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Abstract A slight rearrangement of the classical Cox
and Merz rule suggests that the shear stress value of
steady shear flow,τ(

.
γ ), and complex modulus value

of small amplitude oscillatory shear, G∗(ω) = (G′2 +
G′′2)1/2, are equivalent in many respects. Small changes
of material structure, which express themselves most
sensitively in the steady shear stress, τ , show equally
pronounced in linear viscoelastic data when plotting
these with G∗ as one of the variables. An example
is given to demonstrate this phenomenon: viscosity
data that cover about three decades in frequency get
stretched out over about nine decades in G∗ while
maintaining steep gradients in a transition region. This
suggests a more effective way of exploiting the Cox–
Merz rule when it is valid and exploring reasons for
lack of validity when it is not. The τ−G∗ equivalence
could also further the understanding of the steady shear
normal stress function as proposed by Laun.
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Introduction

Fifty years ago, Cox and Merz (1958) reported that the
shear rate dependence of the steady shear viscosity,
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η(
.
γ ), and the frequency dependence of the complex vis-

cosity η∗(ω) of a polystyrene melt are “similar”. Within
the accuracy of their experiments, the two function val-
ues were practically identical. This behavior has since
been found for many polymeric liquids (here referred
to as “Cox–Merz materials”) which are mostly linear
homopolymers. A detailed explanation for the origin
of the Cox–Merz rule of congruent η∗(ω) and η(

.
γ ) and

its range of applicability is still missing (nor will it be
attempted here).

This paper is motivated by the well-known, high sen-
sitivity of the stress to variations in material structure.
Small changes in a material often magnify in a plot of
shear stress as one of the axes. For the steady shear vis-
cosity, material differences can be viewed much more
clearly when plotted as η(τ ) instead of η(

.
γ ). It therefore

is desirable to find an equally sensitive representation
of dynamic mechanical experiments in which ω is re-
placed by some sort of stress.The search for a suitable
stress measure led to G∗ as independent variable, as will
be shown below. From the famous Booij and Palmen
(1992) plots of linear viscoelasticity, we already know
that G∗ is an advantageous variable for detecting small
variations between material samples.

Data rearrangement

The following view of the Cox–Merz rule was chosen
in order to emphasize the shear stress dependence of
rheological material functions. We obtain stress val-
ues by multiplying the steady shear viscosity with the
shear rate

η
(

.
γ
)

.
γ = τ

(
.
γ
)

(1)
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Fig. 1 Flow curves τ (
.
γ ) and G∗(ω). Overlay of linear (dots) and

non-linear (lines) viscoelastic data of a commercial polystyrene
(received from Monsanto in 1982) which is known to qualify
as Cox–Merz material since a similar polymer was used in the
original paper in 1958. Isotherms at T = 132, 145, 161, 181, 205,
219, and 269◦C. Time–temperature shifting (Ferry 1980) of all
curves onto the T= 181◦C isotherm results in the large master
curve. Data of Winter and Mours (2006). For the purpose of this
plot, G′ − G′′ data were converted into “steady shear” data

The validity of the Cox–Merz plot is maintained
by multiplying the complex viscosity value with the
frequency

∣∣η∗ (ω)
∣∣ω =

( |G∗|
ω

)
ω = ∣∣G∗ (ω)

∣∣ (2)

Frequency, ω[rad/s], and shear rate,
.
γ [1/s], are set equal

for this representation. The absolute value signs are
omitted throughout the text. Figure 1 shows an overlay
of G∗(ω) and τ (

.
γ ) for a Cox–Merz material. This gives

new meaning to G∗, which became the linear viscoelas-
tic equivalent of the steady shear stress, τ .
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Fig. 2 Same data as in Fig. 1, however, plotted as η∗(G∗) and
η(τ ). The lines represent the artificial viscosity data as defined in
the text. The dots belong to the complex viscosity data
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Fig. 3 Classical Cox–Merz plot (same data as in Fig. 1)

By elimination of the frequency, the data can be
further transformed into an overlay plot for η∗(G∗) and
η(τ ). This is shown in Fig. 2 which demonstrates the
sensitivity of G∗ as independent variable. For compar-
ison, the classical Cox–Merz plot is shown in Fig. 3.
The equivalent pairs of material functions are listed in
Table 1. Figures 1, 2, and 3 demonstrate the full agree-
ment between linear viscoelastic and steady shear data
for this group of materials (“Cox–Merz materials”).

The different views of the Cox–Merz relation give
valuable insight in viscoelasticity and allow direct com-
parison with flow curves τ (

.
γ ). Of all three represen-

tations of the data, the η∗(G∗) plot (Fig. 2) visualizes
differences between material states most clearly. This
has previously been overlooked, as far as we know.

Applications beyond Cox–Merz

When normal stress data become available, together
with the corresponding dynamic mechanical data, it will
be interesting to apply the τ -G∗ equivalence to Laun’s
(1986) empirical rule that estimates the fist normal
stress difference in steady shear, N1, from dynamic
mechanical data

N1,Laun

(
.
γ
)
=2G′ (ω)

{
1+

(
G′

G′′

)2
}0.7

= 2G∗

tan δ

(
G∗

G′′

)0.4

(3)

Table 1 Equivalent rheological material functions for Cox–Merz
materials, all of them evaluated at ω = .

γ

Linear viscoelasticity Steady shear

η∗(ω) ↔ η(
.
γ )

η∗(G∗) ↔ η(τ )
G∗(ω) ↔ τ (

.
γ )

Comparison is made for the absolute value of these variables
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This suggests a plot of N1,Laun(G∗) for estimating N1(τ )
of steady shear. G∗, G′′, and tan δ = G′′/G′ should be
evaluated at ω = .

γ . It is unclear whether Laun’s rule
applies to Cox–Merz materials only or whether it goes
beyond.

For materials that fail the Cox–Merz rule, such as
many complex materials, the plotting of linear vis-
coelastic data as G∗(ω) and η∗(G∗) was found to be also
valuable. It visualizes structural change, yield stress,
liquid-to-solid transition, and structural ripening, to
name a few. Differences between viscoelasticity of gela-
tion and glass transition show clearly. G∗(ω) and η∗(G∗)
plots, together with their respective counterparts (see
Table 1), help to bridge between linear viscoelasticity
and large strain behavior. In these functions, G∗(ω) and
η∗(G∗) are meaningful compliments to the powerful
Booij–Palmen plot of the loss angle δ(G∗).

Lin et al. (1988) and Doraiswamy et al. (1991) pro-
posed an extension of the Cox-Merz plot into the non-
linear domain by applying large-amplitude oscillatory
shear and then rescaling the complex viscosity with an
average shear rate per period. The τ − G∗ equivalence
might not apply to such extension.
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