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SUMMARY

The validity of brain tumour segmentation is an important issue in image processing because it has
a direct impact on surgical planning. We examined the segmentation accuracy based on three two-
sample validation metrics against the estimated composite latent gold standard, which was derived
from several experts’ manual segmentations by an EM algorithm. The distribution functions of the
tumour and control pixel data were parametrically assumed to be a mixture of two beta distributions
with different shape parameters. We estimated the corresponding receiver operating characteristic
curve, Dice similarity coefficient, and mutual information, over all possible decision thresholds.
Based on each validation metric, an optimal threshold was then computed via maximization. We
illustrated these methods on MR imaging data from nine brain tumour cases of three different tumour
types, each consisting of a large number of pixels. The automated segmentation yielded satisfactory
accuracy with varied optimal thresholds. The performances of these validation metrics were also
investigated via Monte Carlo simulation. Extensions of incorporating spatial correlation structures
using a Markov random field model were considered.

Keywords
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1. INTRODUCTION

1.1. Image segmentation
Surgical planning and image-guided intervention procedures increasingly employ automated

segmentation algorithms. MR imaging of the brain provides useful information about its
anatomical structure, enabling and facilitating quantitative pathological or clinical

investigation. Brain segmentation is a useful image processing method [1]. It assigns unique
labels to two or more classes, e.g. skin, brain tissue, ventricles, and tumour, representing an

anatomic structure to each pixel in an input grey-level image [2-4].
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Binary (i.e. two-class) manual segmentation is the simpliest, most frequently employed, and
yet time-consuming procedure. It also has the additional difficulty of differentiating subtle
intensity variations among pixels, particularly for those on the border of a tumour. However,
the results of such manual segmentations, i.e. outlining a tumour by hand, is stilled often
regarded as the gold standard. When performed by experts, such ‘truth’ may ultimately
influence the amount and degree of tumour removal, and thus is a critical step in clinical
practice.

Recently, Warfield et al. [5,6] have proposed an automated segmentation algorithm that yields
continuous pixel-wise probabilistic measures indicative of pixel-wise malignancy, with an
application to brain tumours [6]. It assigns 0 as non-malignancy to 1 as malignancy. Thus, the
appropriate methodology for validating this and similar continuous segmentation algorithms
are required, which motivated our investigation. Our goal was to examine several validation
metrics to compared the fractional segmentation against multiple experts’ manual
segmentations as the gold standard.

1.2. Gold standard

The most important element in validating the accuracy of a segmentation algorithm is the gold
standard. Particularly, in the image segmentation problem, it is the classification truth of each
pixel. For simplicity, let us assume a two-class truth by labelling the non-tumour class as Cgp
and tumour class as C1. Medical images typically present a challenge with a large number of
pixel data available, for example, N = 256 x 256 = 65 536 in a grey-scale image. The fraction
of target malignant class varies depending on the type of the disease. In this application, the
brain tumours occupied about 10-20 per cent of the entire brain, which still comprised a large
number of pixels within the tumour regions [7]. However, one may also construct a ‘region of
interest” (ROI), a subset of the entire brain pixels, which contains the target tumour of interest.
The size of the ROI can vary, depending on the specific image processing task and the clinical
information included in this region.

1.3. Summary accuracy measures

It is common to assume that all pixels are independent. In discriminant imaging analysis,
mixture models such as normal, normal mixture, or histograms are used. For example flexible
histogram approach [8,9], classifications of several target features may be conducted by
treating pixels as a set of independent samples drawn from a mixture distribution [10]. A
distribution of feature vectors using Parzen windows was modelled. Despite a simplification
by ignoring the natural pairing induced by pixels and the dependence between pixels in close
proximity, the independence approaches, i.e. essentially analyses of histograms, are frequently
employed in image processing and explorative analyses. These methods tend to give reasonable
results and are much less computationally intensive than those assuming spatial correlation
structions (see Section 1.5 for methods to incorporate spatial information).

For the purpose of comparing two sets of binary segmentation results, summary statistics for
the analysis of contingency tables may be adopted [11]. A 2 test of independence may be
conducted between segmentations and the corresponding binary gold standard values. To
evaluate the agreement between the binary segmentation and the gold standard, one may also
compute the kappa statistic [11,12]. By considering spatial information, Jaccard (JSC) [13]
and Dice (DSC) [14] similarity coefficients are typically used as a measure of overlap, where
DSC ranges from 0, indicating no spatial alignment between these two sets of binary
segmentation results, to 1, indicating complete alignment. In addition, boundary measures such
as the Hausdorff distance between segmentation and the gold standard, may be computed
[15].
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To evaluate the performance of a ‘continuous classifier’, the distributions in the two distinct
classes, here labelled as Cq and Cj, respectively, may directly be compared using the classical
two-sample statistics with appropriate assumptions. A popular visual method for assessing the
overall classification accuracy is to plot a receiver operating characteristic (ROC) curve, a
function of sensitivity vs (1-specificity). See several review articles on the ROC methodology
[16-18]. Previously, we have developed several ROC methods including non-parametric,
semi-parametric and parametric transformation models, for estimating and comparing ROC
curves derived from continuous data [19-21]. Regression methodology has also found in the
literature [22-25]. To utilize spatial correlation in the image feature space, medical image
classification applications have used techniques, e.g. the co-occurrence matrix (CM) developed
by Haralick et al. [26], to enhance image features and to capture texture information. A CM is
a probability density distribution of two pixel intensities, conditioned on distance and angle
between the two pixels. Other methods for incorporating spatial information are given in
Section 1.5.

