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Abstract. Three years (2006-2008) of ground-based obser-
vations of the Aerosol Optical Depth (AOD) in the urban
environment of Athens, in the Eastern Mediterranean, are
analysed in this work. Measurements were acquired with a
Multi-Filter Rotating Shadowband Radiometer at five wave-
lengths. The daily average AOD at 500nm is 0.23, and
the mean Angstrém coefficient calculated between 415 and
867 nm is 1.41. The annual variability of AOD has a spring
maximum dominated by coarse dust particles from the Sa-
hara (AOD 0.34-0.42), while the diurnal pattern is typical
for urban sites, with AOD steadily increasing throughout the
day. The greatest contribution to the annually averaged AOD,
accounting for almost 40%, comes from regional and local
sources (namely the Istanbul metropolitan area, the extended
areas of biomass burning around the north coast of the Black
Sea, power plants spread throughout the Balkans and the in-
dustrial area in the Po valley, with average daily AOD in the
range of 0.25-0.35). An additional important contribution
(23%) is dust from Africa, whereas the rest of Europe con-
tributes another 22%. The geographical distribution of the
above sources in conjunction with the prevailing synoptic sit-
uation and contribution of local sources, lead to mixed types
of aerosols over Athens, with highly variable contribution
of fine and coarse particles to AOD in the range 10%-90%.
This is the first long-term, ground based data set available for
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Athens, and it has also been used for the validation of satel-
lite derived AOD by MODIS, showing good agreement on an
annual basis, but with an overestimation of satellite AODs in
the warm period.

1 Introduction

Aerosols have long been identified as and included among
the major controllers of the Earth’s climate (e.g. IPCC,
2001). Despite progress achieved during the last decades in
understanding the effects of aerosols on climate, their large
spatial-temporal variability and heterogeneity still causes
significant uncertainties at global scales (IPCC, 2007). At
regional scales, aerosols can affect the climate via radiation
forcing and interaction with cloud but also degrade air qual-
ity, visibility and public health.

A region receiving much interest with regard to the ef-
fects of aerosol is the Mediterranean Basin, especially its
eastern part. The particularly high content of atmospheric
aerosols in the area, on the order of 2 to 10 times higher than
over the least polluted environments at northern latitudes
(Lelieveld et al., 2002), has been demonstrated by a number
of ground based studies (e.g. Formenti et al., 2001; Andreae
et al., 2002; Gerasopoulos et al., 2003; Fotiadi et al., 2006;
Kazadzis et al., 2007) and satellite based studies (e.g. Barn-
aba and Gobbi, 2004; Papadimas et al., 2008; Hatzianas-
tassiou et al., 2009; Karnieli et al., 2009; Koukouli et al.,
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2010). Other studies focus on particular aerosol types such
as Saharan dust (e.g. Israelevich et al., 2002; El-Askary et al.,
2003; Kubilay et al., 2003; Papayannis et al., 2005; Kalivi-
tis et al.,, 2007; Prasad et al., 2010;), vegetation (e.g. Li-
akakou et al., 2009), sea spray (e.g. Kouvarakis et al., 2002),
biomass burning (e.g. Balis et al., 2003; Sciare et al., 2008),
anthropogenic sulphate (e.g. Sciare et al., 2005) and their ef-
fects on radiation (Balis et al., 2004; El-Askary et al., 2008,
2009). High aerosol columnar contents are usually linked
to elevated surface levels of particulate matter (e.g. Gera-
sopoulos et al., 2006, 2007; Koulouri et al., 2008; Querol
et al., 2009), that in turn can induce health problems via en-
hanced inhalation doses (e.g. Griffin et al., 2007; Mitsakou
et al., 2008), or to transported particles in elevated layers
(e.g. Kalivitis et al., 2007).

Apart from the crucial geographical location of the area
as a crossroads of long range transported aerosols from dif-
ferent sources, significant local sources also exist, such as
power plants, and urban and industrial agglomerations. The
increasing urbanization in the area has led to rapid growth of
cities, from populations of 3—-5 million (e.g. Athens, Izmir)
to the level of “megacities” (>10 million in population) such
as Istanbul and Cairo. The role of these “megacities”, both
as receptors and sources, is indisputably recognised and the
evaluation of their role on aerosol load and climatic relevant
properties of the Eastern Mediterranean atmosphere is urged
(Kanakidou et al., 2010).

