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We report the implementation of a near-quantum-limited, traveling-wave parametric amplifier that uses three-
wave mixing (3WM). To favor amplification by 3WM, we use the superconducting nonlinear asymmetric
inductive element (SNAIL) loops, biased with a dc magnetic flux. In addition, we equip the device with
dispersion engineering features to create a stop-band at the second harmonic of the pump and suppress the
propagation of the higher harmonics that otherwise degrade the amplification. With a chain of 440 SNAILs,
the amplifier provides up to 20 dB gain and a 3-dB bandwidth of 1GHz. The added noise by the amplifier is
found to be less than one photon.

Over six decades have passed since the first propos-
als on traveling-wave parametric amplifiers (TWPAs).1–3
Since then, TWPAs have been widely used in optics;4,5
however, in electronics and microwave circuits, they gave
way to amplifiers made of transistors. Recent progress
in superconducting quantum computing and the demand
for quantum-limited amplifiers has brought the attention
back to the TWPAs again. Being composed of passive
and low-loss elements such as capacitors and inductors,
these amplifiers are inherently low noise, and this makes
them ideal for millikelvin measurements. Furthermore,
embedding the elements in a transmission-line frame
liberates TWPAs from the constraint of a fixed gain-
bandwidth product inherent in parametric amplifiers
based on lumped element oscillators and resonators.6,7

Parametric amplification results from frequency mix-
ing in a nonlinear element, where a strong pump is mixed
with the weak signal, causing energy transfer from the
pump to the signal and hence amplification. There are
two main schemes of frequency mixing, namely three-
wave mixing (3WM) and four-wave mixing (4WM). Dur-
ing 3WM, one photon at the pump frequency ωp gen-
erates a photon at the signal frequency ωs and another
photon at an idler frequency ωi under the resonance con-
dition ωp = ωs+ωi, whereas during 4WM, two photons at
the pump frequency create the signal and the idler pho-
tons, i.e., 2ωp = ωs+ωi. Among the two schemes, 4WM-
TWPAs appeared earlier and progressed both in the form
of kinetic-inductance-based transmission lines8–12 and of
lumped-element circuits composed of Josephson junc-
tions for the required nonlinearity.13–18 There has been
fewer implementations of 3WM-TWPAs,19–25 despite the
abundance of the theoretical work.2,19,26–30

The quadratic nonlinearity in a 3WM-TWPA leads to
a greater amplification at lower pump powers compared
with a 4WM-TWPA which relies on cubic nonlinearity.
This translates into a shorter chain for the 3WM-TWPA
to achieve a target amplification,26 which in turn in-
troduces less loss to the system upon implementation.
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In addition, in a 3WM-TWPA, maximum amplification
takes place close to half of the pump frequency, in con-
trast to a 4WM-TWPA, where the gain is maximum
near the pump frequency. Therefore, the strong pump
that is detuned from the signal can be filtered out eas-
ily. Furthermore, the 3WM-TWPA does not suffer from
the intrinsic phase mismatch induced by the Kerr effect,
which was believed to eliminate the need for dispersion
engineering.19,26 In practice, however, the linear disper-
sion also facilitates the generation of higher pump har-
monics and up-converted signal modes, and therefore, the
desired gain may not be achieved unless one increases the
number of unit cells in the device.29,31 This problem has
so far been addressed by adding features to the TWPA
chain to deliberately distort the linear dispersion and in-
crease the phase mismatch at higher frequencies while
maintaining finely tuned phase matching for a particular
pump frequency. Although this approach results in gain
enhancement, it suffers from the limited flexibility of the
amplification band.20,24

Our proposed solution to the problem of high harmonic
generation is to create a stop-band for the second har-
monic of the pump, 2ωp, thus suppressing the generation
and propagation of all pump harmonics. This is similar to
a dispersion engineering approach for the 4WM-kinetic-
inductance TWPAs,8–10 where a stop-band is used to
suppress the third harmonic of the pump. A strong non-
linear dispersion in the vicinity of the stop-band would
also prevent up-conversion of signal harmonics by the
pump. Therefore, we anticipate a better amplifier per-
formance as well as improved flexibility in adjusting the
pump frequency compared to other proposals.20,24,27

