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THREE TYPES OF GAMMA-RAY BURSTS

SOMA ERIC D. GUTTI JOGESH FIONNMUKHERJEE,1,2,3 FEIGELSON,4 BABU,5 MURTAGH,6,7
CHRIS AND ADRIANFRALEY,8 RAFTERY8
Received 1998 February 9 ; accepted 1998 June 25

ABSTRACT

A multivariate analysis of gamma-ray burst (GRB) bulk properties is presented to discriminate
between distinct classes of GRBs. Several variables representing burst duration, Ñuence, and spectral
hardness are considered. Two multivariate clustering procedures are used on a sample of 797 bursts from
the Third BATSE Catalog, a nonparametric average linkage hierarchical agglomerative clustering pro-
cedure validated with WilksÏ "* and other multivariate analysis of variance tests and a parametric
maximum likelihood modelÈbased clustering procedure assuming multinormal populations calculated
with the Expectation-Maximization algorithm and validated with the Bayesian Information Criterion.
The two methods yield very similar results. The BATSE GRB population consists of three classes with
the following duration/Ñuence/spectrum bulk properties : class I with long/bright/soft bursts, class II with
short/faint/hard bursts, and class III with intermediate/intermediate/soft bursts. One outlier due to spu-
rious data is also present. Classes I and II correspond to those reported by Kouveliotou et al., but class
III is clearly deÐned here for the Ðrst time.

Subject headings : gamma rays : bursts È methods : data analysis È methods : statistical

1. INTRODUCTION

As very few gamma-ray burst (GRB) sources have astron-
omical counterparts at other wavebands, empirical studies
of GRBs have been largely restricted to the analysis of their
gamma-ray properties : bulk properties such as Ñuence and
spectral hardness and evolution of these properties within a
burst event & Meegan While bursts exhibit(Fishman 1995).
a vast range of complex temporal behaviors, their bulk
properties appear simpler and amenable to straightforward
statistical analyses. Studies fall into two categories : an
examination of whether GRB bulk properties comprise a
homogeneous population or are divided into distinct classes
and a search for relationships between bulk properties.
Both types of studies may lead to astrophysical insight, just
as the distinction between main-sequence stars and red
giants and the measurement of a luminosity-mass relation
along the main sequence assisted the development of stellar
astrophysics early in the century.

The most widely accepted taxonomy of GRBs is the divi-
sion between short-hard and long-soft bursts proposed by

et al. and et al. hereafterDezalay (1992) Kouveliotou (1993,
noticed a bimodality in the burst duration vari-K93). K93

able (time within which 90% of the Ñux arrived), sug-T
90
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gesting the presence of two distinct types of bursts separated
at s. The short bursts have systematically harderT

90
^ 2

gamma-ray spectra than longer bursts. The two groups
seemed indistinguishable in most other bulk properties,
although the larger group of long-soft bursts may have a
subclass with a di†erent Ñuence distribution (i.e., di†erent

& Canel and the groups may haveSV /V
m
T ; Katz 1996),

di†erent Galactic latitude distributions Other(Belli 1997).
researchers point to small groups of bursts with distinctive
properties such as the soft-gamma repeaters et al.(Norris

two possible classes with di†ering short-timescale1991),
variability Graziani, & Smith fast-rise expo-(Lamb, 1993),
nential decay bursts et al. and two types of(Bhat 1994),
bursts with di†erent ratios of total Ñuence and greater than
300 keV Ñuence et al.(Pendleton 1997).

A variety of relationships between burst properties have
also been reported. et al. Ðnd an anti-Norris (1995)
correlation between (calculated after waveletT

90
thresholding) and peak intensity, which is consistent with a
cosmological time dilation. However, a positive correlation
between and total Ñuence is also seen that does notT

90
agree with the simplest cosmological interpretation &(Lee
Petrosian Additional reported relationships include1997).

correlated with peak heights peakT
90

(Lestrade 1994),
energy correlated with peak Ñux et al. and(Mallozzi 1995),
pulse duration anticorrelated with gamma-ray energy

et al.(Fenimore 1995).
Most of these studies su†er from a failure to treat all of

the bulk property variables in an unbiased and quantitative
way. Astronomers typically examine univariate or bivariate
distributions, sometimes constructing composite variables
(such as hardness ratios) with predetermined relationships
to include one or two additional variables. But it is quite
possible that the complex astrophysics producing GRBs
will not manifest themselves in simple bivariate plots, just as
the division between short-hard and long-soft bursts is not
evident in spectral variables alone et al.(Pendleton 1994).
GRB catalogs, like most multiwavelength astronomical
catalogs, are multivariate databases and should be treated
with multivariate statistical methods that can objectively

314
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and e†ectively uncover structure involving many variables
& Babu Two previous studies take a fully(Feigelson 1997).

multivariate approach to understanding GRB bulk proper-
ties. constructs a neural network tax-Baumgart (1994)
onomy of 99 GRBs from the Pioneer Venus Orbiter satellite
using 26 variables representing both bulk burst properties
and detailed temporal characteristics (e.g., number of peaks,
fractal dimension, wavelet transform crossings) and Ðnds
two or three distinct GRB classes. et al.Bagoly (1998)
perform principal components and factor analyses of nine
bulk property variables using 625 GRBs from the Third
BATSE (BATSE 3b) catalog. They Ðnd that the relation-
ships in the database are determined principally by only
three variables : an appropriately weighted Ñuence, a
weighted burst duration, and (to a lesser extent) Ñux in the
highest energy bin.

We note, however, that it can be dangerous to look for
correlations prior to classifying (or establishing the homo-
geneity of) the population. Although the anticorrelation
between hardness ratio and burst duration seen in full
samples may be the manifestation of a single astro-(K93)
physical process, it may alternatively reÑect di†erences
between distinct processes. The latter possibility is sug-
gested by a reported hardness-duration positive correlation
within the long-soft class of bursts et al.(Dezalay 1996 ;

& Hakkila Most multivariate analyses thusHorack 1997).
begin with a study of homogeneity and classiÐcation, then
investigate the variance-covariance structure (i.e.,
correlations) within each class.

This paper describes a multivariate analysis of GRBs
from the BATSE 3b catalog et al. After(Meegan 1996).
deÐning the sample we start with a simple statistical(° 2),
description of the variables and their bivariate relationships
for the entire data set We then seek distinct types of(° 3).
clusters in two ways. First, a standard nonparametric
agglomerative hierarchical clustering analysis is performed

that reveals three distinct classes. The statistical signiÐ-(° 4)
cance of the third cluster is validated, under Gaussian
assumptions, with multivariate analysis of variance
(MANOVA) tests. Second, a parametric maximum likeli-
hood modelÈbased clustering procedure is adopted that
reveals the same three groups and indicates strong evidence
for the presence for three rather than two groups The(° 5).
variance-covariance structure of each group is then exam-
ined Results are synthesized in the discussion(° 6). (° 7).

Throughout the paper, we discuss our mathematical
techniques to help the reader understand the complexities
of multivariate analysis. From the vast literature in this
subject, we recommend the following monographs for inter-
ested readers : & Wichern andJohnson (1992) Jobson (1992)
for overviews of applied multivariate analysis ; Hartigan

& Dubes and & Rousseeuw(1975), Jain (1988), Kaufman
for multivariate clustering algorithms ; &(1990) Murtagh

Heck and, more brieÑy, & Feigelson and(1987) Babu (1996)
& Babu for multivariate methodology inFeigelson (1997)

astronomy.