Because a large number of pixels are typically present, a test of statistical significance may not
be meaningful clinically. We suggest avoiding relying on statistical hypothesis testing, along
with the use of p-values, which fails to convey important quantitative information. Thus, in
this article, hypothesis testing over pixels is not conducted. Instead of focusing on the resulting
statistical significance based on p-values, we confine attention on estimation of several
summary accuracy measures as metrics of valid segmentation.

However, hypothesis testing may still be conducted in a subset of the entire image based in an
ROI. Statistical hypothesis tests include a Student’s t-test, and a non-parametric Mann—
Whitney U-statistic [27-29]. Alternatively, a Kolmogorov—Smirnov test may be used to
directly compare the two underlying distributions [30]. To consider spatial information
between the two sets, we have recently developed hypothesis testing methods using the method
of CM in prostate imaging segmentations [26,31]. We scaled 256 x 256 image intensity data
to fit a range between 0 and 255 by mapping these 256 levels into the range of [max{0, (mean
— 3 SD)},(mean + 3 SD)]. For each centre pixel, the CM matrix was constructed by a number
of neighbours that were equidistant from the centre pixel. To model the texture differences of
the tissues of classes, log likelihood ratios, log{Pr(C,)/Pr(Cq)}, with Cq for non-prostate
tumour pixels and C, for prostate tumour pixels, for each of these neighbouring pairs. We used
the median of the log-likelihoods as the feature statistic; Pr(C1) and Pr(Cg) were the conditional
probabilities of tumour and non-tumour pixels, respectively, obtained from the CM entries that
correspond to the pair of pixel intensities and distance between pixels. Because image
interpreters often considered the slice above or below the current image slice for confirmation
of prostate cancer, we have also extended the CM method to three-dimension by constructing
CM one slice above and below the current slice.

1.4. Optimal threshold

The optimal threshold, or operating point, is of importance in developing guidelines for clinical
decision-making. Optimal operating threshold value may be computed using decision
approaches or via optimization. For example, one may simultaneous maximize a function of
predicting a sensitivity and a specificity (see Section 4.4) over a range of thresholds [32-35].
Alternatively, one may consider maximizing a function of these accuracy values or their
utilities, along with the prevalence of the disease and cost issues associated with
misclassifications of both positive and negative outcomes [36,37].

1.5. Incorporation of spatial correlation

There exist several solutions, which incorporate spatial correlation structures: For example, an
image segmenter may correctly identify a target object, but unfortunately may locate it
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incorrectly. Thus, the task is not only a classification but also a localization problem. In the
diagnostic literature, an extension called LROC was predicted from either a binary or multi-
category ROC, as well as the number of possible locations of the LROC [38-40]. The y-axis
is the proportion of responses both correctly detected and localized, while the x-axis is the false
positive rate.

Second, a spatially varying prior probability of the target class, C1, may be adopted to reflect
a priori about the spatial information. For example, when assessing brain segmentations of
white matter from other classes (e.g. grey matter, cerebral spinal fluid and fat), a probabilistic
atlas [41,42] of the distribution of white matter, derived from a large group of subjects, can
provide the spatial knowledge of the location at each pixel. Clustered samples may be taken
from regions of the image, and statistical parametric inferences may be made. However,
frequently, such an atlas is not available for many structures of interest.

Alternatively, a Markov random field (MRF) prior may be used, as in this work. The MRF
model assumes that the spatial information in an image is encoded through contextual
constraints of neighbouring pixels. The constraints make it more likely that the neighbouring
pixels belong to the same class. Expectation-maximization (EM) algorithm is often used to
derive the summary statistics of each labelling class [43-45]. The MRF method will be briefly
considered.

1.6. Overview of the methodology

The goal of this work is to develop three accuracy metrics, ROC curve, mutual information,
and Dice similarity coefficient for validating automated probabilistic brain tumour
segmentations. Our methaods are developed mainly under the pixel independence assumptions.
Brief extensions to spatial correlation are also made.

This article is organized as follows. In Section 2, we introduce notations for the classification
problem. The composite gold standard is estimated using an EM algorithm in Section 3. In the
same section, mixture modelling will be developed for continuous probabilistic segmentation,
with parameters estimated by matching-moments. In Section 4, we examine three different
functions of these estimated parameters, which are subsequently used as the validation metrics
for evaluating image classification accuracy. Based on each metric, an optimal threshold is
recommended by maximizing the likelihood function. The performance of these validation
metrics is investigated via Monte Carlo simulation in Section 5. Section 6 presents a clinical
example of MRI of three different types of brain tumours, with these validation metrics
illustrated on nine brain tumour cases. Finally, discussion and extensions to include pair-wise
spatial correlation structures using an MRF model are provided in Section 7.