Even though significant campaigns focusing on the chem-
ical and meteorological evolution of pollution over Athens
have taken place (e.g. the MEDCAPHOT-TRACE campaign,
Ziomas, 1998), only few ground based measurements of
aerosol columnar loads are available for Athens, and these
are mainly confined to shorter period campaigns (e.g. Jaco-
vides et al., 2005; Giavis et al., 2005), or specific aerosol
types (e.g. Gerasopoulos et al., 2009; Amiridis et al., 2009).
On the other hand, satellite observations have been used to
infer aerosol properties over the long term (e.g. Kaskaoutis et
al., 2007), but the temporal resolution (one overpass per day)
is not adequate to capture the intra-diurnal variation. More-
over, satellite observations need to be validated by ground
based measurements.

This study presents three years (2006-2008) of measure-
ments of aerosol optical depth over Athens, Greece, the third
most significant, by means of population, urban centre in the
Eastern Mediterranean Basin. It is the longest ground based
time series available for Athens and it is used for the investi-
gation of the main characteristics of columnar aerosol loads
over an urban environment, located in an area of already
high regional aerosol background. In Sect. 3.1, aerosol levels
and their seasonal variation are presented and compared with
similar observations existing for the extended area, while in
Sect. 3.2 we provide the diurnal cycle of aerosol optical char-
acteristics. In Sect. 3.3, we utilize cluster analysis in an at-
tempt to identify the major source regions of particles and
typical paths for their transport towards the Eastern Mediter-
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ranean. In Sect. 3.4, we compare our ground based observa-
tions with respective satellite products (MODIS) and finally
in Sect. 3.5, we apply a graphical method to infer additional
aerosol properties such as the contribution of fine and coarse
particles to optical depth.

2 Experimental
2.1 Site

The measurements were conducted on the roof of the
Biomedical Research Foundation of the Academy of Athens
(37.99° N, 23.78°E) at approximately 190 ma.s.l. (Zerefos
and Eleftheratos, 2007). The campus is located in a green
area at a distance of about 4 km from the centre of Athens.
To the east of the station is Mount Hymettus at a distance of
about 1 km, and to the north and northeast of the station the
big mountains of the county of Attica, Parnes and Penteli,
are located, at distances of about 15 and 20 km, respectively.
Finally, to the south, the Saronic Gulf is found at a distance
of about 10 km.

2.2 Instrumentation

In this study, we have used measurements of the total and
diffuse solar irradiance, made using a Multi-Filter Rotating
Shadowband Radiometer (MFR-7 Yankee Env. System Inc.,
Turner Falls, MA), to calculate the direct component of the
irradiance. A detailed description of the operation principles
of the instrument can be found in Harrison et al. (1994). The
MFR provides 1-min average measurements at five wave-
lengths (415, 500, 615, 675 and 867nm) and from these
the Aerosol Optical Depth (AOD) is extracted. The instru-
ment makes valid measurements during daytime and clear
sky conditions. Regular calibration checks (autocalibration
with estimates of the solar constant, /) and instrument main-
tenance were performed during the period of operation. For
a short period, the instrument operated in parallel with the
AERONET station “Athens-NOA” CIMEL sunphotometer
showing very good agreement (not shown).

2.3 Methodology
2.3.1 AOD retrievals

The methodology followed for the extraction of the AOD
values from direct solar irradiance is thoroughly described
in Gerasopoulos et al. (2003). In brief, the Langley linear
regression technique (Harrison and Michalsky, 1994) is ap-
plied to the direct solar irradiance data, to estimate the so-
lar constant, Iy, using the criteria for clear-sky days, and the
exclusion of highly loaded days, and days with high vari-
ation. The Beer-Lambert-Bouguer law (I = Ip-e~ ") is
then applied to derive instantaneous measurements of the to-
tal optical depth (7), where m is the optical mass (airmass).
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Aerosol Optical Depths (AODs) for the five wavelengths are
obtained by subtracting the contribution of Rayleigh scatter-
ing and ozone absorption from the t. For the ozone absorp-
tion correction, columnar ozone values were taken from the
North Hemisphere Ozone Mapping Centre of WMO (http:
/Nap.physics.auth.gr/ozonemaps2/). For the discrimination
between signals from clouds and abrupt changes in aerosol
loadings, e.g. dust outbreaks, we utilized maps of cloudi-
ness and dust transport from the Barcelona Super Com-
puting Center-DREAM Atmospheric Dust Forecast System
(http://www.bsc.es/projects/earthscience/) and MODIS (http:
/Imodis-atmos.gsfc.nasa.gov/IMAGES/index.html), respec-
tively. From the initial 1-min resolution data, half-hour and
daily averages are calculated and used in the analyses that
follow.

