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Abstract

An AdS eternal black hole in equilibrium with a finite temperature bath presents a

Hawking-like information paradox due to a continuous exchange of radiation with the bath.

The non-perturbative gravitational effect, the replica wormhole, cures this paradox by in-

troducing a non-trivial entanglement wedge for the bath after Page time. In this paper, we

analyse the theory dependence of this non-perturbative effect by randomising the boundary

conditions of some of the bulk matter fields. We explicitly analyse this in JT gravity by

introducing a matter CFT in the AdS region with random boundary conditions at the AdS

boundary that are drawn from a distribution. Using the island formula and the extended

strong subadditivity due to Carlen and Lieb, we show that at late times the black hole inte-

rior is contained inside the entanglement wedge of a reference Hilbert space that encodes the

information about the random boundary conditions. Consequently, the reconstruction of the

black hole interior from the radiation, in particular the region near the singularity, requires a

detailed knowledge of the theory.
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1 Introduction

The resolution of Hawking information paradox [1] of an evaporating black hole in AdS

requires introducing a non-trivial entanglement wedge that contains the black hole interior

after the Page time for the Hawking radiation [2–5]. This appearance of a non-vanishing

entanglement wedge for Hawking radiation after the Page time is result of a non-perturbative

gravitational effect, the replica wormhole. Usually, non-perturbative effects are highly theory

dependent. The energy spectrum of a black hole [6, 7], the S-matrix of a black hole that

determines its formation, and evaporation of the black hole [8] are some of the examples of

such quantities. Since the ability of late Hawking radiation to reconstruct the black hole

interior is a non-perturbative effect, it is natural to suspect that the interior reconstruction

might depend on the details of the theory.

An AdS eternal black hole in equilibrium with a finite temperature bath also comes with

an information paradox very much like the Hawking information paradox. The paradox, the

unbound growth of bath entropy, is due to the continuous exchange of the Hawking radiation

and the radiation from the bath. The resolution of this paradox also requires introducing a

non-trivial entanglement wedge for the bath radiation after the Page time [4]. Compared to an

evaporating black hole, a black hole in equilibrium with a finite temperature bath is a more

convenient setup for studying the theory dependence of the reconstruction from radiation
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due to the absence of any backreaction. For an eternal AdS black hole with no matter

escaping the AdS boundary, it is already demonstrated in [9] that the bulk reconstruction

of the interior of the black hole is highly theory dependent at late times. They achieved

this by making the boundary conditions of the bulk matter fields random, and showing that

the reference Hilbert space that encodes the information about this randomness possesses a

non-trivial entanglement wedge that contains the black hole interior including the region near

the singularity.

In this paper, by following [9], we analyse the dependence of the interior reconstruction

using the bath radiation on the boundary conditions of the bulk matter fields. For this we

consider a JT gravity black hole in equilibrium with a non-gravitating bath at finite tempera-

ture and introduce a matter CFT coupled to gravity in the black hole region having reflecting

boundary conditions for the fields in it. We assume that that these boundary conditions are

drawn from a probability distribution. We denote the probability for the ith field to have a

boundary condition Ji as P (Ji)
1. Then the black hole density matrix defined using the Eu-

clidean path integral will depend on the boundary conditions J = {J1, · · · , Ji, · · · } of the bulk

CFT matter fields and the associated probability distribution P (J) = {P (J1), · · · , P (Ji), · · · }.
The purification of this density matrix requires the bath Hilbert space Hbath and also the in-

troduction of an environment, an auxiliary reference Hilbert space Hjournal, which is referred

as the ‘journal’ Hilbert space. The journal Hilbert space encodes the information about the

boundary conditions of the bulk CFT matter fields. Therefore the dependence of the black

hole interior reconstruction using the bath radiation on the the boundary conditions of the

matter fields can be characterised by determining the entanglement wedge of the journal [10].

The goal of this paper is the determination of the entanglement wedge of the journal for this

setup.

The physical significance of this problem was already discussed in [9] for an evaporating

black hole which has two additional systems other than the black hole, the Hawking radiation

and the journal. Our setup similarly has two additional systems other than the black hole,

the bath radiation and the journal. However, the absence of backreaction makes our setup

more convenient for analysing the same problem. After the black hole Page time the bath

radiation and the journal strive for the ownership of the interior of the black hole. The

winner is expected to be decided by the rate of the entropy growth of the two systems. As

it is computed in this paper, initially the entropy of bath radiation grows linearly and the

journal entropy grows logarithmically. Therefore, at first the bath radiation is expected to

capture the black hole interior. The non-triviality is in figuring out whether the ownership

of the interior is ever transferred to the journal. If the bath radiation retains the interior

forever, then it means that the interior reconstruction is insensitive to details of the bulk

theory, which suggests that the unknown details of the bulk theory can be determined by

making measurements on the bath radiation. If the ownership is transferred to the journal at

1In the SYK picture, J = {J1, · · · , Ji, · · · } would correspond to the random couplings that appear in the

SYK Hamiltonian.
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a late time, then it implies that interior reconstruction is theory dependent. The main result

of this paper is that the bath radiation transfers ownership of the black hole interior to the

journal at a later time.