In our design, we use the method of periodic loading32
and modify the inductance of the chain to create a dis-
tributed filter, resulting in a stop-band at the desired
frequency of 2ωp. Such a filter is in the form of non-
linear inductor-capacitor (LC) cells, and besides its role
in frequency elimination, it also contributes to the gain.
Moreover, unlike resonator-based dispersion engineering,
no extra element is added to the circuit, and the design is
free from additional sources that can introduce reflection
and loss. With this design, we demonstrate up to 20 dB
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FIG. 1: Design of a stop-band by periodic loading in the TWPA chain. (a) Three cells made with SNAIL loops with inductances
L1, L2 = (3/2)L1 and C1 = C2 = C form a supercell. (b) The calculated dispersion diagram of the device consists of three
propagation bands separated by two stop-bands. The pump frequency ωp is chosen such that its second harmonic is within
the stop-band. ωc is the cutoff frequency and k is the imaginary part of the complex propagation constant. (c) Calculated
transmission of the TWPA (S21) as a function of frequency and magnetic flux, Φext. The propagation bands, yellow, exhibit
fringes resulting from the discrete structure of the TWPA; the stop-bands are shown in deep blue. Φ0 is the flux quantum. (d)
Calculated nonlinearity coefficients χ3 and χ4, which define the strength of the 3WM and 4WM, respectively, as a function of
the applied dc magnetic flux.

gain with a TWPA that contains only 440 LC cells.
Illustrated in Fig. 1a is the TWPA, where the nonlin-

earity results from the Josephson junctions, arranged in
the form of a superconducting nonlinear asymmetric in-
ductive element (SNAIL) loop,33 to provide three-wave
mixing. The equivalent SNAIL inductance, L, is peri-
odically modulated such that the three consecutive cells
form a supercell, L1 −L1 −L2, with L2 = (3/2)L1 being
the loaded feature. We choose the capacitance C such
that the supercell, as a whole, is impedance matched,
while the variation of the TWPA impedance with mag-
netic flux is insignificant within the studied interval. In
general, it is possible to place the loaded feature peri-
odically after any number of L1-cells and also to use a
different capacitance, C2 6= C.

The SNAIL loops are configured with a single junction
with Josephson energy EJ1 and three identical junctions,
each with energy EJ2, EJ1/EJ2 = α = 0.16. For this
configuration, the normalized SNAIL inductive energy
is,33

ES(φ̃)

EJ2
= −α cos(φ̃+ φ̃min)− 3 cos

(φext − (φ̃+ φ̃min)

3

)
≈ c0φ̃min + c2φ̃

2 + c3φ̃
3 + c4φ̃

4 + . . . , (1)

where φ̃(t) is the phase difference across the SNAIL. The
second line is an expansion of the energy around the min-
imum superconducting phase difference, φ̃min, defined by
the biasing magnetic flux, φext = 2πΦext/Φ0. Equation
1 contains both third- and fourth-order nonlinear terms
for the phase fluctuation, which are responsible for the
3WM and 4WM, respectively.

The dispersion relation is obtained by calculating the
transmission (ABCD) matrix of the supercell, M̂, and
solving the equation, 2 cosh(γa) = Tr(M̂), where γ is the
complex propagation constant and a is the length of the

supercell.32 The dispersion relation is plotted in Fig. 1b
for Φext = 0 (k represents the imaginary part of γ). The
plot consists of three propagation bands separated by two
stop-bands. The variation of the stop-bands with mag-
netic flux is illustrated in Fig. 1c. The stop-bands shift
downwards in frequency as the magnetic flux approaches
0.5 Φ0, because of the increase in the SNAIL inductance.

To account for the nonlinear coupling of the waves,
one needs to resort to a dynamical equation for the su-
perconducting phase, φ(x, t), representing the n-th node
of the chain at x = na. For a homogeneous chain without
loaded features, L2 = L1, the equation has the form,31

−CL1φ̈− 4 sin2

(
ak̂

2
φ

)
+
χ3

2
D̂3[φ] +

χ4

3
D̂4[φ] = 0,

D̂µ[φ] =
[(

1− e−iak̂
)
φ
]µ−1

+
[(
eiak̂ − 1

)
φ
]µ−1

, (2)

where k̂ = −i∂x, and the nonlinearity coefficients χ3 =
−3c3/c2 and χ4 = −6c4/c2 quantify the strength of the
3WM and 4WM, respectively. The dependence of these
coefficients on the magnetic flux bias is shown in Fig. 1d.
The 4WM coefficient χ4 vanishes at Φext ≈ 0.36 Φ0, while
the χ3-coefficient at this point is close to its maximum
value. For the loaded TWPA, the dynamical description
is more complex; one has to resolve the nodal phases
within the supercell, n = 3m, 3m+ 1, and 3m+ 2, where
m is the supercell number. Then Eq. (2) splits into three
coupled equations for the corresponding phases (cf. [31]).
Nevertheless, Eq. (2) remains useful for the loaded chain
as a tool for qualitative description of a low-frequency
region below the first stop-band. Furthermore, in the
long-wavelength limit, ka � 1 (ω � ωc) and one can
simplify Eq. (2) by Taylor expansion over the small pa-
rameter ka.