The most important uncertainties associated with the AOD
retrieval from the MFR are the estimation of Iy, the to-
tal ozone correction at ozone absorbing wavelengths and
the presence of thin clouds, the latter being hard to quan-
tify. The standard deviation of Iy calculated during clear-
sky, clean days during the period of interest, ranged between
2.5% and 7%, with higher values for shorter wavelengths.
This translates into an uncertainty of 0.02-0.06 for AOD at
500 nm, for an optical air mass in the range 3 to 1, respec-
tively. Regarding ozone correction, given an uncertainty of
about 3% to derive vertical columns of ozone from satellites
(e.g. Ladstitter-Weissenmayer et al., 2007), then an uncer-
tainty of 0.001-0.0015 for AOD (at maximum ozone absorp-
tion wavelengths) is calculated, which is one order lower than
the uncertainty from .

2.3.2 MODIS retrievals

MODIS sensors located on the Terra and Aqua satellite plat-
forms offer a broad range of information covering land,
oceanic, and atmospheric conditions (Kaufman et al., 1998;
Masuoka et al., 1998). The MODIS Terra and Aqua have
provided aerosol-related parameters for the entire globe
since 2000 and 2002, respectively. In this study we have
used data for the period 2006-2008 from MODIS Terra.
The MODIS Terra derived AOD over land product (Daily
level 2 aerosol products, i.e. MOD04 from Collection 5)
at 10km spatial resolution was acquired from the NASA
Earth Observing System (EOS) Clearinghouse (ECHO). The
expected errors in MODIS derived AODs over land are
+(0.05+0.15 x AOD) (Remer et al., 2005, 2008) and their
description and validation are discussed by Engel-Cox et
al. (2004) and Chu et al. (2002), respectively. Further details
of the development of the aerosol retrieval algorithm over
land are discussed by Remer et al. (2006).
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2.3.3 Cluster analysis

In this study, a clustering algorithm for atmospheric trajec-
tories, modified from the one recommended by Dorling et
al. (1992) was used. This specific algorithm provides the
optimum number of clusters, as follows:

First, a set of synthetical seed trajectories is generated.
Then each real trajectory is assigned to one seed, by mini-
mizing the 2-D Euclidian distance, considering only the lon-
gitude and latitude data of the trajectories. Then an aver-
age trajectory of each group is calculated, the so-called cen-
troid. Trajectories are reassigned and their distances from
the calculated centroids are checked again. Then centroids
are recalculated, and this step is reiterated until all trajec-
tories are correctly assigned. The Root Mean Square De-
viation (RMSD) of each trajectory from its centroid is cal-
culated. The algorithm reduces the number of clusters by
merging those for which the centroids are closest, and the
previous steps are repeated. Each cluster merging leads to
a weak increase in the total RMSD. However, when signifi-
cantly different clusters are merged, then a steep increase in
the total RMSD is observed, and this is the criterion of the
cluster number optimization. The whole process is repeated
with slightly different seed trajectories.

For the application of the cluster analysis, we utilized air
mass trajectory information from the HYSPLIT model (Hy-
brid Single-Particle Lagrangian Integrated Trajectory Model,
Draxler and Hess, 1998). In particular, we used 4-day back
trajectories arriving at 12:00 UTC over Athens, at an alti-
tude of 1500 m. This altitude is considered characteristic for
aerosol transport in the free troposphere for the extended area
of study (Mattias et al., 2004; Amiridis et al., 2005).

3 Results and discussion
3.1 AOD levels and seasonal variation

Monitoring of AOD over Athens took place from January
2006 to December 2008, a time span of 3 years (Fig. 1).
Data availability by season, mainly depending on the extent
of cloud cover, shows a maximum of 80% in summer to a
minimum of 60% in winter. Frequency distribution plots for
the daily average AOD at 500 nm and the Angstrom coeffi-
cient (a) calculated between 415 and 867 nm, are shown in
Fig. 2a and b. The daily average AOD at 500 nm for the
whole period is 0.23 £0.17, with 50% of the values lying in
the range 0.12-0.29 and maximum frequency class 0.1-0.15.
The daily average a is 1.41+0.48, with 50% of the values
lying in the range 1.2-1.8, and with a maximum frequency
class of 1.6—1.8. The basic statistics for all wavelengths are
given in Table 1.