2. THE GRB SAMPLE AND STATISTICAL SOFTWARE

Our sample is drawn from the BATSE 3b catalog on
board the Compton Gamma Ray Observatory. This catalog
has 1122 GRBs detected by BATSE between 1991 April 19
and 1994 September 19. The catalog is presented and fully
described by et al. Our database wasMeegan (1996).

extracted from the online in 1996 May, whichdatabase9
provides many properties of each burst. There are roughly
11 variables of potential astrophysical interest : two mea-
sures of location in Galactic coordinates, l and b ; two mea-
sures of burst durations, the times within which 50% (T

50
)

and 90% of the Ñux arrives ; three peak Ñuxes,(T
90

) P
64

,
and measured in 64, 256, and 1024 ms bins,P

256
, P

1024
,

respectively ; and four time-integrated Ñuences, inF
1
ÈF

4
,

the 20È50, 50È100, 100È300 keV, and 300 ] keV spectral
channels, respectively. Researchers commonly consider
three composite variables : the total Ñuence, F

T
\ F

1
] F

2
and two measures of spectral hardness derived] F

3
] F

4
,

from the ratios of channel Ñuences, andH
32

\ F
3
/F

2
Because of the limitations of avail-H

321
\ F

3
/(F

1
] F

2
).

able multivariate statistical techniques, we ignore other
variables of potential relevance, including the hetero-
scedastic measurement errors of each quantity (i.e., errors
that di†er from point to point) and truncation values associ-
ated with BATSE triggering operations.

Of the 1122 listed bursts, 807 have data on all the vari-
ables described above. Ten bursts listed with zero Ñuences
were eliminated. Our sample thus has 797 BATSE GRBs.
For some analyses, we also used a subset of 644 bursts with
““ debiased ÏÏ durations, Here the durations are modi-T

90
d .

Ðed to account for the e†ect that brighter bursts will have
signal above the noise for longer periods than fainter bursts
with the same time proÐles (J. Norris 1996, private
communication).

Statistical analyses in °° and were conducted within3, 4, 6
the Statistical Analysis System a very largeSAS/STAT,10
and widely distributed commercial statistical software
package Institute, Inc. SAS/STAT procedures(SAS 1989).
CLUSTER, GLM, PRINCOMP, and VARCLUS were
used. The analysis in was performed with the MCLUST° 5
software & Raftery which is(BanÐeld 1993 ; Fraley 1998),
interfaced to the SPLUS statistical package (SPLUS
Version 3.4 ; MathSoft, Inc.) and its extensions.11

3. STATISTICAL PROPERTIES OF THE ENTIRE SAMPLE

We are faced with a multivariate database of 797 objects
and 15 variables (11 variables from the catalog, three com-
posite variables, and Two initial problems are fre-T

90
d ).

quently faced in analyses of multivariate databases. First,
variables with incompatible units and ranges must be com-
pared. Units can be removed by normalization (e.g., repla-
cing by by standardization (e.g., replacing byF

1
F

1
/F

tot
), F

1
where p is the sample standard deviation), or by takingF

1
/p

logarithms. Second, the dimensionality of the problem
should be reduced, as many of the variables are closely
interrelated either by construction or by astronomical cir-
cumstance. Although there are no mathematical rules regu-
lating reduction of dimensionality, it can usefully be guided
by a correlation matrix showing bivariate relationships and
a principal components analysis showing multivariate

9 The online BATSE databse may be found on the World Wide Web at
www.batse.msfc.nasa.gov/data/grb/catalog.

10 SAS/STAT is a registered trademark of the SAS Institute, Inc.
11 Further information is provided at http ://stat.washington.edu/

and the StatLib software archive atfraley/software.html http ://
For multivariate data visualization,lib.stat.cmu.edu/general/mclust.

we used the XGobi Cook, & Buja program, available(Swayne, 1991)
from Hypertext links to a varietyhttp ://lib.stat.cmu.edu/general/XGobi.
of public domain software for multivariate analysis, classiÐcation, and
visualization are available at the Penn State StatCodes Web site,
http ://www.astro.psu.edu/statcodes.
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TABLE 1

AVERAGE GRB PROPERTIES FOR THE ENTIRE SAMPLE

Standard
Variable Mean Deviationa

log T
50

(s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.55 0.92
log T

90
(s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.96 0.92

log F
tot

(ergs cm~2) . . . . . . . . . . . . . . . . . [5.61 0.76
log P

256
(photons s~1 cm~2) . . . . . . 0.16 0.45

log H
321

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.25 0.33
log H

32
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.48 0.30

a Sample standard deviation.

relationships that are mainly responsible for structured
variance in the data. ScientiÐc reasoning can also be used to
eliminate consideration of variables. We conducted a pre-
liminary examination of data representations, correlation
matrices and bivariate plots, and principal components
analyses to facilitate choice of variables. When no mathe-
matical preference arose, we selected variables most com-
monly used by previous researchers to facilitate comparison
of results.

Our choices were as follows. We use log variables rather
than normalized or standardized variables. We kept infor-

mation on burst Ñuence and spectra through and hard-F
tot

ness ratios rather than through the original Ñuences F
1
ÈF

4
.

We initially eliminated and from considerationP
64

P
1024

and later eliminated when we found that its mainP
256

contribution to the clustering process was noise. We chose
to remove the location variables (l, b) already established by
other researchers to be random for the entire sample but use
them later to test for isotropy of subsamples. The debiased

is used only in special tests. Our analysis was thusT
90
d

performed in six or fewer dimensions using log logT
50

, T
90

,
log log log and logF

tot
, P

256
, H

321
, H

32
.

Tables and give basic statistics for these six variables :1 2
means, standard deviations, and bivariate values of
PearsonÏs linear correlation coefficient r. For N \ 797 and
assuming bivariate normal populations, any o r o [ 0.013
implies that a correlation between the two variables exists
at a two-tailed signiÐcance level P \ 0.001 pp.(Beyer 1968,
389, 283). But from an astrophysical perspective, we might
consider any relationship with to be of little inter-o r o [ 0.1
est. shows the bivariate scatter plots.Figure 1

The correlation structure of the entire sample (Table 2)
shows that the two measures of duration and the two mea-
sures of spectral hardness have correlation near unity, indi-

FIG. 1.ÈMosaic of scatter plots of six bulk properties for the 797 GRBs from the BATSE 3b catalog used in this study
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TABLE 2

CORRELATION COEFFICIENTS FOR THE ENTIRE SAMPLE

log T
50

log T
90

log F
tot

log P
256

log H
321

log H
32

log T
50

. . . . . . . 1.00 . . . . . . . . . . . . . . .
log T

90
. . . . . . . 0.97 1.00 . . . . . . . . . . . .

log F
tot

. . . . . . . 0.63 0.66 1.00 . . . . . . . . .
log P

256
. . . . . . [0.01 0.04 0.59 1.00 . . . . . .

log H
321

. . . . . . [0.36 [0.36 0.02 0.24 1.00 . . .
log H

32
. . . . . . . [0.35 [0.35 [0.00 0.19 0.96 1.00

cating that they are nearly redundant. and areF
tot

P
256

quite dissimilar : shows a strong correlation with burstF
tot

duration (e.g., & Petrosian and no relation toLee 1997)
hardness, while shows no relation to duration but isP

256
mildly correlated with hardness et al. Burst(Mallozzi 1995).
duration is anticorrelated with hardness et(K93; Fenimore
al. The cosmological anticorrelation between dura-1995).
tion and peak Ñux reported by et al. is sta-Norris (1995)
tistically signiÐcant but accounts for only a few percent of
the variance between these variables. The correlation
matrix based on the debiased values yields very similarT

90
d

results.
However, the scatter plots show a more complex(Fig. 1)

story. First, many plots show inhomogeneous distributions
inconsistent with the unimodal multinormal (i.e., multi-
variate Gaussian) population assumed by PearsonÏs r. The
distributions often seem bimodal with asymmetrical non-
Gaussian shapes. One outlier burst is also seen in several
projections. We therefore consider the hypothesis that the
sample consists of two or more distinct classes and proceed
to Ðnd the ““ clusters ÏÏ using well-established methods.