2. NOTATIONS AND ASSUMPTIONS

For simplicity, we assume that individual pixels belong to one of two distinct and independent
populations (i.e. non-tumour control class, Cq vs tumour class, C4), determined by the gold
standard (truth), T. Consider two random samples, X (i = 1,...,m) and Y; (j = 1,...,n), drawn
from Cq and C4, respectively. The observed continuous random variable is labelled Z,
representing the probabilistic pixel-wise segmentation measures. Note that the domain of Z is
[0,1]. This continuous random variable Z generates our probabilistic segmentation data, while
the gold standard T determines the true pixel-wise classes. Stratified by the gold standard, for
each member of class Cy, there is a measurement X ~ (Z|T = 0) assumed to have cumulative
distribution function (c.d.f.) F, with probability density function (p.d.f.) f and survival function
F =1-F. Similarly, for each member of class C1, there is a measurement Y ~ (Z|T = 1) assumed
to have c.d.f. G with p.d.f. g and survival function G =1-G.

Stat Med. Author manuscript; available in PMC 2006 May 18.
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We assume that the gold standard, T, has a Bernoulli distribution, with a probability of Pr(T =
0) = n= m/(m + n) for class Cgp, and the tumour probability of Pr(T=1)=r =1-n=n/(m+n) for
class C1. By Bayes’ Theorem, the marginal distribution of Z is a mixture of F and G, with
mixing proportions = and & . That is, c.d.f of H=n-F+n -G with p.d.f. h, where the p.d.f. of
Zis

h(z) =nf(z) +mg(z) with n+7x=1 (Vz€[0,1]) (1)

Specifying any arbitrary threshold, y € (0,1) for Z yields a discretized version of a decision
random variable, D,. This implies the equivalence of the following events: {D, = 0} ={Z <
v} and {D, =1} ={Z > y}. Thus, a 2 x 2 contingency table (Table 1) is constructed.

3. A MIXTURE MODEL
3.1. Estimation of the gold standard

Instead of directly observing the gold standard, T, we conduct manual segmentations by a total
of R expert readers, each performing binary manual segmentation labelled By (I = 1,...N=m
+n; r = 1,...,R). Such repeated reading will enable us to estimate a combined gold standard,
using the missing data approach similar to those found in the literature [46,47].

Let Qqr and Qq, represent the true accuracy rates under the classes, Co and Cy, respectively.
The inter-expert decisions are assumed to be conditionally independent, given the latent truth.
We only observe binary classification decision By, i.e. (By|T|, Qor, Q1r) L (BT, Qorss
Q1r), for any two different experts, r £ r'.

We now wish to estimate the latent vector T, of length N, by T” = arg maxt Pr(B|T,Qq,Q1),
for all N = m + n pixels. However, these segmenter-specific classification qualities, Qg and
Q1 each a vector of length R are unknown quantities. To estimate the pixel-wise gold standard,
we have developed a software program named ‘Simultaneous Truth and Performance Level
Estimation’ (STAPLE) [48,49] using the following iterative (k = 1,...,K) EM algorithm [50,
51]:

The expectation (E) step: In the (k — 1)th iteration (k = 1,...,K till convergence is reached), let

W= 1ok []a-08" and o*0= [] 05" []a-05™

I‘:B,,:l I‘ZB/r=0 I‘:B,,:() I‘ZB[,-=1

Define the weight variable in the common notations for EM algorithms [50,51] based on the
(k — 1)th iteration;

W;kfl) - /(T) = 1131, Q‘g\:l)’ Q(ll\:l)) = D7/ kD7 4 * Dy
where © = Pr(T = 0), © =Pr(T=1), and n+n =1, as given before. At k = 0, the initial estimates

of the Qp,’s and Q1,’s may be based on a voting scheme to drive the gold standard, using a
majority rule over B.

The maximization (M) step: At the kth iterative step, to maximize the log-likelihood,

QY. 0) = arg [max E[log {r@BIT, Q0. @)} | £(T| B.OY . Q)]

and that for the rth segmenter,

Stat Med. Author manuscript; available in PMC 2006 May 18.
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Ak Ak) —(k-1) (k=1)
,077) =arg max w lo s+ w log(1-01,
@Y, 8% g(Qo,qu,.n:B%:o{' 200 +wi " log(1-01,)
+ (W V1og(1-Qo,) + W) " 1ogQy,}

L:Bj=1
where wl(k-1) is the weight variable from the (k — 1)th iteration, and w 1(k-1)=1-wl(k-1).

The MLEs of the accuracy quality parameters are, respectively:

—(k-1) (k=1)
Z w k) Z/:B,,,:l WI

(k) 1:B,=0""]
0, = and =
Or —(k-1) —(k-1) 1r (k-1) (k—1)
ZI:B,,.:OWI + 21:31,.:1 Wi Z/:B,,.:l W + ZI:B,,.:o W

In our experience, typically only K <20 iterations were necessary till convergence. More details
on this algorithm have been described in separate articles [48,49]. Relevant software codes are
available from the authors.