Let us briefly delineate how we proceed. We determine the entanglement wedge of the

subsystems, black hole, bath and journal, by demanding that the entropies of these subsystems

satisfy all the constraints imposed by unitarity. There are two such constraints, first is that

the von Neumann entropy of any subsystem must be less than its thermal entropy and the

second is that the entropies of the subsystems must satisfy the extended strong subadditivity

(eSSA) due to Carlen and Lieb [11]. The first constraint demands that the von Neumann

entropy S(ρBH) of the eternal black hole density matrix ρBH must be less than 2S0
BH , where

S0
BH is the Bekenstein-Hawking entropy of the one side of the eternal black hole. Since black

hole has only a finite number of degrees of freedom, S0
BH is finite. This demands that the

entanglement entropy of the black hole must not be an ever-growing function of boundary

time. However, the black hole entropy obtained by the replica computation without including

any Euclidean wormhole contribution becomes more than 2S0
BH after the black hole Page time.

This violation of thermal entropy bound can be cured by removing the black hole interior

from the combined entanglement wedge of the boundary CFTs dual to the eternal black hole.

The resulting generalised entropy of the black hole after the Page time saturates the thermal

entropy bound 2S0
BH . On the contrary, the entropy S(ρbath) of the bath density matrix ρbath

and the entropy S(ρjournal) of the journal density matrix ρjournal can have unbounded growth

due to the infinite number of degrees of freedom they possess. Hence one naively expects that

the interior of the black hole after the Page time may be co-owned by the bath and the

journal.2 However, using the second constraint we argue below that this is not true.

If the state of the combined system of the black hole, the bath and the journal is pure,

then the eSSA after the black hole Page time states that

S(ρbath) + S(ρjournal)− 2S0
BH ≥ 2 max

{
S(ρjournal)− 2S0

BH , S(ρbath)− 2S0
BH , 0

}
. (1.1)

Using the replica trick we can compute S(ρbath) and S(ρjournal). In the absence of any non-

trivial islands, S(ρbath) and S(ρjournal) grow linearly and logarithmically respectively with

respect to the boundary time. Due to the larger growth of bath entropy, the eSSA takes the

following form right after the black hole Page time

S(ρbath)− S(ρjournal) ≤ 2S0
BH . (1.2)

This inequality can be satisfied only if the bath owns an island that contains the black hole

interior after black hole Page time. After including such an island, S(ρbath) becomes 2S0
BH .

However, at a later time the logarithmic growth of S(ρjournal) makes it larger than 2S0
BH . At

this stage the eSSA takes the following form

S(ρjournal)− S(ρbath) ≤ 2S0
BH . (1.3)

2By co-ownership, we mean that neither the bath nor the journal individually owns the interior, only the

combined system does.
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Clearly, this inequality is satisfied until S(ρjournal) becomes 4S0
BH . Subsequently, in order

to satisfy the eSSA, the bath must transfer the ownership of the black hole interior to the

journal. Introducing such a non-trivial entanglement wedge that contains the interior of the

black hole makes the rate of the entropy growth of the journal same as that of the bath

and saturates the eSSA, thus restoring unitarity. This implies that the reconstruction of the

black hole interior using the bath radiation at late times requires the complete description

of the theory which includes specifying the boundary conditions of all the fields at the AdS

boundary.

The paper is organised as follows. In section 2, we briefly describe the setup which is an

eternal AdS2 black hole in equilibrium with a finite temperature non-gravitating bath with

two kinds of matter, one having transparent boundary conditions along the boundary of the

gravitational region, and another having random reflecting boundary conditions drawn from

a distribution. In section 3, we determine the entanglement wedge of the random boundary

conditions to characterise the theory dependence of the black hole interior reconstruction

using the bath radiation. In section 4, we reiterate the result obtained and briefly touch upon

some of the future directions that deserve immediate attention.

2 The setup

Consider a black hole solution of JT gravity with inverse temperature β coupled to a bath

having the same temperature. We assume that gravity is absent in the bath. We introduce

two CFTs into this spacetime. They will be referred as CFT1 and CFT2. The CFT1 has

central charge c1 and CFT2 has central charge c2. The CFT2 is restricted to the gravitating

AdS2 region, while the CFT1 lives in the full spacetime, which is the AdS2 and the bath

region together. This is done by setting transparent boundary conditions for fields in CFT1

and reflecting boundary conditions for fields in CFT2. Both the CFTs are coupled to the

metric in the gravitational region. However, they are not coupled to the dilaton field. This

makes the black hole spacetime locally AdS2, even though gravity is dynamical in the black

hole region. We also assume that CFT1 and CFT2 do not directly interact with each other.

An additional feature of CFT2 is that the boundary conditions of the fields in this theory are

drawn from a distribution. In the dual holographic side this arises from “unknown couplings”

whose information is present in the aforementioned system called journal [9, 12, 13].

2.1 Black hole in equilibrium with a bath

The black hole solutions of JT gravity have been used widely [3, 9, 14–16] as a toy model for

studying black hole evaporation. For detailed reviews see [17–20]. The action for JT gravity

coupled to CFT1 is given by

S =
ϕ0

16πGN

[ˆ
M
d2x

√
−g R+ 2

ˆ
∂M

K

]
(2.1)

+
1

16πGN

[ˆ
M
d2x

√
−gϕ

(
R+

2

ℓ2AdS

)
+ 2

ˆ
∂M

ϕbK

]
+ ICFT1 [g]
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where R is the Ricci scalar of the spacetime M, K is the trace of the extrinsic curvature of

the boundary ∂M, ϕb is the boundary value of the dilaton field and ℓAdS is the AdS radius

which we will set to 1. Also, GN is the Newton’s constant and ϕ0 is a constant that sets the

extremal entropy to be ϕ0

4GN
. The specific manner in which ∂M is carved out of pure AdS2 is

responsible for breaking the reparametrization symmetry and it gives rise to non-trivial bulk

dynamics [21]. It is important to note that ICFT1 does not couple to dilaton ϕ. Consequently

the theory satisfies the constraint R = −2 and hence the geometry is locally same as that of

pure AdS2.