4. NONPARAMETRIC HIERARCHICAL CLUSTER ANALYSIS

4.1. Methodological Background

Agglomerative hierarchical clustering is a procedure
based on the successive merging of proximate pairs of clus-
ters of objects. It produces a clustering tree or dendrogram
starting with N clusters of one member (or a coarse parti-
tion based on prior knowledge) and ending with one cluster
of N members. Unfortunately, there are many possible ways
to proceed ; mathematics provides little guidance among the
choices and no probabilistic evaluation of the results
without the imposition of additional assumptions. The
scientist must make four decisions to fully deÐne the clus-
tering procedure :

1. Creating unit-free variables is essential for meaningful
treatment of objects in multivariate space A favorite(° 3).
choice by statisticians is standardization, where each vari-
able is normalized by the standard deviation of the sample.
Astronomers more commonly make logarithmic transform-
ations or construct ratios of variables sharing the same
units. We follow the tradition of GRB researchers by mea-
suring spectral hardness with ratios of Ñuences having the
same units and making logarithmic transformations of all
variables.

2. The metric deÐnes the meaning of proximity between
two objects or clusters. Common choices are the simple
Euclidean distance between unit-free variables and the
squares of Euclidean distances. We chose the former option
for most of the analyses in this section.

3. Several merging procedures can be used. One might

begin by merging the clusters with the nearest neighbors.
This is called single linkage clustering and is most familiar
in astronomy, where it is frequently called the friends-of-
friends algorithm. It tends to produce long stringy clusters
and is equivalent to a well-known divisive clustering pro-
cedure known as pruning the minimal spanning tree. Com-
plete linkage proceeds by maximizing the distance between
clusters and leads to evenly bifurcating dendrograms. For
most of our analysis, we choose average linkage, where the
distance between two clusters is the average of the distances
between pairs of observations, where each member of the
pair comes from a di†erent cluster. This is a compromise
between single and complete linkage and tends to give
compact clusters. SpeciÐcally, the distance between clusters
K and L is given by (e.g., Institute, Inc., pp.SAS 1989,
17È529 ; & Wichern pp. 226È584)Johnson 1992,

D
KL

\ o x
K

[ x
L

o2 ]
W

K
n
K

]
W

L
n
L

, (1)

where the bar indicates an unweighted mean, W
K

\ ;
i/1
nk

, and is the number of members of the ktho x
i
[ x o2 n

k
cluster. Another popular choice is WardÏs minimum
variance criterion where the distance between the two clus-
ters is the analysis of variance sum of squares between two
clusters added up over all variables (Ward 1963),

D
KL

\ o x
K

[ x
L

o2
NA 1

n
K

]
1

n
L

B
. (2)

If the sample is generated by a mixture of multinormal (i.e.,
multidimensional Gaussian) distributions where each dis-
tribution has covariance matrix of the form &2I, this
method joins clusters to maximize the likelihood at each
level of the hierarchy and so is a special case of the model-
based clustering methodology to be discussed in ° 5.

4. As the procedure gives a hierarchy from N clusters
with one object down to one cluster with N objects, the user
must choose how many clusters to report as scientiÐcally
important clusters. This choice can be assisted by exami-
nation of two statistics. The squared correlation coefficient,
R2, states the fraction of the total variance accounted for by
a partition into g clusters,

R2 \ 1 [
&

j/1
g W

j
&

i/1
N o x

i
[ x o2

. (3)

The squared semipartial correlation coefficient, mea-R
sp
2 ,

sures the di†erence in the variance between the resulting
cluster and the immediate parent clusters normalized by the
total sample variance,

R
sp
2 \

W
M

[ W
K

[ W
L

&
i/1
N o x

i
[ x o2

. (4)
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TABLE 3

AVERAGE LINKAGE HIERARCHICAL

CLUSTER ANALYSIS

Level Merger Members R
sp
2 R2

A. Six-dimensional Analysis

8 . . . . . . 10 ] 15 506 0.08 0.65
7 . . . . . . 14 ] 137 93 0.00 0.65
6 . . . . . . 8 ] 7 599 0.10 0.55
5 . . . . . . 9 ] 266 188 0.00 0.55
4 . . . . . . 5 ] 26 190 0.00 0.55
3 . . . . . . 6 ] 12 606 0.01 0.54
2 . . . . . . 3 ] 4 796 0.53 0.01
1 . . . . . . 2 ] 616 797 0.00 0.00

B. Five-dimensional Analysis

6 . . . . . . 15 ] 21 107 0.01 0.70
5 . . . . . . 10 ] 8 486 0.01 0.69
4 . . . . . . 7 ] 20 203 0.01 0.68
3 . . . . . . 6 ] 5 593 0.10 0.58
2 . . . . . . 3 ] 4 796 0.58 0.00
1 . . . . . . 2 ] 616 797 0.01 0.00

R2 thus tells how much of the scatter is explained by a given
level of clustering, and tells how much improvement isR

sp
2

achieved between levels.

We emphasize again that there is no mathematically
““ best ÏÏ choice, although extensive experience with problems
in many Ðelds has led to a preference for certain com-
binations (e.g., standardized variables and WardÏs minimum
variance criterion). We conducted extensive experiments
with di†erent choices.

4.2. Results

The last several levels of the clustering tree for the 797
GRBs using the six unit-free variables shown in Table 1,
average linkage, and a Euclidean metric are shown in

(left panel) with details in The actionFigure 2 Table 3A.
taken at each level is indicated in column (2) of Table 3,
which may refer to a level higher in the tree that (for brevity)
is not shown here. Two types of mergers are seen : the
incorporation of ““ twigs ÏÏ of one or a few GRBs into a large
preexisting ““ trunk ÏÏ (levels 1, 3, 4, 5, and 7) and the union of
two substantial branches into a single larger trunk (levels 2,

6, and 8). The Ðrst type has little e†ect on the variance of the
sample with The single GRB brought into theR

sp
2 ¹ 1%.

main trunk at level 1 is the distant outlier seen in several
panels of The level 2 merger of clusters with 190Figure 1.
and 606 members is clearly the most important structure,
accounting for roughly 53% of the variance of the entire
sample. This is the bifurcation of the sample into two classes
easily seen in and noted by and others. TheFigure 1 K93
principal Ðnding that is not immediately obvious from

is the structure indicated at level 6. The main trunkFigure 1
of 599 bursts (plus a few twigs to be merged later) is divided
into groups of 93 and 506 bursts. This division accounts for
10% of the total variance of the sample, which is indicated
in both the R2 and values.R

sp
2

We found that the twigs in the tree structure disappear if
the peak Ñux variable is omitted and the analysis isP

256
made in Ðve-dimensional space right panel, and(Fig. 2,

Here the largest cluster of 593 members is formedTable 3B).
by the union of clusters with 107 and 486 bursts, again
accounting for 10% of the sample variance. It is possible
that is a nuisance variable irrelevant to the basic astro-P

256
physics of GRBs, producing noisy ““ twigs ÏÏ seen in Table 3A
and (left panel).Figure 2

We tested many variants of hierarchical clustering. We
replaced average linkage hypothesis with complete linkage,
single linkage and WardÏs minimum variance criterion. The
WardÏs criterion computation, for example, gave three clus-
ters with 468, 184, and 145 bursts. We clustered using non-
parametric density estimation based on the 100 nearest
neighbors and clustered using the principal components
rather than the observed variables. Various methods were
tried with both the observed values and debiasedT

90
T

90
d

values with little e†ect on the results. All methods showed
two strong clusters and the outlier, but in some cases the
third cluster appeared only weakly.