3.2. Modelling of probabilistic segmentation data

Recall that the continuous random variables, X and Y, are the probabilistic segmentation results
for classes Cq and Cy, stratified by the gold standard T, respectively. Because both X and Y
take values between [0,1], it is conventional and flexible to assume independent beta
distributions, i.e. F(x) ~ Beta(oyg, Bg) and G(y) ~ Beta(aq, B1). It is known that a beta distribution
is flexible in modeling probabilistic data and is conjugate to a binomial distribution, and thus
has a potential for Bayesian extensions [52]. In the simulation study presented later, we will
consider several mixtures of beta distributions.

Due to a large number of pixels in image processing, instead of estimating the parameters of
the beta distributions by their iterative MLEs [53], we use a matching-moment approach.
Usually there is a lack of efficiency when using the method of moments; however, the loss of
efficiency is small or negligible with a large number of pixels available in our problem.
Furthermore, the lack of efficiency for the method of moments does not relate to bias.

The expectation and variance of a Beta(a, ) distribution are given by a/(a+p) and of/{(a
+B)2 (o + = 1)}, respectively. Thus, the estimates (a*0,p"0) of the shape parameters based on
the x-sample of Cy may be obtained by matching the first two moments (mean and variance).

In order to match the sample mean x  and standard deviation s, of the x-sample, it can be
shown that

@ =*{X(1-9/s2-1}, and By =(1-%) (F(1-0/s2-1}

Similarly for a1 and "1, computed based on the two moments, y  and sy, of the y-sample of
C1. We now present three validation metrics in the following section, with a higher value in
[0,1] indicating higher accuracy.

4. VALIDATION METRICS

4.1. Sensitivity, specificity, and ROC curve

The accuracy of a diagnostic test can be summarized in terms of an ROC curve [16-18]. It is
a plot of sensitivity (true tumour fraction) vs (1-specificity) (true non-tumour fraction) based
on Zand T, at all possible thresholds.

Stat Med. Author manuscript; available in PMC 2006 May 18.
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Conventionally, py=F (y) is labelled as false positive rate (FPR or 1-specificity), on the x-axis
of an ROC curve. True positive rate (TPR or sensitivity) is qy=G (y) at the specified vy, or
gp=G °F -1(p) at any specified p, on the y-axis of an ROC curve. The ROC curve is given by
(F (v),G (y)) fory €[0,1], or (p,G™ °F -1(p)) for p € [0,1]. There is always a trade-off between
these two false positive and false negative error rates, or specificity and sensitivity.

An overall summary accuracy measure is the area under the ROC curve (AUC):

1
P=

AUC=PX<Y)= [ i:(ﬁ(y) dF () = [,_ga(p)dp @)

4.2. Dice similarity coefficient

At any arbitrary threshold vy, the Dice similarity coefficient [14], DSC,, may be computed as
a function of the sensitivity and specificity. Following the convention of an ROC plot, here we
label the false positive rate p, = P(Z > y|T = 0) and the true positive rate g, = P(Z>v|T = 1) =
P(D, = 1|T = 1). According to the Bayes” Theorem, the Jaccard similarity coefficient at v,
JSC,, is first defined as the pixel ratio of union and intersection between the two tumour classes
determined separately by D, and T [13]:

_ #{(Dy=Dn(r=1)}
Y T #{(D,=Du(r=D}
P(D,=1|T=1)P(T'=1)

JSC

P(D,=)+P(T=1)-P(D,=1 |'r: DP(T=1)
P(D,=1 |T:1)P(T= 1)

- P(D7=l|T=())P(T:())+P(T:l)
_ Ty
T apytm
- 76y

nF(y)+m

Note that as we tend to confine our attention to the spatial overlap in the tumour class, DSC
for the non-tumour may be computed analogously, but is generally not be of interest. A
generalized overall DSC over all threshold levels is defined as a simple function of JSC, and
by integrating out y [14], by assuming a uniform distribution for y:

1
DSC= [ 1=020SCy)/ASC, + Ddy @)

4.3. Entropy and mutual information

The mutual information (MI) between the binary decision D, at any threshold y and the gold
standard T can be computed as follows [54]:

ML, = MI(D,, T) = H(D,) + H(T)-H(D,, T) @
where

H(D,) = —(p11 + p12) logy(p11 + p12)—(p21 + p22) logy(p21 + p22)
= —(715y + 7r_q7) logz(ﬂﬁy + ﬁy)—(npy +7q,) log,(mp, + 7q,)

H(T) = —(p11 + p21) logr(p11 + p21)—(p12 + p22) logr(p12 + p22)
= —mlog,(m)—7log,(7)

H(D,,T) = —pi1logy(p11)—pi210gy(p12)—p21 logy(p21)—pa2 1og,(p22)
= —np, log,(np,)-7q, 10g,(7q,)—7py log,(np,)—Tq, log,(7q,)

Stat Med. Author manuscript; available in PMC 2006 May 18.
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with the joint probabilities, (p11, P12, P21, P22), given in Table I.