To describe the boundary, we use the Poincare patch, whose metric is

ds2 =
−dt2 + dz2

z2
=

−4dx+dx−

(x+ − x−)2
. (2.2)

where x± = t∓ z. The standard boundary conditions on the cut out are imposed to be

guu|bdy =
1

ϵ2
=

1

z2

(
−
(
dt

du

)2

+

(
dz

du

)2
)∣∣∣∣∣

bdy

ϕ|bdy = ϕb =
ϕr
ϵ
. (2.3)

Here u is the boundary time. In these coordinates, the boundary is given by t = f(u), z =

ϵf ′(u), where the gluing function f(u) is obtained from the energy balance equation as follows.

The ADM mass of the gravitating region is

M(u) = − ϕr
8πGN

{f(u), u}. (2.4)

Energy conservation requires that the change in above ADM mass equal the net flux of energy

across the boundary curve

dM(u)

du
= − d

du

(
ϕr

8πGN
{f(u), u}

)
= Ty+y+ − Ty−y− (2.5)

which, given the stress tensor profile, can be solved for f(u). Now vary the action with respect

to metric in the Poincare patch to obtain the equations for dilaton:

2∂x+∂x−ϕ+
4

(x+ − x−)2
ϕ = 16πGN ⟨Tx+x−⟩,

− 1

(x+ − x−)2
∂x+

(
(x+ − x−)2∂x+ϕ

)
= 8πGN ⟨Tx+x+⟩,

− 1

(x+ − x−)2
∂x−

(
(x+ − x−)2∂x−ϕ

)
= 8πGN ⟨Tx−x−⟩.

(2.6)

Solution to these equations, up to an SL(2, R) transformation, can be written as

ϕ(x+, x−) = −2πϕr
β

x+ + x−

x+ − x−
− 8πGN

x+ − x−

ˆ x−

0
dt(x+ − t)(x− − t)Tx−x−

+
8πGN

x+ − x−

ˆ x+

0
dt(x+ − t)(x− − t)Tx+x+ . (2.7)
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Then the dilaton takes form [16, 22]

ϕ(x+, x−) = −ϕr
(

2f ′(y+)

x+ − x−
− 2f ′′(y+)

f ′(y+)

)
. (2.8)

Now we describe how to make use of the above equations to couple the two sides of a

black hole solution in the AdS2 to the Minkowski bath having coordinates y± = f−1(y±) and

metric

ds2 = − 1

ϵ2
dy+dy−. (2.9)

We demand that the black hole is in equilibrium with the bath, there is no net flux and hence

∂u{f(u), u} = 0. (2.10)

A solution that corresponds to a temperature 1
β is given by

f(u) = e
2πu
β . (2.11)

Having solved for the gluing function, we can use it to extend the coordinates y± that were

earlier defined in the bath region to the gravity region as well via

x± = f(y±) = ± exp

(
±2π

β
y±
)
. (2.12)

Given the map (2.12), the Poincare metric in (2.2) becomes

ds2 = −
(
2π

β

)2 dy+dy−

sinh2 π
β (y

− − y+)
,

and the dilaton profile takes the form

ϕ =
2πϕr
β

1

tanh π
β (y

− − y+)
.

We will however be mostly working in Kruskal-Szekeres coordinates

w± = ±e±
2πy±

R
β = ±

(
x±R
)±1

for right side of the glued geometry

w± = ∓e∓
2πy±

L
β = ∓

(
x±L
)∓1

for left side of the glued geometry. (2.13)

In these coordinates, the black hole metric takes the form

ds2 =
4dw−dw+

(1 + w−w+)2
, (2.14)

and the dilaton profile becomes

ϕ(w+, w−) = ϕ0 +
2πϕr
β

1− w+w−

1 + w+w− . (2.15)

Therefore, the location of the singularity is given by w+w− = 1
θ , where θ =

2πϕr−βϕ0

2πϕr+βϕ0
. Further,

the future horizon of the black hole is at w− = 0 and past horizon is at w+ = 0. Finally, the

location of the physical boundary of the black hole geometry that is being glued to the bath

is given by w+w− = −e
2πϵ
β . See figure 1.
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w +
=
0w

− =
0

w
− =

−∞

w +
=
∞

w +
=
−∞

w
− =

∞
w+w− = 1

θ

w+w− = 1
θ

Figure 1. Eternal black hole in thermal equilibrium with a bath can be described using the w-plane.

The right and left Rindler wedge in the w-plane describes the right and left side of the black hole

coupled to non-gravitating bath having same temperature as that of the black hole.

2.2 Random boundary conditions and the journal

Let us introduce the second CFT, the CFT2, in the AdS2 region with reflecting boundary

conditions for the matter field along its boundary. Since there is no additional net flow across

the interface between bath and the AdS2 region due to CFT2, introduction of CFT2 does

not change the geometry of the spacetime. For computational tractability we have chosen

a CFT2 that does not interact with CFT1. Assume that the probability for the ith field

in CFT2 to have a boundary condition Ji is P (Ji). As mentioned in the introduction, the

information of the boundary conditions of CFT2 matter fields J = {J1, · · · , Ji, · · · } and the

associated probability distribution P (J) are encoded in the density matrix of the black hole.