To proceed further, we choose a single clustering struc-
ture for detailed study : the Ðve-dimensional average linkage
analysis with three clusters : class I with 486(Table 3B)
bursts, class II with 203 bursts, and class III with 107 bursts.
Class IV, consisting of the single outlier, is ignored because
of independent evidence that its properties are attributable
to data of poor quality The membership of these clus-(° 7).
ters is given in and four projections of the clustersTable 4,

FIG. 2.ÈDiagram of the base of the dendrogram of average linkage hierarchical clustering procedures in six dimensions (left panel) and Ðve dimensions
(right panel). The number of members in each branch is indicated (see Class IV is the spurious outlier.Table 3).



TABLE 4

BURST CLASSES FROM AVERAGE LINKAGE CLUSTERING (3B TRIGGER NUMBER)

A. Class I (486 Bursts)

107 472 816 1159 1533 1657 1982 2138 2304 2431 2551 2703 2877 3003 3109
109 473 820 1192 1540 1660 1989 2140 2306 2432 2560 2706 2889 3005 3110
110 503 824 1196 1541 1661 1993 2143 2309 2435 2569 2709 2890 3011 3115
111 540 825 1197 1546 1663 1997 2148 2310 2436 2570 2711 2891 3012 3119
114 543 829 1200 1551 1667 2018 2149 2311 2437 2581 2725 2894 3015 3120
121 548 840 1213 1552 1676 2019 2151 2315 2438 2586 2727 2897 3017 3128
130 549 841 1218 1558 1683 2037 2156 2316 2440 2589 2728 2898 3026 3129
133 559 867 1235 1559 1687 2041 2181 2321 2441 2593 2736 2900 3029 3130
143 563 869 1244 1561 1700 2044 2187 2324 2443 2600 2749 2901 3032 3131
148 577 907 1279 1567 1704 2047 2188 2325 2446 2603 2751 2913 3035 3132
160 591 927 1288 1574 1709 2053 2189 2328 2447 2606 2753 2916 3039 3134
171 594 938 1291 1578 1711 2061 2190 2329 2450 2608 2770 2919 3040 3135
204 606 946 1303 1579 1712 2067 2191 2340 2451 2610 2774 2922 3042 3136
211 630 973 1318 1580 1714 2069 2193 2344 2452 2611 2775 2924 3055 3138
214 647 999 1384 1586 1717 2070 2197 2345 2472 2619 2780 2925 3056 3142
219 658 1009 1385 1590 1730 2074 2202 2346 2476 2620 2790 2927 3057 3143
222 659 1025 1390 1601 1731 2077 2203 2362 2477 2628 2793 2929 3067 3153
223 660 1036 1396 1604 1733 2079 2204 2367 2482 2634 2797 2931 3070 3155
226 673 1039 1406 1606 1734 2080 2211 2371 2484 2636 2798 2932 3071 3156
235 676 1042 1419 1609 1740 2081 2213 2373 2495 2640 2799 2947 3072 3159
237 678 1046 1425 1611 1742 2083 2219 2375 2496 2660 2812 2948 3074 3164
249 685 1085 1432 1614 1806 2087 2228 2380 2500 2662 2815 2950 3075 3168
257 686 1086 1440 1623 1807 2090 2232 2383 2505 2663 2825 2953 3076 3171
288 692 1087 1446 1625 1815 2093 2233 2385 2508 2664 2831 2958 3080 3174
332 704 1122 1447 1626 1819 2101 2230 2387 2510 2665 2843 2961 3084
351 717 1123 1449 1628 1830 2102 2244 2391 2511 2671 2852 2984 3085
394 741 1126 1452 1642 1883 2106 2252 2392 2519 2681 2853 2985 3091
398 761 1141 1456 1646 1885 2110 2253 2394 2522 2688 2855 2992 3093
404 764 1148 1458 1651 1886 2111 2267 2405 2528 2691 2856 2993 3100
408 773 1150 1467 1652 1922 2112 2276 2419 2530 2695 2857 2994 3101
451 795 1152 1468 1653 1924 2119 2277 2428 2533 2696 2862 2996 3102
467 803 1156 1472 1655 1956 2122 2287 2429 2537 2697 2863 2998 3103
469 815 1157 1515 1656 1967 2133 2298 2430 2541 2700 2864 3001 3105

B. Class II (203 Bursts)

138 512 856 1154 1635 2003 2146 2291 2384 2523 2693 2846 2975 3094
185 537 878 1211 1636 2040 2155 2312 2395 2529 2701 2849 2977 3113
207 547 906 1223 1659 2043 2159 2317 2434 2536 2715 2851 2978 3114
218 551 909 2389 1662 2049 2161 2320 2448 2564 2748 2860 2987 3118
229 568 936 1308 1665 2068 2163 2326 2449 2583 2755 2873 2988 3121
254 575 1051 1359 1680 2095 2167 2327 2454 2585 2788 2879 2995 3137
289 603 1073 1404 1694 2099 2201 2330 2463 2597 2795 2892 3027 3152
297 677 1076 1453 1719 2103 2205 2332 2464 2599 2800 2896 3037 3173
298 729 1088 1461 1736 2115 2206 2352 2485 2614 2801 2910 3038
432 788 1096 1463 1741 2117 2217 2353 2487 2615 2810 2918 3043
444 799 1097 1481 1760 2125 2220 2357 2502 2623 2814 2933 3051
474 809 1102 1518 1791 2126 2265 2360 2504 2632 2821 2952 3066
480 830 1112 1553 1851 2132 2268 2365 2512 2649 2823 2964 3073
486 836 1128 1566 1953 2142 2273 2372 2513 2679 2828 2966 3078
491 845 1129 1588 1968 2145 2288 2377 2514 2690 2834 2973 3087

C. Class III (107 Bursts)

105 493 752 1120 1298 1492 1974 2207 2381 2458 2750 2880 3028 3160
108 501 753 1125 1306 1634 2035 2230 2382 2460 2760 2917 3068 3166
179 516 755 1145 1346 1637 2056 2254 2393 2515 2776 2944 3088 3167
228 526 834 1153 1382 1664 2105 2283 2401 2633 2830 2945 3096
373 555 914 1167 1416 1679 2114 2347 2423 2641 2844 2951 3127
401 680 942 1190 1435 1693 2129 2349 2424 2677 2848 2980 3139
414 690 974 1204 1439 1701 2133 2358 2442 2680 2850 2986 3144
465 734* 1114 1221 1443 1747 2152 2368 2453 2719 2861 2990 3146

D. Class IV (1 Burst)

2757

NOTE.ÈAll bursts are placed into class III by Gaussian model-based clustering procedure except burst marked ““ \ ÏÏ, which is placed into
class II.
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onto two-dimensional scatter plots are shown in Figure 3.
These are frames from the ““ grand tour ÏÏ movie of the Ðve-
dimensional data set provided by the XGobi software where
each cluster is ““ brushed ÏÏ with a di†erent symbol. Note
that, in general, there is no reason why classiÐcation struc-
ture should be most evident in projections parallel to the
variable axes shown in It is more important thatFigure 1.
the clusters show cohesion in many projections of the data
set. The grand tour of the 797 GRBs shows that classes I, II,
and the outlier are very distinct in most projections. Class

III often lies between classes I and II (e.g., top panels),Fig. 3,
but in other projections is o†set from the line between
classes I and II (e.g., bottom panels). It also appearsFig. 3,
elongated along some projections, while the larger classes I
and II appear roughly hyperspherical.