MI between the continuous random variable Z and T may also be computed using a conditional
entropy approach;

MI(Z,T) = H(Z)—H(Z|T)
= ~E,llog, (kZ)-nE, [log, (f@N-TE, [log, (s@))]
= — [ _ylk(@)log, (k(2)} —nf(2) log, {/(2)} —Tg(2) log, {g(2)}] dz

where k(z)=nf(z)+n g(z) as in (1).

4.4. Determination of an optimal threshold

The above accuracy criteria may be maximized numerically over the entire range of y to derive
an optimal threshold, y"opt, as the recommended operating cut-off point [32]. Because there

is always a trade-off between sensitivity and specificity (that is, when sensitivity is 1, specificity
is 0, and vice versa).

Note that the expression for the area under the ROC curve in (2) is free of y after being integrated
out. Thus, we only illustrate the square root of the sum of squares of sensitivity and specificity
values as our optimization criterion.

Other functions, such as the mean accuracy values of sensitivity and specificity may also be
considered for maximization. Furthermore, y may be computed by maximizing the mutual
information Ml,, and Dice similarity coefficient (DSC,).

5. A SIMULATION STUDY

5.1. Designs

A Monte Carlo empirical simulation study was first undertaken to examine the estimated
validation metrics by simulating a region-of-interest with varied pixels. The following realistic
values were fixed for this study in the context of image processing with typically a large number
of pixels in a region of interest. Under each combination of sample size and distributional
assumptions, 500 random samples were drawn repeatedly with data generated in the following
two experiments:

Experiment 1: The effect of the size of a region of interest: The size of the brain tumour was
first realistically fixed at n = 1000 for class C,. However, the background non-tumour pixels
in an ROI was varied at m = {1000; 3000; 9000}, for class Cgp, implying that the target tumour
of fixed size occupied anywhere in © = {50 per cent; 25 per cent; 10 per cent}. In effect, we
increased the size of an ROLI. This is clinically useful, as sometimes features and structures
other than the tumour alone in the ROl may provide additional clinical information in
performing segmentations.

Experiment 2: The effect of the size of a tumour: The total size of the brain, excluding extra
surrounding background, was fixed at N = m+n= 10 000, for class Cy and C; combined.
However, the proportion of the tumour in the entire brain pixel varied. The numbers of pixels
were assumed to be (m,n) = {(8500,500); (9000,1000); (8500,1500)}, thus, the proportions of
tumour occupied = = {15 per cent; 10 per cent; 5 per cent} of the brain. In effect, the tumour
size decreased within the brain of fixed size.

The effect of the beta mixture models employed in both experiments: Under each combination
of m and n, the beta mixture distributions were generated using the following combinations of
four shape parameters for classes Cq and Cq under the equal variances assumption,

Stat Med. Author manuscript; available in PMC 2006 May 18.
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(0g,Bosag,09) ={(1,1,1,1); (1,15,15,1); (1,2,2,1);(1,25,25,1); (1, 3,3,1); (1,9,9, D)},
as well as under the unequal variances assumption, {(1,3,1.5, 1); (1, 1.5, 3, 1); (1, 9, 3, 1); (1,
3,9, D}

See Figure 1 for these various beta distributions of class Cg, with the given shape parameters,
where og < Bg. The distributions under class C; may be graphed similarly, with aq > 1. The
distributions are symmetric about x = 0.5 if 0g = B1 and Bg = a4. For example, The p.d.f.’s of
Beta(1,3) and Beta(3,1) are symmetric about x = 0.5, with means 0.25 and 0.75, respectively.
The specified distributions corresponded to the scenarios that the diagnostic accuracy ranged
from flipping a coin (i.e. uniform distributions when the beta shape parameters were all equal
to 1, with AUC = 0.5) to very high (i.e. skewed distributions towards the extremes of 0 and 1,
with AUC = 1).

Experiment 1: The effect of the size of a region of interest: Tables Il and 111 show the estimated
validation metrics under the combinations when tumour size was fixed at 1000 pixels the varied
ROI size. We observed that the biases of the estimates of the beta parameters were small.

The estimated AUC ranged from 0.500 to 1.000; MI ranged from 0.000 to 0.992; DSC ranged
from 0.152 to 0.889 over all of the combinations of sample size and distributional assumptions.

All accuracy metrics varied if the distributional assumptions differed. The mean values of these
metrics increased if the separation between the two beta distributions under cg and Cy became
more apparent.

We observe that among these three metrics, the means of the AUC values were quite robust
with respect to the choice of the non-uniform beta mixtures. In addition, they were fairly
constant regardless of the size of the ROI.

MI, on the other hand, was sensitive to both the distributional assumption and particularly the
size of the ROI. Even given under the same distributions, it varied dramatically over different
ROl sizes. For example, Ml was 0.465 when the tumour occupied only 10 per cent of the ROI
of a total size of 10 000, but was improved to 0.992 when it occupied 50 per cent of the ROI

of the same total size.