We fabricated the device on a high resistivity silicon
wafer (ρ ≥ 10 kΩ cm), with evaporated aluminum as the
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FIG. 2: Schematic of the cryogenic measurement setup.
The pump and the signal are sent through separate lines.
The signal line contains a resonator with a qubit used for
measuring the input power at the chip. The switchable
bypass line (REF) across the TWPA is used as the ref-
erence.

superconducting material and aluminum/aluminum ox-
ide/aluminum (Al/AlOx/Al) Josephson junctions. We
mounted a 5× 10 mm2 TWPA chip, containing 440 cells
or ≈ 147 supercells, in a copper box and attached the
assembly to the mixing chamber of a Bluefors dilution re-
frigerator to measure the device at temperatures around
10mK. Figure 2 shows the wiring diagram of the cryo-
genic measurement setup. To apply the dc magnetic flux,
we placed a superconducting coil under the sample, and
to calibrate the measurement, we used a 50 Ω SMA cable
as the reference. The TWPA and the reference were con-
nected to RF switches to share the input/output lines.
The signal and the pump were fed through line 1 and line
2, respectively. They combined in a directional coupler
before entering the TWPA. This was made to protect a
qubit, accessible via the signal line, from being perturbed
by the strong pump. We used this qubit to calibrate the
power, allowing us to measure the noise temperature, as
discussed later. The qubit chip contains a fixed-frequency
transmon qubit with the frequency 4.164GHz, connected
to a readout resonator with the frequency 6.0351GHz.
For gain measurements, we bypassed the qubit and in-
stead combined the signal and the pump at room tem-
perature and fed both through input line 2.

To probe the propagation of an injected signal and its
second harmonic under 3WM, we biased the TWPA at
≈ 0.38 Φ0 and sent in a tone at frequency ω and power
−111 dBm, and measured the output signals at ω and
2ω. The experimentally measured transmission of the
injected tone and its second harmonic is shown in Fig. 3.
The response is plotted after subtracting the background,
taken at zero flux, where the stop-band is well above fre-
quency f = ω/(2π) = 13GHz, to get a response simi-
lar to that of a reference cable within the measurement
frequency band. The response of the tone itself (blue
trace) reveals the stop-band starting at approximately
11.5GHz. The amplitude of the second harmonic outside
the stop-band (green trace) is smaller than the main tone
by approximately 15 dB or more and exhibits oscillations
with a decreasing amplitude as the frequency increases.

FIG. 3: The frequency response of the TWPA to an input
tone with power −111dBm at Φext ≈ 0.38 Φ0. The response
at the input frequency (blue) exhibits a stop-band at f &
11.5GHz, where the transmission drops by several orders of
magnitude. The response at twice the input frequency (the
second harmonic, green) also drops within the stop-band, but
not as significantly as the main tone. The yellow and purple
dashed-dotted lines indicate the simulation results described
in the text.

This is a characteristic behavior for a large magnitude
of phase mismatch compared to the nonlinear coupling
strength and can be qualitatively described based on the
theory, Ref. [34]∣∣∣∣A2(x)

A1(0)

∣∣∣∣ ≈ 1

2
tanh

(
4ε3
∆a

sin

(
∆x

2

))
, (3)

where A1,2 are the amplitudes of the first and the second
harmonic, ∆ = k(2ω) − 2k(ω) is the phase mismatch,
and ε3 = |χ3A1(0)|ka < ∆a is the nonlinear coupling
strength. The striking observation, however, is a small
suppression of the second harmonic within the stop-band
compared to its amplitude outside the stop-band. Our
simulation quantifies this suppression by approximately
a factor of three compared to the peaks, as illustrated
by dashed-dotted lines in Fig. 3, while the main tone
decreases by orders of magnitude. The simulation is per-
formed using the harmonic-balance method implemented
in the Advanced Design System simulator.35 This method
accounts for the full nonlinear dynamics of the Joseph-
son inductance in response to the applied ac current and
magnetic flux and returns all inter-mixing products gen-
erated in the circuit.