This analyses described here provide considerable evi-
dence for three major clusters and an outlier. But as some
nonparametric clustering procedures did not Ðnd a strong
third cluster, there is some worry that class III is simply a
group of bursts with properties intermediate between

FIG. 3a FIG. 3b

FIG. 3c FIG. 3d

FIG. 3.ÈFour snapshots from the XGobi grand tour of the Ðve-dimensional database with bursts brushed according to the nonparametric average
linkage clustering results : class I ( Ðlled circles), class II (x), class III (open squares), and class IV (open circles). Panel (a) shows the projections of the Ðve axes,
which are suppressed in the other panels.
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TABLE 5

MULTIVARIATE ANALYSIS OF VARIANCE STATISTICAL TESTS

WILKSÏ "*
PILLAIÏS HOTELLINGÏS

CLASSES WILKSÏ "* TRACE TRACE F Number dof Dendrogram dof Probability

I, II, III . . . . . . 0.153 0.934 4.96 245. 10 1578 \0.0001
I, II . . . . . . . . . . 0.159 0.840 5.27 722. 5 683 \0.0001
I, III . . . . . . . . . 0.515 0.485 0.94 111. 5 587 \0.0001
II, III . . . . . . . . 0.301 0.699 2.32 141. 5 304 \0.0001

classes I and II. While nonparametric hierarchical clus-
tering methods cannot address this question, it can be
investigated with parametric methods.

4.3. Validation of the ClassiÐcation

Mathematically well-founded methods for evaluating the
statistical signiÐcance of a proposed multivariate classi-
Ðcation scheme are available under the assumption that the
population is a multinormal mixture ; that is, the objects of
each class are drawn from multivariate Gaussians. All
relationships between the variables must thus be linear (as
in although the relationships may di†er betweenTable 2),
clusters. There is no requirement of sphericity, so that clus-
ters may have shapes akin to pancakes or cigars with arbi-
trary orientations in multidimensional space. The separate
existence of each of the postulated subpopulations can be
tested using MANOVA.

The model can be expressed as follows (e.g., &Johnson
Winchern pp. 246È584). For a p-dimensional data set1992,
of g clusters each with members, the ith GRB in the jthn

l
cluster gives a p-dimensional vector

X
ij

\ k ] q
j
] v

ij
, (5)

where k is the overall population mean, is the o†set of theq
j

jth cluster mean from k, and are independent normalv
ij

variables with zero mean representing the scatter of individ-
ual points about the mean. We test the null hypothesis

H
0
:q

1
\ q

2
\ É É É \ q

g
\ 0 (6)

that the cluster means are not o†set from each other. We
construct two matrices of sums of squares and cross-
products as follows :

B \ ;
l/1

g
n
l
(x

l
[ x)(x

l
[ x)T

W \ ;
l/1

g
;

j/1

nl
(x

lj
[ x

l
)(x

lj
[ x

l
)T , (7)

where ( )T is the vector transpose. Three test statistics have
been proposed to test the null hypothesis (e.g., Insti-SAS
tute, Inc., pp. 17È529) :1989,

WilksÏ lambda "* \ det (W)/det (B ] W) ,

PillaiÏs trace V \ trace [B(B ] W)~1] ,

and

Hotelling-LawleyÏs trace U \ trace (W~1B) .

The distributions of these statistics have been determined
mathematically. For example, for large theN \ ;

l/1
g n

l
,

quantity [[N [ 1 [ (p ] g)/2] ln "* has approximately a
s2 distribution with p(g [ 1) degrees of freedom (Wilks

More generally, the distributions are1932 ; Bartlett 1938).
related to the noncentral F-distribution. For the two-

sample case, Hotelling-LawleyÏs trace is commonly known
as the Mahalanobis D2 statistic. One can thus accept or
reject the null hypothesis that the clusters have the same
mean location at a chosen level of statistical signiÐcance.

The results of our MANOVA calculations are sum-
marized in The columns give the values of the threeTable 5.
MANOVA statistics followed by details for the WilksÏ "* :
the corresponding value of the F-statistic, the numerator
and denominator degrees of freedom for that F-value, and
the resulting P-value. Details for PillaiÏs and Hotelling-
LawleyÏs traces are omitted but give similar results in all
cases. The Ðrst row tests the null hypothesis that the classes
I, II, and III have the same mean, the second row tests the
equality of classes I and II, and so forth. The F-values are
very high in all cases, indicating that the clusters are di†er-
ent with extremely high statistical signiÐcance (P > 10~4).12
This is a clear quantitative demonstration that at least two
clusters exist among GRBs (for a univariate test, see

Bird, & Zepf which was qualitatively report-Ashman, 1994),
ed by et al. and The other rows inDelazay (1992) K93.

test the hypotheses that each proposed class has theTable 5
same mean as each other class.

One problem with these MANOVA tests is that they are
conditional on the classiÐcation that has been found using
the clustering algorithm. Because the clustering algorithm is
constructed to Ðnd groups that are di†erent from one
another, tests such as these tend to be biased toward Ðnding
structure, perhaps where none exists. Although the
MANOVA results seem to indicate very strong evidence of
structure, they cannot be taken as deÐnitive for this reason.
Tests arising from model-based clustering can overcome
this problem, as is discussed in the following section.

5. MODEL-BASED MAXIMUM LIKELIHOOD

CLUSTERING ANALYSIS

5.1. Methodological Background

In the previous section, we conducted a hierarchical clus-
tering analysis without making assumptions regarding the
shapes of the clusters but needed the parametric assumption
of normality to estimate the statistical signiÐcance of the
resulting classiÐcation. It is reasonable to conduct the entire
analysis, both clustering and validation, within a model-
based framework. We report here an analysis of this type
again, assuming that the GRB population consists of a
mixture of multivariate Gaussian classes. Early develop-
ment of this model for clustering is discussed in McLachlan
& Basford we use more recent developments here.(1988) ;
First, an initial classiÐcation for each possible number of
clusters is found via agglomerative hierarchical clustering

12 Note that it is not meaningful to quote probabilities like P \ 10~8,
as the tails of the distribution are poorly determined unless the sample size
is extremely large.
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& Raftery & Raftery(Murtagh 1984 ; BanÐeld 1993 ; Fraley
Next, the Expectation-Maximization (EM) algorithm1998).

is used to reÐne partitions obtained from hierarchical clus-
tering & Govaert & Raftery(Celeux 1995 ; Dasgupta 1998).
Finally, the Bayesian Information Criterion ( BIC) is used
to select the ““ best ÏÏ partition among those associated with
di†erent numbers of clusters & Raftery(Dasgupta 1998).

