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1. INTRODUCTION. 

The theory of L systems and languages (see, e.g., [45], [66], [75] 

and their references) is one of the fast growing areas of formal lan- 

guage theory. Still it is a rather young field (it originated in 1968 

from the work of Lindenmayer, (see [59])) and a number of basic pro- 

blems remain to be solved. One of the open areas within the theory are 

characterization results for various subclasses of the class of L lan- 

guages. The kind of results the absence of which feels rather badly in 

the theory are the characterization results which would allow one to 

prove that particular languages do not belong to particular subclasses 

of the class of L languages. So far, almost exclusively, most of such 

proofs involved combinatorial arguments directed very much at specific 

properties of the specific language in question (see, e.g., [81] and 

[91] for proofs of such a kind). This led to the situation that each 

time it appeared necessary to prove that a given language is not of a 

particular kind, a whole new proof, mostly ad hoc, must be produced. 

(The drastic example of this kind is the proof from [35] of the fact 

that the language {x E {a,b}*: the number of occurences of the letter 

a in x is a power of 2} is not an E0L language. This proof requires 

from the reader quite an investment of time to follow involved combi- 

natorial arguments, and yet to prove that a slight variation of the 

above language is not an E0L language could pose a serious problem to 
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the reader). 

In this paper we want to present three results, which, although 

far from resolving the difficulties discussed above, should signifi- 

cantly contribute to this open area. The first of these results pro- 

vides a partial characterization for a subclass of ETOL languages (see 

[89]), the second one provides a partial characterization for a sub- 

class of deterministic ETOL languages (see [89]) and the last one pro- 

vides a partial characterization for a subclass of E0L languages (see, 

e.g., [35]). The consequences of these results for comparison of vari- 

ous classes of L languages are also discussed. 

In this paper we use standard formal language terminology and 

notation. In particular A denotes the empty word, Ixl denotes the 

length of x and~A denotes the cardinality of A. Also if x is a word 

over an alphabet E and a is in E, then~a(X) denotes the number of 

occurrences of a in x; furthermore if B ~ E then~B(X) : Z ~a(X). 
a • B 

Finally abs(n) denotes the absolute value of n. 

2. ETOL SYSTEMS AND LANGUAGES. 

The class of ETOL systems and languages was introduced in [89] 

and is one of the actively investigated topics in the theory of L sys- 

tems (see, for example, [6], [16], [27], [71] and [72]). 

Definition 1. An ETOL system is a construct G = <V,E,~@,~>, where 

1) V is a finite set (called the alphabet of G). 

2) ~ is a finite set (called the set of tables of G),~ = {P1,...,Pf} 

for some f ~ 1, each element of which is a finite subset of V × V ~. 

~satisfies the following (completeness) condition: 

(VP~(Va)v(3~)~(<a,~> • P). 

3) ~ • V + (called the axiom of G). 

4) E C V (called the target alphabet of G). 

(We assume that V, E and each P in ~are nonempty sets.) 

Definition 2. An ETOL system G = <V,E,~,~> is called: 

1) Deterministic ~f for each P in ~ and each a in V there exists exac- 

tly one e in V ~ such that <a,~> E p. 

2) An E0L system if ~= 1. 

3) An 0L system if~= 1 and (V-E) = %. 

Definition 3. Let G = <V,~,~,~> be an ETOL system. Let x E V +, 
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x = al...ak, where each aj, 1 ~ j ~ k, is an element of V, and let 

y E V*. We say that x directly derives y in G (denoted as x ~ y) if, 
G 

and only if, there exist P in ~and pl,...,p k in P such that 

Pl = <a1'~1 >' P2 : <a2'~2 >''''' Pk = <ak'~k> and y = ~l...~k. Further- 

more ~ denotes the reflexive and transitive closure of the relation ~. 
G G 

Definition 4. Let G = <V,Z,~,~> be an ETOL system. The language 

of G, denoted as L(G), is defined as L(G) = {x @ E*: ~ ~ x}. 

Definition 5. Let L be a language. L is called an ETOL (determi- 

nistic ETOL, E0L or 8L) language if, and only if, there exists an ETOL 

(deterministic ETOL, E0L or 0L) system G such that L(G) = L. 

Example 1. G 1 = <{a,b,C,D},{a,b},{P1,P2,P3},CD>, where 

P1 = {a ~ a,b ~ b,C ~ aCb,D ~ Da}, P2 = {a ~ a,b ~ b,C ~ Cb,D ~ D} and 

P3 = {a ~ a,b ~ b,C ~ A,D ~ A}, is a deterministic ETOL system such 

that L(G) = {anbman: n ~ 0, m ~ n}. (Following usual notation we write 

x ~ ~ for an element <x,~> of a table.) 

Example 2. G 2 : <{A1,B1,CI~al,bl,el,F,a,b,c},{a,b,c},{P},AIBIC1 >, 

where P = {A 1 ~ Alal,B 1 ~ Blbl,C 1 ~ ClCl,A1 ~ a,B 1 ~ b,C 1 ~ c, 

a I ~ a,b I ~ b,c~ ~ c,a ~ F,b ~ F,c ~ F,F ~ F} is an E0L system such 

that L(G 2) : {a~bnc n : n ~ 1}. 

Example 3. G 3:2~{a},{a},p,a>, where P : {a ~ a 2} is a 0L system 

such that L(G 3) = {a : n ~ 0}. 

3. ETOL LANGUAGES OVER RARE SUBALPHABETS. 

In this section we provide a partial characterization result for 

a subclass of ETOL languages. 

Definition 6. If L is a language over an alphabet ~ and B is a 

nonempty subset of ~, then 

(1) B is called nonfre~uent in L if there exists a constant CB, L such 

that for every x in L,~B(X) < CB,L; otherwise B is called frequent in L. 