Long-term ground based monitoring data of AOD for
Athens do not exist. However, the newly established
“Athens-NOA” AERONET station has been operating
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Fig. 1. Time series of daily AOD averages (upper panel) and
Angstrom coefficient (lower panel) over Athens, for the period
2006-2008. Triangles correspond to the monthly averages of the
respective quantities and are accompanied by their standard devia-
tion, while the red thin line represents the monthly medians.

Table 1. Basic statistics on the daily averaged AOD and the
Angstrom coefficient (3) over Athens, for the period 2006-2008.

Average £ Stand. Dev.  1st Quartile-Median—3rd Quartile

AODys 0.2940.18 0.17-0.25-0.37
AODsq 0.2340.17 0.12-0.19-0.29
AODgs 0.1840.16 0.09-0.14-0.22
AODg7| 0.16£0.15 0.07-0.11-0.19
AODgg7 0.12£0.14 0.05-0.08-0.14
8415/867) 14405 12-15-1.8

uninterrupted since February 2009 and constitutes the con-
tinuation of our measurements at the same site. Other ground
measurement studies report a mean AOD of 0.23 at 500 nm
and an & in the range 1.4-1.6 for the period 1999-2002 at
two sites in Northern Greece, Thessaloniki/urban and Oura-
noupoli/rural (Gerasopoulos et al., 2003) and a mean AOD
of 0.21 at Crete/rural for the period 2003-2004 (Fotiadi et
al., 2006). Kazadzis et al. (2007) report AOD at 320nm
in the range 0.43-0.46 for the period 1997-2005 at Thes-
saloniki. In contrast, AOD levels for Athens have been es-
timated from satellite data, however validation of these data
over long periods and for different spatial resolutions, has
until now never been performed but is part of this study
(Sect. 3.4). In particular, MODIS derived mean AOD at
550 nm for the period 2000-2005 for the Athens region is
0.35 (Kaskaoutis et al., 2007). From the same dataset Kos-
mopoulos et al. (2008) concluded that the coarse-mode parti-
cles exhibit much stronger interannual and seasonal variabil-
ity compared to the urban/industrial aerosols.

Numerous spikes in AOD are encountered throughout the
whole measurement period (Fig. 1) and are associated ei-
ther with local sources of particles or enhanced aerosol load-
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Fig. 2. Frequency distributions of the daily: (a) AOD averages
and (b) the Angstrém coefficient over Athens, for the period 2006—
2008. The blue line corresponds to the average of the daily values.
The red continuous line represents the median and the red dashed
box delimits the 1st and 3rd quartiles, respectively.

ings due to transport. Periods with increased frequency of
episodes are clearly illustrated in the monthly values, by
large standard deviation bars and divergence between aver-
age and median monthly values. The same pattern is seen for
a, with the majority of the values being around the median
of 1.5 (relatively fine aerosols), indicative of the urban char-
acteristics of Athens’ environment. However, most peaks in
AOD (especially those >0.6) are related to low & , indicating
the significant contribution of coarse aerosols to the elevated
aerosol loadings over Athens (Fig. 3).

On a seasonal basis, maximum AODs are encountered in
spring with a peak in April and a monthly average value of
0.35, in coincidence with the minimum a of 1.2 (Fig. 4).
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Fig. 3. AOD versus the Angstrom coefficient for the period 2006—
2008. High AOD cases (>0.4) of fine and coarse particles, respec-
tively, have been denoted.
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Fig. 4. Annual cycles of AOD at 500nm and the Angstrém co-
efficient. Values are calculated as averages of daily means for each
month for the period 2006-2008 and the bars are the respective stan-
dard deviations.