In the model considered here, the p-dimensional obser-
vations are drawn from g multinormal groups, each ofx

i
which is characterized by a vector of parameters forh

k
k \ 1, . . . , g. Our goals are to determine the number of
GRB types, g ; to determine the cluster assignment of each
burst ; and to estimate the mean and covariance matrixk

k
for each cluster. Following the density ofR

k
Fraley (1998),

an observation from the kth subpopulation is expressedx
i

as follows :

f
k
(x

i
o h

k
) D MVN (k

k
, R

k
) , k \ 1, . . . , g , (9)

where MVN means multivariate normal. We estimate the
parameters using the principle of maximum likelihood. In
the hierarchical clustering phase, we use the classiÐcation
likelihood

L
C
(h, c o x) \ <

i/1

N
f
ci
(x

i
o h

ci
) , (10)

where . . . , represents the observations andx \ x
1
, x

2
, x

N
is the cluster assignment : whenc \ Mc

1
, c

2
, . . . , c

N
N c

i
\ k x

i
comes from the kth group. Equivalently,

L
C
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1
, . . . , k
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; R

1
, . . . , R

g
o x) \ <

k/1
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<
i | Ik

] (2n)p@2 o R
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o~1@2 exp [[1
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k
)TR

k
~1(x

i
[ k

k
)] , (11)

where is the set of indices corresponding toI
k
\ Mi :c

i
\ kN

observations belonging to the kth group.
The method used here for maximizing the likelihood

and implemented in the MCLUST code(Fraley 1998)
involves parameterization of the matrices in terms ofR

k
their eigenvectors and eigenvalues (analogous to a principal
components analysis) and iterative relocation of the clusters
using the EM algorithm. The EM algorithm (Dempster,
Laird, & Rubin one of the most successful methods in1977),
modern statistics, is a procedure for iteratively maximizing
likelihoods in a wide variety of circumstances. For example,
the Lucy-Richardson algorithm in astronomical image res-
toration is the EM algorithm. In the present application, we
apply EM to the mixture likelihood

L
M

(h, c o x) \ <
i/1

N
;

k/1

g
q
k

f
k
(x

i
o h

k
) , ;

k/1

g
q
k
\ 1 , (12)

where are mixing probabilities associated with eachq
k

group. For a given number g of components in the mixture,
we use EM to estimate the conditional probability that
observation belongs to the kth group for each i and selec-x

i
ted k via maximum likelihood. Although the computational
procedure has some limitations (e.g., convergence of the EM
iterations is not guaranteed ; clusters cannot be extremely
small), it is generally efficient and e†ective for Gaussian
clustering problems when started from reasonable parti-
tions such as those produced by hierarchical agglomeration.

We use the Bayes factor to assess the evidence for a given
number of clusters against a di†erent number of clusters.
The Bayes factor, deÐned in the context of Bayesian sta-
tistics, is the posterior odds for one model against the other

when the prior odds are equal to one (i.e., when one does
not favor one model over the other a priori). & RafteryKass

review the use of Bayes factors in adjudicating(1995)
between competing scientiÐc hypotheses on the basis of
data. The Bayes factor for a model against a competingM

2
model (say, for three vs. two classes of GRBs) is deÐnedM

1
as

Bayes factor \
p(x o M

2
)

p(x o M
1
)

, (13)

where for j \ 1, 2 is obtained by integrating thep(x o M
j
)

likelihood times the prior density over the parameters of the
model. It can be viewed as a likelihood ratio, but it di†ers
from the usual frequentist ratio that underlies the likelihood
ratio test in that the latter is obtained by maximizing (rather
than integrating) the likelihood over the model parameters.

Twice the logarithm of the Bayes factor can be approx-
imated by the BIC (Schwarz 1978),

BIC \ 2(l
1

[ l
2
) [ (m

1
[ m

2
) log N , (14)

where is the likelihood and is the number of param-l
1

m
1

eters for one mixture model and similarly for and Thel
2

m
2
.

BIC measures the balance between the improvement in the
likelihood and the number of model parameters needed to
achieve that likelihood. While the absolute value of the BIC
is not informative, di†erences between the BIC values for
two competing models provide estimates of the evidence in
the data for one model against another. Conventionally,
BIC di†erences less than 2 represent weak evidence, di†er-
ences between 2 and 6 represent positive evidence, 6È10
strong evidence, and greater than 10 very strong evidence

Appendix B; & Raftery The use(Je†reys 1961, Kass 1995).
of the BIC in choosing clusters in a mixture or clustering
model is discussed by & Wasserman andRoeder (1997)

& RafteryDasgupta (1998).
Bayes factors and BIC have the advantage that they can

be used to assess the evidence for a null hypothesis, unlike
standard signiÐcance tests that can only reject a null
hypothesis. They can also easily be used to compare non-
nested models, again unlike standard signiÐcance tests that
require competing models to be nested.

5.2. Results and Validation

To reduce the dimensionality of the problem and the
complexity of the calculation, we eliminated the highly
redundant and variables (see and consideredT

50
H

32
Fig. 1)

only the three variables and for the sample ofT
90

, F
tot

, H
321

797 BATSE GRBs. The MCLUST model-based clustering
procedure described above was run for trials of g \ 1, 2, . . . ,
24 groups. The resulting values of BIC(g) are plotted in

The maximum BIC is achieved for three classes.Figure 4.
Most importantly, the BIC value for g \ 3 is ^68 units
above that for g \ 2. This corresponds to strong evidence
indeed for the presence of three groups rather than two.
This result strongly conÐrms the analysis in indicating° 4
the existence of three clusters and this time is free of the
problem that the MANOVA tests are conditional on the
estimated partition. The result here takes account of the fact
that the partition is not known in advance.

We have also calculated the BIC for g \ 1, . . . , 9 with
various constraints on the covariance matrix & such as
hypersphericity and uniformly shaped ellipsoids. Spherical
clusters give poor Ðts. Uniform ellipsoids give good Ðts with
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FIG. 4.ÈBIC value vs. assumed number of clusters for the model-based
Gaussian mixture maximum likelihood clustering analysis.

4 and 8 clusters. But in all cases, the maximum likelihood
assuming 2 clusters is much lower than the likelihood of º3
clusters.

The cluster assignment vector c for the g \ 3 model with
unconstrained & is given in Over 85% of theTable 4.
assignments are the same as those obtained from the non-
parametric hierarchical clustering procedure in so that° 4
we note only di†erences between the two clustering results
using asterisk and dagger markings. All but one of the 96
assignment di†erences move bursts from classes I and II
into class III. The close agreement between the cluster
assignments in the two methods reinforces conÐdences in
the conclusions from both of them.

6. CLUSTER PROPERTIES

We can now examine the properties of GRBs within each
cluster with reasonable conÐdence that the populations are

FIG. 5.ÈBurst types and burst duration based on Ðve-dimensionalT
90

average linkage clustering procedure. Class I \ white, class II \ gray, and
class III \ black. The class IV outlier is shown as an ““ x ÏÏ.

distinct from each other but internally homogeneous. These
properties become inputs to astrophysical theories seeking
to explain GRB bulk properties. lists the meansTable 6A
and standard deviations of the principal variables for each
cluster based on both the nonparametric and model-based
clustering procedures. The two methods give very similar
results. The three types are well separated in the burst dura-
tion variables : cluster I bursts have the longest durations,
around 10È20 seconds, cluster II bursts have the shortest
durations, below 1 second, and cluster III bursts have inter-
mediate durations, around 2È5 s. This is shown clearly in

which projects each class onto the univariateFigure 5, T
90

axis. Cluster III bursts are also intermediate in their Ñu-
ences, although their Ñuence distribution overlaps that of