This black hole density matrix cannot be purified only by the bath Hilbert space Hbath, it also

requires introducing an auxiliary reference Hilbert space HJ which is referred as the ‘journal’

Hilbert space. Let {|Ji⟩journal}, {|ψk, Ji⟩BH} and {|γk′⟩bath} be basis for Hjournal, HBH and

Hbath respectively. We choose {|Ji⟩journal} to be orthonormal. Then the purified state can

be expressed as

|Ψ⟩ =
∑
i

√
P (Ji)

∑
k,k′

Ak,k′ |ψk, Ji⟩BH |γk′⟩bath

 |Ji⟩journal. (2.16)

Each |Ji⟩journal corresponds to a choice of boundary condition for CFT2 at the physical

boundary of the eternal black hole spacetime.
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w +
=
0w

− =
0

w
− =

−∞

w +
=
∞

w +
=
−∞

w
− =

∞

w
− =

∞

Σu

BR
uBL

u

Figure 2. The equal time slice Σu in the glued spacetime intersects the right AdS boundary at BR
u

and the left AdS boundary at BL
u .

We take the CFT2 to be a free theory of c2 non-compact bosons X1, · · · , Xc2 with action

S =

c2∑
i=1

1

2π

ˆ
d2w∂Xi∂̄Xi. (2.17)

For this theory the boundary condition Ji corresponds to the boundary value of the boson

Xi at the AdS boundary. We also assume that the boundary conditions are drawn from a

Gaussian distribution having standard deviation 1/δ

P (J) =
δ√
2π
e−

δ2

2
J2
. (2.18)

It was shown in [9] that for an eternal black hole the boundary time evolution produces

entanglement growth between the black hole and the journal. This leads to an unbounded

logarithmic growth of the journal entropy, producing a unitarity paradox. This information

paradox was resolved by introducing an island for the journal which includes the interior of

the black hole.

3 The entanglement wedge of journal

In this section, we shall determine the entanglement wedge of the journal at late times, which

is the main goal of this paper.
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3.1 Black hole quantum extremal surfaces

Consider the setup described in section 2. The early time von Neumann entropy of the black

hole density matrix can be computed using the replica trick and is given by

SBH(u) = S1
BH(u) + S2

BH(u), (3.1)

where S1
BH(u) and S2

BH(u) are the CFT1 and CFT2 contributions to the black hole entropy.

The CFT1 contribution can be obtained from the twist operator correlation function as follows

S1
BH(u) = − lim

n→1

1

1− n
ln⟨σ1(BL

u )σ1(B
R
u )⟩. (3.2)

Here σ1 denotes the twist fields in the orbifold version of CFT1 having scaling dimension of

∆n = c1
12

(
n− 1

n

)
. The points BL

u and BR
u are points on the left and right boundary where

the equal time slice Σu corresponding to the boundary time u intersects the left and right

black hole boundaries, see figure 2. As u increases, it is assumed that the point BR
u moves

along the positive time direction of the right boundary and the point BL
u is moving along

the negative time direction of the left boundary. The correlation function ⟨σ1(BL
u )σ1(B

R
u )⟩

is evaluated on a complex plane with the w-coordinates described in the previous section

with metric ds2 = 4dw−dw+

(1+w−w+)2
. It can be evaluated by Weyl transforming it into a correlation

function on the w-plane with flat metric. The resulting correlation function is

⟨σ1(BL
u )⟩σ1(BR

u )⟩ =


(
1 + w−

BL
u
w+
BL

u

)(
1 + w−

BR
u
w+
BR

u

)
4
(
w+
BR

u
− w+

BL
u

)(
w+
BR

u
− w+

BL
u

)
∆n

. (3.3)

Substituting the w-coordinates (w+, w−) of the point BL
u and BR

u given by

(w+
BL

u
, w−

BL
u
) =

(
−e−

2π(u−ϵ)
β , e

2π(u+ϵ)
β

)
,

(w+
BR

u
, w−

BR
u
) =

(
e

2π(u−ϵ)
β ,−e

−2π(u+ϵ)
β

)
(3.4)

gives the CFT1 contribution to the black hole entropy as

S1
BH(u) =

c1
3
ln

(
β

πϵ
cosh

(
2πu

β

))
. (3.5)

The CFT2 contribution to the black hole entropy is obtained from the correlation function of

the boundary condition changing operators averaged over the distribution P (J) as follows

S2
BH(u) = − lim

n→1

1

1− n
ln

ˆ
J1,··· ,Jn

c2,n∏
i=1,k=1

dJk
i P (J

k
i )⟨OJ(B

L
u )OJ(B

R
u )⟩

 . (3.6)

The operator OJ denotes the boundary condition changing operator that changes the bound-

ary conditions of the CFT2 fields. It changes the boundary conditions of the fields {X1, · · · , Xc2}
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from Jk = {Jk
1 , · · · , Jk

c2} to Jk+1 = {Jk+1
1 , · · · , Jk+1

c2 } as we go from the k-th sheet to the

(k+1)-th sheet of the replica manifold for k = 1, · · · , n. The scaling dimension of OJ is given

by

∆J =

c2,n∑
i=1,k

(
Jk+1
i − Jk

i

2π

)2

. (3.7)

The cut out of AdS2 region is a region in the disk with w-coordinates. The CFT2 correlation

function ⟨OJ(B
L
u )OJ(B

R
u )⟩ is calculated on the w-disk and can be obtained with the help of

the doubling trick. Finally, the integration over the boundary conditions J can be performed

by using the concept of circularly invariant matrices. For details about circulant matrices see

appendix A. The detailed integration is described in appendix B. The final result is given by