Minimum AODs are found in the period of November to Jan-
uary (0.16-0.19), with moderate values of & (1.3-1.5), while,
during the rest of the period, AODs show a plateau around
the average value. a reaches its maximum level (1.7) in July.
The seasonal pattern in Athens agrees well with that of the
Aegean Sea presented by Koukouli et al. (2010; see their
Fig. 5). By comparing the seasonal patterns along a north-
south axis, it can be deduced that the pattern is comprised of
two modes, a spring mode reflecting dust transport from the
Sahara and a summer mode reflecting continental (Balkans
and central-east Europe) sources of pollution, in combina-
tion with the dominance of northerly winds in the area, the
so-called Etisians. During summer, the build up of particles
due to intense photochemical processes, favoured by high
temperature and insolation, contributes to the summer maxi-
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mum mode, in a way that reflects the geographical spread of
particle precursor sources and transport processes. Overall,
the location of each site along the aforementioned axis and
thus the distance from these distinct source areas, defines the
observed seasonal pattern at each site, together with other lo-
cal characteristics or sources. Thus, the observed seasonality
in Athens depicts the significant role of dust transport from
the Sahara mainly during spring, which brings considerable
quantities of coarse dust particles over the Eastern Mediter-
ranean, influencing aerosol loadings as well as surface levels
of particulate matter (e.g. Gerasopoulos et al., 2006).

3.2 Diurnal variation

We have investigated the diurnal variation of AOD and a
on a mean annual and seasonal basis. All observations for
a single day are expressed as a percentage departure from
the monthly mean. Computed percentages were averaged at
half-hour intervals during daylight. Each half-hour average
consists of at least 10 min of observations, under the assump-
tion that no significant changes in AOD levels are consis-
tently expected in such a short period, and that a day should
have at least Sh of available data. We present the diurnal
variability of AOD at 500 nm and 4 in Fig. 5.

There is a clear diurnal cycle for both AOD and a dur-
ing the 20062008 period. In particular, AOD is lower in
the morning, increases until midday and reaches an after-
noon plateau (Fig. 5a). The diurnal departure of AOD from
the monthly mean ranges from —8% to 6%, with consistent
repeatability for the different years (from —10% to 10%).
The average diurnal increase of 14% corresponds to a 0.03
change in average AOD at 500 nm. This main pattern is more
or less reproduced during the different seasons (Fig. 5b).
Three points are worth noting: (i) The steep morning increase
in autumn which then decreases in the afternoon, with diur-
nal departures in the range from —19% to 24%, (ii) The clear
midday maximum in winter, and (iii) The noisy pattern in
spring due to the presence of dust storm episodes. The large
departures in autumn are mainly due to the relatively lower
AOD in the morning, whereas the mid-day peak, in abso-
lute terms, is equal to that encountered in summer. Smirnov
et al. (2002) report similar diurnal variability at sites influ-
enced by local urban/industrial sources, with AOD steadily
increasing throughout the day, reaching a maximum in the
afternoon. For sites relatively close to ours, this increase is
less than 10% (Ispra, Italy) or between 10% and 15% (Rome
and Bucharest), and in all cases comparable with the mean
increase of 14% we find in Athens.

A distinct diurnal pattern is also revealed for a (Fig. 5c).
Year round, low & values are encountered in the morning,
steadily increasing towards evening, when they stabilise to
a plateau value around 1.65. The pattern appears repeatable
during the 3 years of this study. Less variability and smaller
increase is observed in autumn, indicating less variable size
of the aerosols. In winter and spring the annual pattern is
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followed, however spring values are lower than winter by an
average of 6% (about 0.1), indicating the presence of coarse
dust particles in the area. Finally, in summer & is much higher
and its diurnal variability coincides with that of AOD, indi-
cating the presence of finer particles.

The increase in both AOD and a during the day seems
to be due to a combination of two factors: aerosol
sources/processes in urban environments and local scale
transport. The station is located to the east of the city centre
and local industrial sources are situated at the western part of
Athens. Automobile emissions peak in the morning and are
likely the major source of primary particles in the city. These
facts, when combined with the prevailing local meteorology
can explain the increasing tendency in AOD and 4. Wind
speed and wind direction data from the closest meteorolog-
ical station (not shown) indicate a year-round wind speed
enhancement from early morning to 10:00-11:00 UTC. The
dominant wind direction at the station in spring and summer
indicates westerly flow, placing the station under the influ-
ence of typical urban sources. During autumn and winter,
winds are from the NW in the early morning and change to

Atmos. Chem. Phys., 11, 2145-2159, 2011

a westerly direction at about 08:00-09:00 UTC. The prevail-
ing wind direction pattern at the station, combined with the
increasing wind speed as an index of local transport and the
location of the station in relation to the sources, support the
increase of aerosol loading as seen in the AOD and the grad-
ual dominance of finer particles from urban processes as seen
in the a.

