 5, when ω decreases, the system

is desynchronized. This bifurcation is identified as a saddle-node bifurcation [22] because the real

eigenvalue of the Poincaré map Tδ at the fixed point is 0.999 99 . . . when ω = 0.999 4618. In addi-

tion, the fixed point at ω = 0.999 4617 cannot be traced, which is 0.000 0001 less than the previous

parameter value of ω, because the fixed point disappears at this parameter value ω via the saddle-node

bifurcation. The Poincaré map Tδ and its Jacobian matrix are expressed by the exact equations with an
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Fig. 6. Location of three eigenvalues in the complex plane with initial parameter values (ω = 0.999 4645, and

α = 0.5).
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Fig. 7. Attractors on the Poincaré section projected onto the y−z plane. (a) Upper left: stable

fixed point that corresponds to the limit cycle (ω = 0.999 4645, α = 0.5). (b) Upper right: two-torus

(ω = 0.999 459, α = 0.5). (c) Lower left: three-torus (ω = 0.999 459, α = 3).

accuracy of 10−15; this enables exact evaluation. A conceptual sketch of this situation is illustrated in

Fig. 8. After desynchronization via the saddle-node bifurcation, the solution represents a two-torus.

Figure 9(a) shows the graph of the largest Lyapunov exponent, and Fig. 9(b) presents the graph of

the second and third Lyapunov exponents. These Lyapunov exponents are calculated by using a pro-

cedure presented by Shimada and Nagashima [23]. After the saddle-node bifurcation, the attractor is

identified to be a two-torus because the largest Lyapunov exponent λ1 is zero. Figure 7(b) presents

the two-torus. Because the Poincaré section forms an invariant closed curve, the attractor is quasi-

periodic. Because two of the eigenvalues of the Poincaré map form a pair of complex conjugates, the

9/11

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
te

p
/a

rtic
le

/2
0
1
3
/9

/0
9
3
A

0
2
/1

5
2
5
4
3
2
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



PTEP 2013, 093A02 K. Itoh et al.

stable fixed point

unstable fixed point

saddle-node bifurcation point

quasi-periodic 

oscillation area

ωsaddle-node 

bifurcation curve

Fig. 8. Conceptual sketch of fixed-point manifold and saddle-node bifurcation.
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Fig. 9. Graph of Lyapunov exponents. (a) Left: largest Lyapunov exponent (B = 0.000 01, α = 0.5). (b) Right:

second and third Lyapunov exponents (B = 0.000 01, α = 0.5).
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Fig. 10. Graph of Lyapunov exponents (B = 0.000 01, ω = 0.999 459).

second and third Lyapunov exponents are degenerate. This suggests that, even after the saddle-node

bifurcation, the pair of complex eigenvalues retains its nature after the fixed point disappears.

Next, we set ω = 0.999 459 and select a bifurcation parameter, as depicted in Fig. 5. We vary α

in the direction shown in Fig. 5. Figure 10 shows the graph of the Lyapunov exponents. In Fig. 10,

a quasi-periodic Neimark–Sacker bifurcation occurs at the point labeled “quasi-periodic Neimark–

Sacker bifurcation.” This bifurcation is identified as the quasi-periodic Neimark–Sacker bifurcation

because, before the bifurcation point, the largest Lyapunov exponent is zero (λ1 = 0), and the second

and third Lyapunov exponents are negative and degenerate (λ2 = λ3 < 0) [5,12]. Furthermore, after

this bifurcation, λ2 becomes zero, and λ3 becomes negative. This behavior of the Lyapunov exponents

is the distinctive property of a quasi-periodic Neimark–Sacker bifurcation [5,12].
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A three-torus cannot necessarily be generated by a Neimark–Sacker bifurcation and a quasi-

periodic Neimark–Sacker bifurcation [5,12,16] in the forced oscillator. Figure 7(c) shows the

Poincaré section of a three-torus via a saddle-node bifurcation and a quasi-periodic Neimark–Sacker

bifurcation.

After the quasi-periodic Neimark–Sacker bifurcation, the second Lyapunov exponent λ2 in Fig. 10

frequently becomes negative. This phenomenon is considered to be a two-torus Arnold tongue [12].

The two-torus Arnold tongue refers to a bifurcation structure in which many two-torus-generating

regions exist in the three-torus-generating region, which is similar to the case of periodic states

existing in a two-torus-generating region in an Arnold tongue.

4. Conclusion

In this study, a three-torus generated in a third-order piecewise linear oscillator under a weak periodic

perturbation was investigated. Because a three-torus cannot be generated in third-order ordinary

autonomous differential equations, the proposed oscillator could exhibit a three-torus of minimal

dimension. Appropriate initial parameter values were selected to synchronize the oscillator to the

weak periodic perturbation by equalizing the frequency of the forcing term to the natural frequency

of the autonomous oscillator. It was confirmed that a limit cycle bifurcated to a two-torus via a

saddle-node bifurcation. Furthermore, the two-torus bifurcated to a three-torus via a quasi-periodic

Neimark–Sacker bifurcation.
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