S2
BH(u) ≈ c2

2
ln

(
u

βδ2

)
. (3.8)

Therefore, the black hole entropy at late times has unbounded growth as given below

S1
BH(u) ≈ 2πc1

3β
u+

c2
2
ln

(
u

βδ2

)
. (3.9)

Clearly, such a growth will lead us to information paradox at late times. The resolution of this

information paradox requires determining the quantum extremal surface (QES) associated

with the black hole. This is done by minimising the generalised entropy of the black hole

after removing an interval AL
uA

R
u from the restriction of the equal time slice Σu to the AdS2

region. The generalised entropy of the black hole for the interval BL
uA

L
u ∪BR

u A
R
u is given by

Sgen
BH(u) =

ϕ
(
AL

u

)
+ ϕ

(
AR

u

)
4GN

+ Sgen,1
BH (u) + Sgen,2

BH (u), (3.10)

where the first term is the area term. The area term is equal to the sum of the value of

dilaton field given in (2.15) at points AL
u and AR

u . S
gen,1
BH (u) and Sgen,2

BH (u) denote the CFT1

and CFT2 contributions to the generalised black hole entropy. The CFT1 contribution is

Sgen,1
BH (u) = − lim

n→1

1

1− n
ln⟨σ1

(
BL

u

)
σ1
(
AL

u

)
σ1
(
AR

u

)
σ1
(
BR

u

)
⟩

≈ − lim
n→1

1

1− n
ln⟨σ1

(
BL

u

)
σ1
(
AL

u

)
⟩⟨σ1

(
AR

u

)
σ1
(
BR

u

)
⟩

≈ c1
6
ln

( β

πϵ

)2

(
e
− 2πu

β + w+
AL

u

)(
e

2πu
β − w−

AL
u

)
(
1 + w−

AL
u
w+
AL

u

)


(
e
− 2πu

β + w−
AR

u

)(
e

2πu
β − w+

AR
u

)
(
1 + w−

AR
u
w+
AR

u

)
 .

(3.11)

In the second step we made the approximation by assuming that the points AL
u and AR

u are

well separated.
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The CFT2 contribution is given by

Sgen,2
BH (u) = − lim

n→1

1

1− n
ln

ˆ
J1,··· ,Jn

c2,n∏
i=1,k=1

dJk
i P (J

k
i )⟨OJ

(
BL

u

)
σ2
(
AL

u

)
σ2
(
AR

u

)
OJ
(
BR

u

)
⟩

≈ − lim
n→1

1

1− n
ln

ˆ
J1,··· ,Jn

c2,n∏
i=1,k=1

dJk
i P (J

k
i )⟨OJ

(
BL

u

)
σ2
(
AL

u

)
⟩⟨σ2

(
AR

u

)
OJ
(
BR

u

)
⟩,

(3.12)

where σ2 denotes the CFT2 twist operators. The correlators ⟨OJ
(
BL

u

)
σ2
(
AL

u

)
⟩ and ⟨σ2

(
AR

u

)
OJ
(
BR

u

)
⟩

are evaluated on the w-plane where CFT2 is defined. Since in the Euclidean version this re-

gion is a cutout of disk, these correlators can be calculated by using the doubling trick. The

correlator
〈
OJ

(
w+
BL

u
, w−

BL
u

)
σ2

(
w+
AL

u
, w−

AL
u

)〉
evaluated on the Euclidean AdS2 is given by

〈
OJ

(
w+
BL

u
, w−

BL
u

)
σ2

(
w+
AL

u
, w−

AL
u

)〉
= Gn (J)

(πϵ
β

) (
1 + w−

AL
u
w+
AL

u

)
(
1− e

− 2πu
β w−

AL
u

)(
1 + e

2πu
β w+

AL
u

)
∆J

.

(3.13)

The coefficient Gn (J) is related to the n-point function of boundary condition changing

operators kept on a disk

Gn (J) =
c2∏

k ̸=l,i=1

∣∣∣e 2πi(k−1)
n − e

2πi(l−1)
n

∣∣∣µi
kl
, (3.14)

where µikl =
(Jk+1

i −Jk
i )(J

l+1
i −J l

i)
2π2 . After performing the averaging over the Gaussian distribu-

tion again by using the integration method based on circulant matrix we obtain the generalised

bath entropy as follows

Sgen,2
BH (u) ≈ c2

2
ln

ln

( β

πϵ

)2

(
1− e

− 2πu
β w−

AL
u

)(
1 + e

2πu
β w+

AL
u

)(
1 + e

2πu
β w−

AR
u

)(
1− e

− 2πu
β w+

AR
u

)
(
1 + w−

AL
u
w+
AL

u

)(
1 + w−

AR
u
w+
AR

u

)
 .

(3.15)

For more details about this computation, see appendix B. Extremising the generalised bath

entropy with respect to w+
AL

u
and w−

AL
u
gives the following QES equations

− πϕr
GNβ

w−
AL

u(
1 + w+

AL
u
w−
AL

u

)2 +

c1
6

+
c2

2 ln
(

β
πϵ

)
 1

e
− 2πu

β + w+
AL

u

−
w−
AL

u(
1 + w+

AL
u
w−
AL

u

)
 = 0

− πϕr
GNβ

w+
AL

u(
1 + w+

AL
u
w−
AL

u

)2 −

c1
6

+
c2

2 ln
(

β
πϵ

)
 1

e
2πu
β − w−

AL
u

+
w+
AL

u(
1 + w+

AL
u
w−
AL

u

)
 = 0.