The difference in the behavior of the main tone and its
second harmonic can be understood by noting that the
second harmonic continuously interacts, even within the
stop-band, with the main tone, which freely propagates
at smaller frequencies well below the stop-band and con-
tinuously provides energy to the second harmonic. The
magnitude of the second harmonic within the stop-band
can be estimated by considering the main tone as an ef-
fective source whose intensity is proportional to the non-
linear coupling strength ε3. This is comparable to the
amplitude of the second harmonic propagating outside
the stop-band, Eq. (3).

Despite the incomplete extinction of the second har-
monic, the signal gain considerably changes, as our next
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(a)

(b)

(c)

FIG. 4: Frequency dependence of the gain and harmonic
generation under 3WM. Φext ≈ 0.38 Φ0, fp = 6.2GHz, pump
power, Pp = −91.4 dBm. (a) Gain of the loaded TWPA,
blue trace, in comparison with the gain of a TWPA without
loading (L2 = L1), with the same number of cells (440), yel-
low trace. To account for the insertion loss, we compare the
signal when the pump is on to that of the 50 Ω reference ca-
ble. (b) Frequency dependence of the output signal and 3WM
idlers. The signal is injected within the frequency interval, 0.1
- 6.2GHz, while the output is detected within interval 3.5 -
12.5GHz. Blue trace refers to the detected signal, yellow -
down-converted idler, green and purple - up-converted signal
and idler, respectively. (c) Frequency diagram illustrating
mode coupling: the modes within the lower green (1) and
pink (2) frequency intervals are strongly coupled by down-
conversion and are therefore amplified. The modes within
the lower green (1) interval are efficiently up-converted to the
green (3) region above the pump frequency, while the modes
within the pink (2) region are not up-converted because of
the stop-band and strong dephasing near the stop-band edge
(gray region, 4).

observations show. We biased the device at Φ ≈ 0.38 Φ0,
where 4WM is negligible, and applied a pump tone at
6.2GHz so that its second harmonic fell in the stop-band,
and measured the signal gain at various frequencies. The
result is shown in Fig. 4a with the blue trace. The yel-
low trace represents the gain of a SNAIL-TWPA that
contains no dispersion-engineering features. The latter
is made of the same number of 440 SNAILs with sim-
ilar configuration, and the measurements were done at
the same operational point. The noticeable difference in

FIG. 5: The gain of the TWPA at different pump frequen-
cies. The flux bias is tuned such that the second harmonic
of the pump is in the stop-band, and the pump power is also
adjusted following the change of the critical current with flux.
Blue: fp = 7.0GHz, Φext = 0.34 Φ0, Pp = −87.4 dBm; green:
fp = 8.0GHz, Φext = 0.22 Φ0, Pp = −82.25 dBm, purple:
fp = 8.4GHz, Φext = 0.21 Φ0, Pp = −82.4 dBm. The gain is
obtained with respect to the 50 Ω reference.

the frequency dependence of the gain as well as some en-
hancement of the gain, indicate the effect of the suppres-
sion of high harmonics. To investigate the presence of the
up-converted harmonics, we applied a signal within the
interval 0.1 - 6.2GHz and measured the response between
3.5 - 12.5GHz (the available band of our equipment). In
Fig. 4b the blue trace indicates the measured response at
the signal frequency, ωs, while the yellow trace depicts
the (down-converted) idler, ωi = ωp−ωs, when the signal
is applied below 2.7GHz. The green and purple traces
represent the up-conversion of the signal and idler, re-
spectively, ωp+ωs,i. The peak at frequencies between 6.2
- 9GHz indicates efficient up-conversion from the quasi-
linear dispersion region below 3GHz, while the signifi-
cantly weaker response at higher frequencies (> 9GHz)
reveals the increased phase mismatch close to the stop-
band. Therefore, we conclude that the shape of the gain
in Fig. 4a is mainly formed by an interplay of the three
modes, ωs, ωi, and ωp + ωs(i), as shown in Fig. 4c. The
frequency shift of the gain peak from half of the pump
frequency can be understood on the basis of the theory
in Refs. [2] and [31], where the maximum gain splits and
shifts from ωp/2 due to strong dephasing.