The DSC was influenced somewhat by the sample sizes, but more so by the distributional
assumptions.

This suggested that perhaps segmentation tasks are better performed if an ROI surrounding the
target tumour can be pre-determined as close as possible to the actual location of the tumour.
However, sometimes it would be difficult to crop the image into a rather small ROI if the
original brain image contains additional important and useful information and features, in
which case it may not be reasonable to perform segmentation tasks within a restricted ROI.

Experiment 2: The effect of the size of a tumour: Tables IV and V show the estimated values
of the validation metrics under the combinations when the total brain ROI size was fixed at 10
000 while the proportion of the tumour varied. We observed that the biases of the estimates of
the beta parameters were also negligible.

The estimated AUC ranged from 0.500 to 1.000; MI ranged from 0.000 to 0.604; DSC ranged
from 0.152 to 0.800, over all of the sample size and distributional assumptions considered.

We demonstrated that, again, the means of the AUC values were robust in terms of the choice
of the non-uniform beta mixtures and the size of the ROI.
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M1 tended to take on low values (0.283-0.604) even under extremely skewed beta-distributions
with parameters (ag;,0,01,81) = (1,9, 9, 1), especially for tumours that occupied no more than
15 per cent of the brain.

The DSC was influenced somewhat by both sample size and by the distributional assumptions,
and the values were intermediate, i.e. lower than the corresponding AUCs but higher than the
Mls.

This suggested that the segmentation method works better for larger tumours in the brain.
Therefore, for very smaller tumours, perhaps it is sensible to define an ROI in advance rather
than using the entire brain image, as in Experiment 1, in order to increase the relative size of
the tumour to the background prior to performing either manual or automated segmentation
tasks.

6. A CLINICAL EXAMPLE

6.1. Materials and methods

6.2. Results

The cases: A total of nine patients were randomly selected from a neuro-surgical database of
260 brain tumour patients, of which three had meningiomas (M), three astrocytomas (A), and
three other low-grade gliomas (G) [7,55]. Visually the meningiomas enhanced better on grey-
scale images than the remaining two tumour types.

Imaging protocol: Patient heads were imaged in the sagittal planes with a 1.5T MR imaging
system (Signa, GE Medical Systems, Milwaukee, WI), with a postcontrast 3D sagittal spoiled
gradient recalled (SPGR) acquisition with contiguous slices (flip angle, 45°); repetition time
(TR), 35 ms; echo time (TE), 7 ms; field of view, 240 mm; slice-thickness, 1:5 mm; 256 x 256
x 124 matrix). The acquired MR images were transferred onto a UNIX network via Ethernet.

Automated probabilistic segmentation: The automated probabilistic segmentation was the
relative tumour probability of lesion per pixel with signal intensity modelled as a Gaussian
mixture of the two classes, based on an initial semi-automated binary segmentation [7].

Manual binary segmentation and gold standard estimation: An interactive segmentation tool
(MRX, GE Medical Systems, Schenectady, NY) was employed and ran on an Ultra 10
Workstation (Sun Microsystems, Mountain View, CA). The structures were outlined slice-
wise by expert operators using a mouse on a Sun Workstation. The program connected
consecutive points with lines. An anatomical object was defined by closed contour, and the
program labelled every pixel of the enclosed volume.

For the purpose of validation, we randomly selected one single 2D slice for each case from the
subset of the MR volume with the tumour. Manual segmentation was performed independently
by three experts (blinded to the machine segmentation results) to outline the brain and the
tumour. The pixel-wise composite gold standard was determined by the EM Algorithm
STAPLE [48,49]. The remaining pixels were labelled as background. Stratified analyses are
conducted by case and tumour type.

Statistical computing: All computations and optimizations were performed on a
SunMicrosystem SunBlade 100 Workstation and in Matlab6, S-Plus6.0 and C languages.

As an example case, we show the grey scale MR image of a meningioma case 1 (Figure 2).
The corresponding semi-automated binary segmentations of this image is also displayed
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(Figure 3). It was then used to derive the probabilistic results. The resulting empirical and
approximated beta mixture densities are plotted in Figure 4.

For all cases, we now report in Table VI the pixel counts (m;n), and the relative proportion of
the tumour size, stratified by the ground truth. The sample means and SDs of the non-tumour
and tumour probability data are reported. These sample moments were used to estimate the
shape parameters of the beta mixture distributions. As shown in this table, the proportion and
size of the tumours varied anywhere between 2.6 and 16.3 per cent. In general, the three low-
grade gliomas tended to have larger number of pixels with higher proportions. The estimated
beta distributions were variable and were skewed under both non-tumour and tumour classes,
evidenced by the unequal a and  parameters as they would under symmetry.