(3.16)
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There exists a solution for this coupled equations at late times near the left future horizon of

the black hole where w+
AL

u
w−
AL

u
≈ 0 . The solution is given by

w±
AL

u
= ∓GNβ

6πϕr

c1 + 3c2

ln
(

β
πϵ

)
 e

∓ 2πu
β . (3.17)

By repeating the same analysis we can find the QES in the right side of the black hole. It is

given by

w±
AR

u
= ±GNβ

6πϕr

c1 + 3c2

ln
(

β
πϵ

)
 e

± 2πu
β . (3.18)

Substituting the QES solutions back to the generalised black hole entropy expression shows

that at late time the black hole entropy becomes a constant equal to twice the area of black

hole horizon. Therefore, this QES after Page time uPage, tame the non-unitary growth of the

black hole entropy.

3.2 Entanglement wedge of bath and the extended strong subadditivity

The QES computation in the previous subsection suggests that after Page time uPage ≈
3S0

BHβ
πc1

, where S0
BH is area of the bifurcation horizon of the black hole, the combined system

of the bath and the journal possesses a non-trivial entanglement wedge that contains the

interior of the black hole. The entanglement wedge of the journal at late time must belong

to the entanglement wedge of the combined system. Hence, we should search for a journal

island satisfying the constraints of the extended strong subadditivity [11] inside the interval

bounded by the black hole quantum extremal surfaces. The eSSA is an inequality satisfied by

the von Neumann entropies of three subsystems of a larger quantum system which we explain

below.

Consider a quantum system having Hilbert space H formed by taking the tensor product

of the Hilbert spaces of three subsystems H1,H2 and H3, i.e. H = H1⊗H2⊗H3. We denote

the state of the larger quantum system by ρ123, the state of the combined system having

Hilbert space Hij = Hi ⊗Hj by ρij , and the state of the ith subsystem having Hilbert space

Hi by ρi. Then the eSSA inequality states that

S
(
ρ12
)
+S

(
ρ23
)
−S

(
ρ123

)
−S

(
ρ2
)
≥ 2 max

{
S
(
ρ1
)
− S

(
ρ13
)
, S
(
ρ3
)
− S

(
ρ13
)
, 0
}
; (3.19)

for the usual strong subadditivity inequality the right hand side is simply zero.

Now we make use of the above inequality as follows. Take subsystem 1 to be the journal,

subsystem 2 to be the black hole and the subsystem 3 to be the bath. Then the eSSA satisfied

by the entropies of the subsystems after Page time reads as follows

Sbath(u) + Sjournal(u)− 2S0
BH ≥ 2 max

{
Sjournal(u)− 2S0

BH , Sbath(u)− 2S0
BH , 0

}
. (3.20)
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Using the replica method the entropies of bath and journal can be calculated. The bath

entropy at large times is given by

Sbath(u) = − lim
n→1

1

1− n
ln⟨σ1(BL

u )σ1(B
R
u )⟩ ≈

2πc1
3β

u, (3.21)

and the journal entropy is given by

Sjournal(u) = − lim
n→1

1

1− n
ln

ˆ
J1,··· ,Jn

c2,n∏
i=1,k=1

dJk
i P (J

k
i )⟨OJ(B

L
u )OJ(B

R
u )⟩

 ≈ c2
2
ln

(
u

βδ2

)
.

(3.22)

After Page time, since the bath entropy is significantly greater than the entropy of the journal,

the eSSA takes the following form

Sbath(u)− Sjournal(u) ≤ 2S0
BH . (3.23)

It is clear from these expressions that the entropy of the bath and the journal violates the

eSSA (3.23) after time u = uB > uPage, where uB is the time at which the difference

in Sbath(u) and Sjournal(u) becomes 2S0
BH . The root cause of this violation is the linear

growth of entanglement entropy of the bath while the journal only has logarithmic growth

of entanglement entropy. Therefore, this violation of eSSA can be described as the bath

information paradox.

An island for bath that is inside the interval enclosed by the quantum extremal surfaces

of black hole might resolve this paradox. With this hope, let us search for a bath island by

minimising the generalised entropy of bath associated with an arbitrary interval at CL
uC

R
u

with respect to the points CL
u and CR

u . The generalised entropy of the bath is given by

Sgen
bath =

ϕ
(
CL
u

)
+ ϕ

(
CR
u

)
4GN

+ Sgen,1
bath (u) + Sgen,2

bath (u), (3.24)

where Sgen,1
bath (u) is the CFT1 contribution to the bath generalised entropy

Sgen,1
bath (u) = − lim

n→1

1

1− n
ln⟨σ1(BL

u )σ1(C
L
u )σ1(C

R
u )σ1(B

R
u )⟩

≈ − lim
n→1

1

1− n
ln⟨σ1(BL

u )σ1(C
L
u )⟩⟨σ1(CR

u )σ1(B
R
u )⟩

≈ c1
6
ln

( β

πϵ

)2

(
e
− 2πu

β + w+
CL

u

)(
e

2πu
β − w−

CL
u

)
(
1 + w−

CL
u
w+
CL

u

)


(
e
− 2πu

β + w−
CR

u

)(
e

2πu
β − w+

CR
u

)
(
1 + w−

CR
u
w+
CR

u

)
 ,

(3.25)

and Sgen,2
bath (u) is the CFT2 contribution to the bath generalised entropy

Sgen,2
bath (u) = − lim

n→1

1

1− n
ln

ˆ
J1,··· ,Jn

c2,n∏
i=1,k=1

dJk
i P (J

k
i )⟨σ2(CL

u )σ2(C
R
u )⟩

≈ − lim
n→1

1

1− n
ln

ˆ
J1,··· ,Jn

c2,n∏
i=1,k=1

dJk
i P (J

k
i )⟨σ2(CL

u )⟩⟨σ2(CR
u )⟩ ≈ 0. (3.26)
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Here we used the fact that any one point function of a primary field in AdS2 disk is identity.