TABLE 6

CLASS PROPERTIES

CLASS

VARIABLE METHODa I II III

A. Means and Standard Deviations

log T
50

. . . . . . . . . . . . . . . . . NP 1.13 ^ 0.44 [0.80 ^ 0.41 0.33 ^ 0.27
log T

90
. . . . . . . . . . . . . . . . . NP 1.55 ^ 0.40 [0.42 ^ 0.44 0.71 ^ 0.32

MB 1.22 ^ 0.39 [0.91 ^ 0.35 0.29 ^ 0.41
log F

tot
. . . . . . . . . . . . . . . . . NP [5.21 ^ 0.59 [6.37 ^ 0.57 [6.11 ^ 0.37

MB [5.13 ^ 0.58 [6.46 ^ 0.54 [5.93 ^ 0.47
log H

321
. . . . . . . . . . . . . . . NP 0.19 ^ 0.27 0.51 ^ 0.27 0.08 ^ 0.40

MB 0.21 ^ 0.26 0.52 ^ 0.28 0.16 ^ 0.40
log H

32
. . . . . . . . . . . . . . . . NP 0.43 ^ 0.23 0.70 ^ 0.26 0.35 ^ 0.39

B. Isotropy

S cos hT . . . . . . . . . . . . . . . . NP 0.015 [0.041 0.010
S sin 2 b[1/3T . . . . . . . . NP [0.012 [0.025 0.028
Rayleigh-Watson . . . . . . NP 0.39 1.28 1.80
Bingham . . . . . . . . . . . . . . . NP 2.02 7.32 1.95

C. Summary

Number . . . . . . . . . . . . . . . . NP 486 203 107
MB 426 170 201

Duration . . . . . . . . . . . . . . . . . . long short intermediate
Fluence . . . . . . . . . . . . . . . . . . . bright faint intermediate
Spectrum . . . . . . . . . . . . . . . . . . intermediate hard soft

a NP \ nonparametric clustering analysis in Ðve dimensions MB \ model-based clus-(° 4) ;
tering analysis in three dimensions (° 5).
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TABLE 7

CORRELATION COEFFICIENTS WITHIN CLASSES

Variable log T
50

log T
90

log F
tot

log H
321

log H
32

A. Class I : Nonparametric Clustering (N \ 486)
( o r o [ 0.15 Corresponds to P \ 0.001 SigniÐcance Level)

log T
50

. . . . . . . 1.00 . . . . . . . . . . . .
log T

90
. . . . . . . 0.88 1.00 . . . . . . . . .

log F
tot

. . . . . . . 0.10 0.22 1.00 . . . . . .
log H

321
. . . . . . [0.11 [0.08 0.39 1.00 . . .

log H
32

. . . . . . . [0.11 [0.08 0.38 0.97 1.00

B. Class I : Model-based Clustering (N \ 426)
( o r o [ 0.16 Corresponds to P \ 0.001 SigniÐcance Level)

log T
50

. . . . . . . 1.00 . . . . . . . . . . . .
log T

90
. . . . . . . N/A N/A . . . . . . . . .

log F
tot

. . . . . . . N/A 0.01 1.00 . . . . . .
log H

321
. . . . . . N/A [0.01 0.06 1.00 . . .

log H
32

. . . . . . . N/A N/A N/A N/A N/A

C. Class II : Nonparametric Clustering (N \ 203)
( o r o [ 0.23 Corresponds to P \ 0.001 SigniÐcance Level)

log T
50

. . . . . . . 1.00 . . . . . . . . . . . .
log T

90
. . . . . . . 0.89 1.00 . . . . . . . . .

log F
tot

. . . . . . . [0.05 [0.02 1.00 . . . . . .
log H

321
. . . . . . [0.00 [0.08 [0.21 1.00 . . .

log H
32

. . . . . . . [0.00 [0.08 [0.26 0.96 1.00

D. Class II : Model-based Clustering (N \ 170)
( o r o [ 0.25 Corresponds to P \ 0.001 SigniÐcance Level)

log T
50

. . . . . . . 1.00 . . . . . . . . . . . .
log T

90
. . . . . . . N/A N/A . . . . . . . . .

log F
tot

. . . . . . . N/A [0.03 1.00 . . . . . .
log H

321
. . . . . . N/A [0.05 0.02 1.00 . . .

log H
32

. . . . . . . N/A N/A N/A N/A N/A

E. Class III : Nonparametric Clustering (N \ 107)
( o r o [ 0.32 Corresponds to P \ 0.001 SigniÐcance Level)

log T
50

. . . . . . . 1.00 . . . . . . . . . . . .
log T

90
. . . . . . . 0.86 1.00 . . . . . . . . .

log F
tot

. . . . . . . 0.02 0.06 1.00 . . . . . .
log H

321
. . . . . . [0.24 [0.34 [0.16 1.00 . . .

log H
32

. . . . . . . [0.22 [0.32 [0.22 0.95 1.00

F. Class III : Model-based Clustering (N \ 201)
( o r o [ 0.23 Corresponds to P \ 0.001 SigniÐcance Level)

log T
50

. . . . . . . 1.00 . . . . . . . . . . . .
log T

90
. . . . . . . N/A N/A . . . . . . . . .

log F
tot

. . . . . . . N/A 0.03 1.00 . . . . . .
log H

321
. . . . . . N/A [0.01 0.07 1.00 . . .

log H
32

. . . . . . . N/A N/A N/A N/A N/A

the fainter class II bursts. The hardness ratios of all three
clusters overlap considerably ; class III bursts have similar
or slightly softer spectra than class I bursts. We can thus
classify the types in the three principal dimensions
duration/Ñuence/spectrum class I is long/(Table 6C) :
bright/soft, class II is short/faint/hard, and class III is
intermediate/intermediate/soft.

A major constraint for the astrophysical interpretation of
GRBs has been the remarkable isotropy of their spatial
distribution in the celestial sphere. It is possible that, while
the bulk of GRBs are isotropic and have an inferred extra-
galactic origin, some class of GRBs have signiÐcant aniso-
tropy that would reÑect a Galactic origin (see Lamb 1995).
We apply four statistical tests for isotropy discussed by

and applied by et al. to variousBriggs (1993) Briggs (1996)
subsamples of the BATSE 3b catalog of GRBs. The sta-
tistics are : Scos hT, where h is the angle between a burst and

the Galactic center ; where b is the GalacticSsin2 b [ 1
3
T,

latitude ; Rayleigh-Watson W ; and Bingham B. Scos hT
tests the dipole moment around the Galactic center, Ssin2 b

tests the quadrapole moment with respect to the[ 1
3
T

Galactic plane, W tests the dipole moment around any
point in the celestial sphere, and B tests the quadrapole
moment around any plane or two poles. The expected
values for the four statistics assuming random isotropic dis-
tribution on the sphere are 0, 0, 3, and 5, respectively. The
asymptotic distributions of these statistics are known.

shows the results of this analysis for clustersTable 6B
IÈIII, which were kindly calculated for us by Michael
Briggs. No deviations from isotropy are found. The Scos hT
and values lie within one standard deviationSsin2 b [ 1

3
T

of the expected value for a random distribution. The W and
B values must be larger than the expected value to indicate
anisotropy. The only such case, class II with B 7.32, has a
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deviation with very low signiÐcance (probability \ 0.2). We
thus do not conÐrm report of signiÐcant di†er-BelliÏs (1997)
ences in spatial distributions of burst classes I and II,
although we did not speciÐcally test the Galactic latitude
distribution.

In principle, the relative populations of the three classes
may be an important constraint on astrophysical theory.
We Ðnd that class I contains more than half of the bursts
with the remainder divided between class II and class III

But we do not believe our analysis gives a(Table 6C).
precise census for two reasons. First, the exact assignments
of individual bursts to clusters depend on the detailed
assumptions of the clustering algorithms. For example,
class II is larger than class III in the Ðve-dimensional non-
parametric procedure but is smaller in the three-
dimensional model-based procedure. Second, the numbers
of weaker bursts in classes II and III are strongly dependent
on the details of the BATSE instrumentÏs burst triggering
process that may produce a complicated truncation bias for
fainter bursts.