The overall validation accuracies presented in Table VIl were generally high but were variable.
The estimated ROC curves for all cases by tumour type are displayed in Figure 5. Based on
AUC and DSC, the probabilistic segmentation algorithm was most accurate for meningiomas
but least for astrocytomas. The accuracy was more variable among the astrocytoma cases.
Although M1 appeared low in about half of these cases but were still above 0, suggesting a
possible reason that these brain tumours were quite small compared to the entire brain.

In the same Table V11, the recommended optimal thresholds would depend heavily on the
metric criterion used for optimization. One may suggest basing the function of sensitivity and
specificity as the criterion if both quantities are important. If the spatial consideration of the
‘tumour class’ is more important, then the threshold based on the overlap statistics would be
appropriate. However, an overall recommended metric is AUC, while the operating threshold
would be based on the MI as an optimization criterion.

7. DISCUSSION

In this work, we have presented systematic approaches to validating the accuracy of automated
image segmentation results leading to pixel-wise probabilistic interpretation of the tumour
class. We developed an EM algorithm for estimating the latent gold standard. In addition, we
modelled the probabilistic segmentation results using a mixture of two beta distributions with
different shape parameters. Summary accuracy measures, including ROC curve, mutual
information, and Dice similarity coefficient, were estimated. An optimal threshold was also
derived under each metric.

The example data generally showed satisfactory accuracy based on our automated
segmentation algorithm, particularly illustrated by the high AUC and DSC values. In addition,
the estimated MI values were above zero even for small tumours relative to the entire brain.
The recommended optimal threshold, however, seemed to be case- and task metric-dependent.
Thus, for different optimization purposes, one may consider different clinical meaningful
threshold as their operating point of choice, and the basis for such optimization depends largely
on the clinical goal.

The main advantage of our approaches is that the parametric beta mixture modelling for
continuous automated probabilistic segmentation data was simple and probabilistic. The
estimation procedures for the beta shape parameters are straightforward, fast and unbiased,
using the moment-based approach. In addition, we derived a composite gold standard by an
EM algorithm, which was essential for many validation purposes. It is known that there
frequently exists inter- and intra-observer variability even among or within experts’ manual
segmentation results. Thus, the proposed methods may be generalizable to similar statistical
validation tasks of combining segmentation methods. In addition, these metrics may be used
in the context of assessing general diagnostic tests or classification algorithms.
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Our recommendation as to which metric to use is as follows: When the overall classification
accuracy is of interest, an ROC analysis may be appropriate. When a more refined index
examining the accuracy, which is sensitive to changes in the sizes of the tumour and number
of pixels, the mutual information should be adopted. Finally, when spatial alignment and
configuration are of interest, then the overlap measure should be considered. Depending on
the different validation purposes, the appropriate optimal threshold can be recommended. Such
selections of the appropriate metrics should ultimately reflect the relevant clinical task and
disease type. Unfortunately, because of these varied tasks, the optimal thresholds tend to differ,
based on the particular validation metrics employed as the optimization criteria.

We have assumed an independence model, and spatial information may be incorporated using
a pair-wise MRF model (see the appendix). Clinically, most segmentation errors occur at the
interface between two structures. The i.i.d. assumption in each class may also be a

simplification although such an assumption is often used and is easy to interpret. Nevertheless,
the lack of independence between scores in different pixels would result in different estimates.
The MRF modelling in the appendix is rather computationally intensive. Unfortunately, in our
example little difference was observed under the independence and MRF models in terms of
the pixel-wise gold standard estimates. In the particular meningioma case illustrated in Figure
6, the non-MRF and MRF gave very similar results. If we were to binarize the estimated gold
standard, then there would not be differences in the estimated boundaries of this tumour. This
is partly due to having only three segmentations, and the very smooth boundary of the tumour.

To further investigate the complexity of the interior and surface of the tumour, we have
conducted a preliminary analysis using logistic regression to examine the effects of the distance
between the pixel and the centre of a tumour the angle, and the probabilistic segmentation
result, to predict the gold standard. Encouragingly, our result showed that the automated
segmentation method performed well even on the boundary of the tumour in increased distance
away from the centre. Moreover, different intra-cluster correlations may be present, separately
for pixels on the border and for pixels in the middle of a tumour, and thus should be incorporated
in the validation.

The above issues are beyond the scope of this article but will further be invested in future
research without assuming pixel-wise independence by adapting the Ising model, cluster
analysis, and the MRF model [56,57]. We plan to develop an hierarchical approach to estimate
the validation metrics by incorporating both pixel-level, cluster-level (e.g. border vs centre),
and even higher-level (e.g. tumour type) covariate information.

Finally, apart from the Monte Carlo simulation experiments conducted in Section 5, a digital
brain phantom with simulated image data placing realistic tumours and possibly additional
complex anatomical structures will be constructed to evaluate the performances of our
validation metrics.

In summary, the proposed three validation metrics can provide a simple way to evaluate and
validate a continuous segmentation or classification algorithm in imaging processing and
analysis. More sophisticated statistical methodology is called for to deal with complex imaging
data as encountered frequently in medical diagnosis and treatment planning.