(2) B is called rare in L if for every positive integer k there exists 

a nk in N + such that for every n larger than nk, if a word x in L con- 

tains n occurrences of letters from B then each two such occurrences 

are of distance not smaller than k. 
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Example ~. Let L = {(abk)k: k ~ 1} and B = {a}. Then B is frequent 

in L and also B is rare in L. 

Theorem 1. If L is an ETOL language over an alphabet E and B is a 

nonempty subset of E which is rare in L, then B is nonfrequent in L. 

Here are three examples of applications of Theorem 1. 

Corollary 1. Let 9 be a function from positive integers into positive 

integers such that, for every positive integer n, 9(n) ~ n. Then the 

language {(abg(n)) n : n ~ 1} is not an ETOL language. Proof: Directly 

from Theorem 1 and Definition 6. 

It is known (see [89], Theorem 19) that the class of ETOL langua- 

ges is properly included in the class of A-free context-free program- 

med languages (introduced in Rosenkrantz, Programmed grammars and 

classes of formal languages, Journal of the A.C.M., 16, 107-131). 

Using Corollary 1 we can provide numerous constructions of A-free con- 

text-free programmed languages which are not ETOL languages. Thus for 

instanoe we have: 

Corollary 2. The language {(abk) k : k ~ 1} is a A-free context- 

free programmed language, but it is not an ETOL language. 

Proof. It is not difficult to construct a A-free context-free 

programmed grammar generating L = {(abk) k : k ~ 1}. But B = {a} is ob- 

viously rare in L whereas it is also frequent in L. Thus by Theorem 1, 

L is not an ETOL language. 

4. DETERMINISTIC ETOL LANGUAGES. 

In this section we provide a partial characterization for a sub- 

class of deterministic ETOL languages. First we need a definition. 

Definition 7. 

(1) Let ~ be an alphabet and x E ~+. We define ~(x) as the minimal po- 

sitive integer n such that any two non-overlapping subwords of x are 

different. 

(2) Let L be a language. L is called exponential if there exists a po- 

sitive integer C L larger than 1 such that for every Xl, x 2 in L, if 

IXll > Ix21 then IXll ~ CLIX21. 
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Example 5. If ~ = {a,b,c} and x = abcaba then ~(x) = 3. The lan- 

guage {x E {a,b,c}* : Ixl = 2 n for some n ~ 0} is an exponential lan- 

guage. 

Theorem 2. If L is an exponential deterministic ETOL language 

then there exists a ~ositive_! integer constant F L such that, for every 

x in L-{A}, we have ]~I < F 
~x) L" 

As an application of this theorem we can prove now that there 

exists ETOL languages which are not deterministic ETOL languages. 

(This was posed as an open problem in [89]). In fact we have even 

stronger result. 

Corollary 4. There exists a 0L language which cannot be generated 

by an EDTOL system. 

Proof. Let L : {x e {a,b}* : Ixl : 2 n for some n ~ 0} - {b}. The 

reader can easily check that L is generated by the OL system 

<{a~b},{a,b},P,a> where P : {a ~ aa,a ~ ab,a ~ ba,a ~ bb,b ~ aa,b ~ ab, 

b ~ ba,b ~ bb} and so L is a OL language. On the other hand L is expo- 

nential, but it does not satisfy the statement of Theorem 2, and so it 

is not a deterministic ETOL language. 

5. E0L LANGUAGES OVER NUMERICALLY DISPERSED SUBALPHABETS. 

In this section we provide a partial characterization for a sub- 

class of E0L languages. We start with a definition. 

Definition 8. Let L be a language over an alphabet E and let B 

be a nonempty Subset of E. Let IL, B = {n ~ N : there exists a word 

in L such that~(~) = n}. 

(1) B is numerically dispersed in ' L if, and only if~ IL, B is infinite 

and for every positive integer k there exists a positive integer n k 

such that, for every Ul,U 2 in IL,B, if u I ~ u2, u I > n k and u 2 > n k 

then abS(Ul-U 2) > k. 

(2) B is clustered in L if, and only if, IL, B is infinite and there 

exist positive integers kl, k 2 both larger than 1 such that, for every 

word m in L, if~B(~) > kl, then ~ contains at least two occurrences 

of symbols from B which are of distance smaller than k 2. 
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Ex_ ample i- Let L : {x e {a,b}* :~:{a}(X) : 2 n for some n ~ @} and 

let B = {a}. Obviously B is numerically dispersed in L, but B is not 

clustered in L. However, the language {aba} , L is such that B is 

clustered in L. 

Theorem 3. Let L be an E0L language over an alphabet E and let B 

be a nonempty subset of E. If B is numerically dispersed in L, then B 

is clustered in L. 

As an example of the application of Theorem 3 we have the follo- 

wing result. (A language L is called a deterministic T0L languase if 

there exists a deterministic ETOL system G = <V,E, ,~} such that 

L(G) = L and V : Z.) 

Corollary 5. There exist deterministic T0L languages which are 

not E0L languages. 

Proof. Let L {(abm) 2n = : m,n ~ 0} U {c 2n : n ~ 0}. L is a deter- 

ministic T0L language, because it is the language of the system 

<{a,b}~{a,b},{P1,P2,P3),c> where P1 = {a ~ a,b ~ b,c ~ c2}, P2 = 

{a ~ a,b ~ b,c ~ a} and P3 = {a ~ ab,b ~ b,c ~ c}. On the other hand 

{a} is numerically dispersed in L but it is not clustered in L. Con- 

sequently, by Theorem 3, L is not an E0L language. 