The shape of the gain traces remains qualitatively sim-
ilar when the pump frequency changes. In Fig. 5 we
present the gain for three pump frequencies between 7
and 8.4GHz. For each plot, we kept the pump sec-
ond harmonic within the stop-band, thus we changed the
flux bias from 0.34 Φ0 down to 0.21 Φ0. We also ramped
up the pump power taking advantage of the increased
critical current. With the growing pump frequency, the
gain increases, following the theory prediction.2,31 While
the gain maximum is ≈ 15 dB at the pump frequency
of 7GHz, it increases to about 20 dB within the pump
frequency interval 7.8 - 8.4GHz. The shape of the gain
traces does not change with decreasing the magnetic flux
bias, indicating that 3WM remains dominant within the
range of applied magnetic bias, despite the increasing
4WM admixture. The data presented in Fig. 5 is the
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main result of this work.
We conclude with a discussion about the noise perfor-

mance of the TWPA. Figure 6a presents the noise tem-
perature as a function of the gain, where the data points
correspond to four close values of the magnetic flux bias
Φext ≈ 0.2 Φ0. The input signal was calibrated by mea-
suring the number of photons in the readout resonator
(fr = 6.0351GHz) of the qubit chip, see Fig. 2, via the ac
Stark shift measurement.36 In Fig. 6a we also depict the
improvement of the signal-to-noise ratio (∆SNR) quanti-
fied with the ratio of the SNRs for the pump on and off.
The noise temperature of the system is about 10K when
the TWPA is connected but not pumped, and drops to
less than 0.6K when the TWPA is turned on. To an-
alyze the data, we adopt a model for the TWPA as an
ideal amplifier with gain G, connected to a lossy element
with damping D on the input,37 as shown in the inset
of Fig. 6b. D includes the total damping between the
qubit and the input of the TWPA as well. The added
number of noise photons referred to the TWPA input is
then A = (1−D)/(2D) + (G−1)/(2GD), where the first
term results from the damping, and the second term is
due to the gain, assuming the standard quantum limit.38
The total system noise of the TWPA connected in series
to the HEMT amplifier is

Ntot = Nin +
G(2−D)− 1

2GD
+
AH
GD

. (4)

Here Nin and AH are the input noise and the added
noise by the HEMT amplifier, respectively, in units of
noise photons. The second term is the noise added by the
TWPA. The signal-to-noise ratio improvement is then

∆SNR(G) =
Nin +A(G = 1) + AH

D

Nin +A(G) + AH

GD

. (5)

We use Eqs. (4) and (5) to fit the data in Fig. 6a, shown
with solid lines in the plots. Assuming vacuum input
noise, Nin = 0.5, we extract the parameters D = 0.73
and AH = 24.85, and compute the added noise of the
TWPA, presented in Fig. 6b. The saturated value of the
added noise at large pump power is found, A∞ = 0.86
photons. Thus the added noise by TWPA is only 0.36
photons above the standard quantum limit of ASQL =
0.5.38

In summary, we observed a significant boost in the
gain of a Josephson junction-based TWPA in the three-
wave-mixing regime. The gain enhancement is achieved
by engineering a stop-band in the frequency spectrum of
the TWPA by introducing periodic loading, implemented
via alternating the SNAILs inductance in the unit cells.
Placing the stop-band at twice the pump frequency al-
lows for suppressing the generation of the higher har-
monics of the pump, the signal and the idler. With a
small number of 440 SNAILs (147 supercells), the de-
vice shows a maximum gain of 20 dB, about 10 dB larger
than the maximum gain of the TWPA with no disper-
sion engineering, a 3-dB bandwidth of ≈ 1GHz between
4 and 8GHz, and an added noise below one photon. The

(a)

(b)

FIG. 6: Noise performance of the TWPA. (a) Noise tem-
perature (left axis) and the signal-to-noise ratio improvement
(right axis) of the system as a function of the TWPA gain.
fp = 8.0GHz, and the measurement is carried at 6.034GHz.
The fit is shown in solid red. When the TWPA is bypassed,
the noise temperature is 6.5K (not shown in the figure). (b)
The added noise photons of the TWPA, as a function of gain.
Inset shows modeling the TWPA as an ideal amplifier with
gain G, connected to a lossy element with damping D in
the front, used to make the fit in (a). At G = 0 dB, the
non-zero number of noise photons is due to damping D, as
A = (1 −D)/(2D).

width of the stop-band provides the flexibility of tuning
the pump frequency over a range of 1.4GHz, while the
maximum gain remains above 15 dB.
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