We look for structure within each of the clusters by com-
puting correlation coefficients similar to those in for the° 3
entire sample. Results are given in Here we see aTable 7.
systematic di†erence between the two clustering method-
ologies : nonparametric average linkage clustering tends to
give stronger correlations between the variables than the
model-based clustering. For example, in the nonparametric
analysis we Ðnd signiÐcant positive correlations between
total Ñuence and hardness in classes I and II and a corre-
lation between duration and Ñuence in class II. However,
we attach more credence to the model-based results for this
purpose than the average linkage results because the former
method is speciÐcally designed to provide optimal estimates
of the within-group covariances given the clustering model.
The model-based results do not give strong evidence for any
nonzero correlations between variables, suggesting that the
partition into three clusters explains all of the correlation
between variables in the full data set.

7. DISCUSSION

We thus Ðnd, using multivariate clustering and validation
methods with di†erent mathematical underpinnings, that
three classes of GRBs are present in our large subset of the
BATSE 3b catalog. Most of the structure can be found
using three fundamental burst properties, duration/Ñuence/
spectrum. The class properties and relation to previous
research can be brieÑy summarized as follows :

1. Class IÈThese long/bright/intermediate bursts corre-
spond to the well-known populous long-soft class of K93
and others. Within this group, we do not conÐrm a
hardness-duration correlation reported by et al.Dezalay

and & Hakkila(1996) Horack (1997).
2. Class IIÈThis short/faint/hard group corresponds to

the short-hard burst type of and others. Fluence-K93
duration and Ñuence-hardness correlations may tentatively
be present within the class. Note that while the mean loca-
tion of this type is consistent in the two clustering schemes,
its size and population (e.g., or that of class I) di†ers1

2
1
4

between clustering algorithms.
3. Class IIIÈThe discovery of this group with

intermediate/intermediate/soft properties is the principal
result of this study. The group is easily distinguished in the
projections of but can also be discerned in someFigure 3

panels of For example, it lies between classes I andFigure 1.
II in the and scatterT

50
[ H

32
, T

90
[ F

tot
, T

90
[ H
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plots. In the univariate distribution shown inT

90
Figure 5,

class III accounts for most, but not all, of the bursts in the
small peak around s between the major short2 \ T

90
\ 5

and long duration peaks. It is possible that our class III is
related to the class of no-high-energy (NHE) bursts and
peaks discussed by et al. These burstsPendleton (1997).
have unusually weak emission, soft 50È300 keV spectra,F

4
and low However, the NHE class does not appear toF

tot
.

exhibit a clear duration segregation from other bursts as we
Ðnd for class III. Class III does not appear to be the third
cluster found by see his Table 3), but theBaumgart (1994 ;
high dimensionality of his analysis prevents a simple com-
parison with our low dimensionality study.

4. OutlierÈBATSE trigger event 2757, burst 3B 940114,
is the outlier in the nonparametric analysis of and is° 4
clearly visible in many projections in Figures and1 3.13
After this study was complete, the BATSE group reanalyzed
the satellite data for this burst and found the published data
were incorrect because of a processing error (C. A. Meegan
1998, private communication). The unusual properties of
this burst are thus illusory.

The multivariate analysis described here is not com-
prehensive and may not have uncovered all of the structure
in the BATSE 3b catalog of bulk GRB properties. Our
reduction of dimensionality may have been too severe,
omitting, for example, the potentially important as aF

4
distinct variable et al. et al.(Pendleton 1997 ; Bagoly 1998).
Many methodological options were not exercised. For
example, it would be valuable to repeatedly apply the
k-means partitioning algorithm to the database under the
assumption that three clusters are present (see Murtagh

for an astronomical application of this method), check1992
for skewness or kurtosis in the clusters, and undertake an
oblique decision tree analysis to give analytical formulation
to hyperplanes separating the clusters (see White 1997).14

However, the e†orts described here are far more capable
of Ðnding and quantifying clustering in the database than
most previous analyses Most studies have been based(° 1).
on qualitative rather than quantitative procedures for iden-
tifying structures and provide no statistical validation of
their It is thus not surprising that we uncoveredclaims.15
structure missed by previous researchers. In particular, our
conÐdence in the presence of a third cluster, class III, is
strong. Two completely independent mathematical pro-
cedures and found very similar structure, each(° 4 ° 5)
validated with high statistical conÐdence.

It is possible that the clustering reported here is indeed
present in the database but has an instrumental rather than
astrophysical origin. We have investigated two plausible
manifestations of such problems. First, some properties,

13 The model-based analysis of cannot locate clusters with very few° 5
members and assigned this event to class II. An extension of model-based
clustering that models outliers as Poisson noise can do this (see &BanÐeld
Raftery & Raftery but it does not seem necessary in1993 ; Dasgupta 1998),
this application.

14 Codes for these and many other multivariate techniques are
publicly available through the Web metasite StatCodes at
www.astro.psu.edu/statcodes.

15 After this work was completed, independentlyHorvath (1998)
reported the existence of class III. His result was based on a Gaussian
mixture model similar to that presented in but using only the univariate° 5
distribution of T

90
(Fig. 5).
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FIG. 6.ÈBATSE trigger and burst duration for 612 bursts. 64 msT
90

trigger only \ light gray ; 256 ms trigger only \ black ; 1024 ms trigger
only \ dark gray. The remainder of the bursts were triggered at two or all
three timescales.

such as burst duration, may be systematically biased for
weak bursts compared with strong bursts. However, our
hierarchical clustering using the debiased durations T

90
d

showed the same structure as seen using Second,T
90

(° 4.2).
the burst triggering mechanism of the BATSE instrument is
activated on three timescales (64, 256, and 1024 ms), which
conceivably may produce the trimodal distribution seen in

We show in the distribution for theFigure 5. Figure 6 T
90

612 bursts with published triggering information. It shows
the expected e†ect that bursts triggered at 64 ms tend to
have shorted durations than those triggered at 1024 ms. But
neither this diagram nor XGobi grand tours showing more
trigger combinations in multivariate space show any corre-
lation between trigger timescales and the class III group of
bursts around s. We conclude that, to the extentT

90
^ 3È10

we can test with current data sets, there is no evidence that
the three classes have an instrumental origin.

We conclude that the BATSE 3b catalog shows three
statistically signiÐcant types of bursts (duration/Ñuence/

spectrum) : class I GRBs are long/bright/soft, class II GRBs
are short/faint/hard, and class III GRBs are intermediate/
intermediate/soft. These types are likely to be astro-
physically real (rather than instrumental artifacts) and their
existence should be considered an important input into
astrophysical theories for GRBs. For example, the three
types may reÑect di†erent types of external environments
and internal shocks in relativistic Ðreball models (Me� sza� ros
& Rees & Me� sza� ros Note that sta-1993 ; Panaitescu 1998).
tistical anlaysis is unable to determine whether burst types
represent fundamentally di†erent astrophysical processes or
distinct conditions within a single astrophysical model.

Our results can be conÐrmed and extended in two
fashions. First, the analysis described here can be validated
with several hundred more bursts collected by BATSE since
the 1994 September cuto† in the database used here.
Second, following the dimensionality ofBaumgart (1994),
the problem can be enlarged to include detailed character-
istics of the burst temporal behaviors. Burst smoothness
versus peakiness, characteristic wavelet scales, spectral evol-
ution, and other parameters can be included. With this
enlarged database, one can perform both an unsupervised
exploratory cluster analysis similar to that described here
and MANOVA-type analyses that assume the existence of
the three groups to determine whether the clusters have
distinctive temporal properties.
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