The solution for the associated coupled QES equations at late time is given by

w±
CL

u
= ∓GNβ

6πϕr
c1e

∓ 2πu
β , w±

CR
u
= ±GNβ

6πϕr
c1e

± 2πu
β . (3.27)

Substituting the QES solutions back into the expression for the generalised bath entropy

(3.24) gives a constant equal to twice the area of black hole horizon, i.e.

Sgen
bath(u) = 2S0

BH , u > uB. (3.28)

We must check whether the island with boundaries that matches with the above quantum

extremal surfaces resolves the bath information paradox that appeared soon after black hole

Page time uPage. The eSSA inequality (3.23) is satisfied after the black hole Page time if we

replace with Sbath(u) with S
gen
bath(u), as long as Sjournal(u) ≤ Sgen

bath(u) ∼ 2S0
BH . Until u = uI

at which Sjournal(uI) = 2S0
BH , the eSSA reduces to the demand that Sjournal(u) ≥ 0. Thus,

the inclusion of the bath island enables all the three subsystems to satisfy the eSSA inequality

(3.23) at least till u = uI .

3.3 Transfer of the ownership of the black hole interior from bath to journal

After time u = uI , while the bath owns a non-trivial island that contains the black hole

interior, the eSSA (3.20) is given by

Sjournal(u)− Sgen
bath(u) ≤ 2S0

BH , u > uI . (3.29)

It is straightforward to see that this inequality will be violated after time u = uJ , at which

Sjournal(uJ) = 4S0
BH . At late times, for u > uJ , this leads to another unitarity violation or

information paradox. In order to resolve this paradox, we shall search for an island for the

journal by minimising the generalised entropy of journal associated with an arbitrary interval

at DL
uD

R
u . The generalised entropy of the journal associated with this interval is given by

Sgen
bath =

ϕ
(
DL

u

)
+ ϕ

(
DR

u

)
4GN

+ Sgen,1
journal(u) + Sgen,2

journal(u). (3.30)

Here Sgen,1
journal(u) is the CFT1 contribution to the bath generalised entropy

Sgen,1
journal(u) = − lim

n→1

1

1− n
ln⟨σ1(DL

u )σ1(D
R
u )⟩ ≈

c1
6
ln


(
w+
DR

u
− w+

DL
u

)(
w−
DR

u
− w−

DL
u

)
(
1 + w−

DL
u
w+
DL

u

)(
1 + w−

DR
u
w+
DR

u

)


(3.31)
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and Sgen,2
journal(u) is the CFT2 contribution to the bath generalised entropy.

Sgen,2
journal(u) = − lim

n→1

1

1− n
ln

ˆ
J1,···Jn

c2,n∏
i=1,k=1

dJk
i P (J

k
i )⟨OJ(B

L
u )σ2(D

L
u )σ2(D

R
u )OJ(B

R
u )⟩

≈ − lim
n→1

1

1− n
ln

ˆ
J1,···Jn

c2,n∏
i=1,k=1

dJk
i P (J

k
i )⟨OJ(B

L
u )σ2(D

L
u )⟩⟨σ2(DR

u )OJ(B
R
u )⟩

≈ c2
2
ln

ln

( β

πϵ

)2

(
1− e

− 2πu
β w−

DL
u

)(
1 + e

2πu
β w+

DL
u

)(
1 + e

2πu
β w−

DR
u

)(
1− e

− 2πu
β w+

DR
u

)
(
1 + w−

DL
u
w+
DL

u

)(
1 + w−

DR
u
w+
DR

u

)
 .

(3.32)

The generalised entropy minimisation with respect to w+
DL

u
and w−

DL
u
gives the following

equations

− πϕr
GNβ

w−
DL

u(
1 + w+

DL
u
w−
DL

u

)2 +
c2

2 ln
(

β
2πϵ

)
 1

e
−πu

β + w+
DL

u

−
w−
DL

u(
1 + w+

DL
u
w−
DL

u

)
 = 0

− πϕr
GNβ

w+
DL

u(
1 + w+

DL
u
w−
DL

u

)2 − c2

2 ln
(

β
2πϵ

)
 1

e
πu
β − w−

DL
u

+
w+
DL

u(
1 + w+

DL
u
w−
DL

u

)
 = 0. (3.33)

The solution near horizon at late time is given by

w±
DL

u
= ∓ GNβc2

2πϕrln
(

β
2πϵ

)e∓ 2πu
β (3.34)

w±
DR

u
= ± GNβc2

2πϕrln
(

β
2πϵ

)e± 2πu
β .