APPENDIX A: INCORPORATION OF A SPATIAL PRIOR

A pair-wise MRF model may be employed to incorporate spatial homogeneity. We have
extended our EM algorithm in the STAPLE program for estimating the pixel-wise gold
standard T, as a more refined standard to validate the automated algorithm on.
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At each pixel I, we assume that the segmenter quality estimates are independent of the
underlying gold standard, (Q0r,Q"1r)_LTI. Then an MRF prior is added by assuming pair-
wise interactions between all neighbouring pixels land I’ (1 #1I'; {I; I'} = 1, ...,N) in order to
induce spatial homogeneity.

Maximization (M) step with an MRF prior: Following closely the notations of Greig [56], at
the kth iteration the log-likelihood of the pixel-wise gold standards becomes

log /(T|B, 0} ", 0\ o SZm ATiTe + (1=T))(1=Tp)}

1, /(B | T1=1,00 ", 0% ) (=1
+2T,-1og{ il G, 2y
1

11,8, | 1=0.0%0. 8% ) /(11=0)

where nj->0and encodes a spatial prior indicating an interaction weight between neighbouring
pixels I and I'. If ny) > 0, then these neighbouring pixels have spatial homogeneity; n;r =0
implies pixel-wise independence. In practice, ny = 1, for adjacent pixels (I;1'). The estimate of
T, is efficiently made using a (maximum flow)—(minimum cut) network flow problem [56].

In Figure 6, a comparison between the estimated gold standard with the frequencies of three
manual segmenters’ results is provided (left panel). The MRF modelling (right panel) is
presented for the meningioma Case 1, using the spatial prior nyr = = 2.5. The independence
model described earlier and the MRF models yielded slight differences in probabilities of the
presence of tumour under the MRF model to that under the independence model, particularly
in regions on the boundary of the tumour. However, such differences were not perceptible in
the index scale. In the future, we will further investigate the differences and incorporate such
MRF modelling in the three validation metrics, which will be beyond the scope of this work.
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Figure 1.

Beta distributions used in the simulation study for non-tumour (Cgp) class only; the Beta
distributions for the tumour (C;) class may be graphed similarly and are omitted here.
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Figure 2.
The grey scale MR image of a case of a meningioma (Case 1).
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Figure 3.
Estimated composite pixel-wise gold standard of an MRI case of a meningioma (Case 1).
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Estimated mixture of two beta distributions of an MRI case of a meningioma (Case 1).
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Figure 6.

Pixel-wise frequency of segmentation decision by three expert raters and the estimated pixel-
wise gold standard by MRF modelling of a meningioma (Case 1): Left Panel: Frequency of
selection; Right Panel: Estimated gold standard by an MRF model, which is virtually identical
to that estimated by a pixel-wise independent model.
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A 2 x 2 table of the joint probabilities of the truth (T) vs the corresponding segmentation decision (D,) at each

possible threshold .

Decision vs truth T =0 (non-tumour) T =1 (tumour)
D, = 0 (non-tumour) P11 P1o
D,=1 (tumour) P21 P2z
Marginal total n _

T
where

P11=P(Dy=0,T=0)=PZyT=0)P(T=0) =nF(y) =np v
P21 = P(Dy=1,T=0) = PZ>y|T = 0)P(T = 0) = nF (3) = 7py
p12 = P(Dy =0, T=1)=PZy|T=1)P(T=1)=n G(y)=n q v
p22 = P(Dy =1, T=1)=P@Z>T=1)P(T=1)=n G (y)=r qy

Note that the marginal totals, p11 + p21 = = and p12+p22=n_, are related to the Bernoulli parameter of T.

[5.6].
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Table VI

Estimated accuracy metrics (ROC, Ml and DSC) and optimal thresholds for 9 brain tumour cases.
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Validation metrics

Optimal thresholds

Tumor type A~ ~ o~ A ~ A P A
AUC Mi DSC (1- 6)2 + 62 yopt Mi 70pt DSC yopt
M 0.9842 0.2888 0.8154 1.3255 0.4709 0.3107 0.8625 0.8730 0.8734
0.9684 0.3012 0.8415 1.2834 0.8448 0.3065 0.8521 0.8931 0.8268
0.9242 0.1572 0.4220 1.1844 0.2622 0.1098 0.4657 0.5185 0.8414
A 0.7860 0.0557 0.1970 1.0050 0.7713 0.0415 0.7728 0.4871 0.7808
0.9255 0.2319 0.5146 1.1881 0.4469 0.1598 0.6843 0.6321 0.8005
0.9858 0.4649 0.8708 1.4142 1.0000 0.5669 0.8553 0.9724 0.8385
G 0.9829 0.4018 0.8961 1.3720 0.0120 0.4032 0.4905 0.8992 0.6736
0.9157 0.1595 0.4396 1.1735 0.0773 0.1276 0.2232 0.4897 0.6511
0.8956 0.2505 0.5276 1.1417 0.4547 0.1693 0.6191 0.6197 0.7113

Note: M = Meningiomas; A = Astrocytomas; G = Other Low-Grade Gliomas.
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