Substituting this back to the expression (3.30) gives the generalised entropy of the subsystem

journal as follows

Sgen
journal(u) = 2S0

BH +
c1
3
ln

[
β

πϵ
cosh

(
2πu

β

)]
= 2S0

BH + Sbath(u). (3.35)

Let us allow the journal to own the island that contains the black hole interior instead of the

bath after time u = uJ . Then the eSSA relation for u > uJ is given by

Sgen
journal(u)− Sbath(u) ≤ 2S0

BH , u > uJ . (3.36)

Using (3.35) we can verify that this eSSA relation gets saturated after time u = uJ . Therefore,

transferring the ownership of the black hole interior after time u = uJ from the bath to the

journal restores unitarity. Consequently, the reconstruction of the black hole interior from

radiation at late times requires complete knowledge of the theory.
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4 Conclusion

We analysed the theory dependence of the interior reconstruction of an AdS2 eternal black

hole in equilibrium with a finite temperature bath by introducing a CFT with matter fields

having random reflecting boundary conditions along the AdS2 boundaries. By using the is-

land formula and the extended strong subadditivity due to Carlen and Lieb, we have shown

that at late times the reference Hilbert space that encodes the information about the ran-

dom boundary conditions owns an entanglement wedge that contains the black hole interior

including the region near singularity. This implies that the reconstruction of the region near

singularity of a black hole from radiation requires exquisite knowledge of the theory.

One interesting point to note is that the combined system of black hole, bath and the

journal before Page time was in a state that saturated the extended strong subadditivity [23].

Interestingly the state of the combined system that satisfies all the unitarity requirements at

late time saturates the extended strong subadditivity. It would be interesting to study the

significance of this observation. As already pointed out in [9], extending this analysis to an

evaporating black hole can teach us about the theory dependence of the black hole interior

reconstruction from Hawking radiation.
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A Circulant matrices

A circulant matrix A is a square matrix with the property that all its rows are made up of the

same elements and each row is undergoing a cyclic shift of one element to the right relative

to the preceding row

A =



a0 a1 a2 · · · an−1

an−1 a0 a1 · · ·
...

an−1 a0 a1
. . .

...
. . .

. . .
. . . a2
a1

a1 · · · an−1 a0


. (A.1)

An interesting feature of a circularly invariant matrix is that for arbitrary values of n its

eigenvalues can be obtained [24] and are given by

λp =
n−1∑
k=1

ake
− 2πipk

n p = 0, · · · , n− 1. (A.2)
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Therefore, the determinant of the circulant matrix A is given by

det(A) =
n−1∏
r=0

(
n−1∑
k=1

ake
− 2πirk

n

)
. (A.3)

B Averaging over the distribution

In this appendix, we shall perform the averaging over a Gaussian distribution of the correlation

function ˆ
J1,···Jn

c2,n∏
i=1,k=1

dJk
i P (J

k
i )⟨OJ

(
BL

u

)
σ2
(
AL

u

)
⟩⟨σ2

(
AR

u

)
OJ
(
BR

u

)
⟩.

The Gaussian distribution for the random boundary conditions is given by

P
(
Jk
i

)
=

δ√
2π
e−

δ2

2
(Jk

i )
2
.

After substituting the expressions for the correlation functions, we get that

ˆ
J1,···Jn

c2,n∏
i=1,k=1

dJk
i P (J

k
i )⟨OJ

(
BL

u

)
σ2
(
AL

u

)
⟩⟨σ2

(
AR

u

)
OJ
(
BR

u

)
⟩

=
mnc2

(2π)nc2

c2∏
i=1

(ˆ
J1
i ,···Jn

i

dJ1
i · · · dJn

i e
−

∑
p,q ApqJk

p J
k
q

)
. (B.1)

The elements Apq of the n× n square matrix A can be expressed as

Apq =

(
m2

2
− 2Q

)
δp,q−2epq (1− δp,q)+ep(q−1)

(
1− δp,(q−1)

)
+ep(q+1)

(
1− δp,(q+1)

)
+2Qδp,(q−1),

(B.2)

where epq is given by

epq =
1

2π2
ln

(
4 sin2

(
π(p− q)

n

))
,

and Q is given by

Q =
1

4π2
ln

(πϵ
β

)2

(
1 + w−

AL
u
w+
AL

u

)(
1 + w−

AR
u
w+
AR

u

)
(
1− e

− 2πu
β w−

AL
u

)(
1 + e

2πu
β w+

AL
u

)(
1− e

− 2πu
β w−

AuR

)(
1 + e

2πu
β w+

AR
u

)
 .

The matrix elements Apq have the following shift symmetry

Apq = A({p+m})({q+m}). (B.3)

Here, the curly bracket {} in the subscript indicates that {p+m} is p+m for p+m ≤ n and

n − p −m otherwise. This assures that A is a circulant matrix. Therefore, the determinant

of the matrix A is given by

det(A) =

n−1∏
r=0

(
n−1∑
k=1

A1ke
− 2πirk

n

)
. (B.4)
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Using Gauss’s digamma theorem it is possible to verify that for ln(det(A)), the limits n→ 1

and Q→ ∞ commutes. Gauss’s digamma theorem is the following identity

n−1∑
m=1

e−
2πimp

n ln
(
4 sin2

(mπ
n

))
= 2 ln n+ 2γ + 2ψ

( p
n

)
+ π cot

(πp
n

)
p = 1, · · · , n− 1.

(B.5)

where ψ is the digamma function ψ(x) = d
dx ln Γ(x) and γ is the Euler’s constant. Since at

late times Q is very large we can approximate the logarithm of the determinant of A at late

times as

ln (det (A)) ∼ n ln

(
δ2

2

)
− (n− 1)Q+

4 ((n− 1)γ + n ln n)

Qπ2δ2
. (B.6)

The third term is the leading contribution from Gn (J). This implies that for large values

of Q, contribution from Gn (J) to the integral is negligible and hence can be safely ignored

while we perform the integration that does the averaging over the distribution.
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