The above is further strengthened by the diurnal variabil-
ity of PMjq at the surface. In particular, urban-traffic sites
(mostly at the center of the city) present a sharp maximum
around 08:00 UTC year round, while suburban stations (most
of them at the west part of Athens) show a steady increase af-
ter 08:00 UTC and a plateau between 11:00 and 14:00 UTC
(Kalabokas et al., 2010). The role of sea breeze circulation
patterns should also not be disregarded. Overall, during sea
breeze days, Athens basin is prone to horizontal recirculation
of pollutants (Melas et al., 2005). In particular, during the
warm period (except in the cases that the Etisian winds dom-
inate), the sea breeze system reaches its maximum evolution
during midday, favoring the advection of sea salt to the north.
In this case a concurrent decrease in the & would be expected.
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However, the same process also brings urban particles from
the harbor and the city centre towards the suburbs.

3.3 Major aerosol transport patterns

Cluster analysis of the HYSPLIT trajectories for the pe-
riod of January 2006 to December 2008 has revealed 16
distinct synoptic situations transporting air parcels over
Athens. These clusters have been grouped into 5 main
classes (Fig. 6), whose characteristics are summarised in Ta-
ble 2 and presented in the following sections.

3.3.1 Class 1: W-NW-N sector

This class accounts for 31% of the total trajectories and in-
cludes trajectories that have spent a significant portion of
their time over western and central Europe, before arrival
over Athens. We have additionally discriminated between
short trajectories (Fig. 6, class 1a, 64% of the class trajecto-
ries) and long trajectories (Fig. 6, class 1b, 36% of the class
trajectories), in an attempt to quantify the influence from ma-
jor continental European aerosol sources, such as urban ag-
glomerations and industrial areas, compared to remote and
cleaner source areas.

The average AOD corresponding to short trajectories
(Fig. 6, class 1a) is in the range 0.16-0.17, while & presents
a tendency to increase from 1.2 for cluster A (westerly di-
rections) to 1.7 for cluster C (northerly directions). This ten-
dency of increasing a from west to north is indicative of dif-
ferent source types and mixed types of aerosols at the sector
edges, namely sea salt (coarse particles) for cluster A and
anthropogenic particles (fine particles) for cluster C. Trajec-
tories in Class 1a are found mostly in summer.

The average AOD corresponding to long and fast trajecto-
ries (Fig. 6, class 1b) is in the range 0.12-0.13, while again,
4 increases going from westerly to northerly directions. The
vast majority of these trajectories originate at high altitudes
over the Atlantic, bringing the cleanest possible air parcels
towards the Eastern Mediterranean. At their latest stage
they follow katabatic movement, sweeping in air from non-
background areas. Even then, the influence is minor since
the trajectories from Class 1b predominate in winter, when
efficient wet-removal and aerosol processes due to cloudy
conditions and precipitation are encountered. In addition,
efficient ventilation is expected under these circumstances,
which contributes to higher dilution of aerosol particles over
and around significant sources. In all cases, the average AOD
of 0.12-0.13 from this class is the lowest found in this study
and can be considered as typical background for Athens in
the absence of major transported aerosol loads. Fotiadi et
al. (2006) give a mean AOD at 500 nm of around 0.1 in win-
ter and identify it as near background conditions for Crete,
which is, however, dominated by marine aerosols year round.
That, in addition to the fact that under N-NW winds Crete is
influenced by Athens pollution, makes it difficult to estimate
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the absolute background in the area and then to discriminate
the contribution of local/urban sources of Athens to AOD.

3.3.2 Class 2: N-NE sector

Class 2 accounts for 25% of the total trajectories and repre-
sents the N-NE sector, with trajectories coming from Eastern
Europe and the Balkans (Fig. 6, class 2). The average AOD
corresponding to long and fast trajectories (cluster A) is 0.19
with a equal to 1.6, characteristics similar to the long and
fast trajectories of Class 1. This cluster accounts for 39% of
the trajectories of this class and presents a narrow summer
maximum.

The second cluster of trajectories from the same direction
(cluster B), representing 22% of the trajectories from Class 2,
includes short trajectories from over Istanbul and the Black
Sea. The average AOD corresponding to this cluster is 0.3
and the average a is 1.5. It includes 22% of the trajectories
of this class and most of the cases occur during spring and
late summer/fall. Istanbul is a megacity in the area (together
with Cairo) with a population of approx. 15 million. Such
an urban agglomeration, a strong source of anthropogenic
particles, is expected to play a significant role in aerosol
loadings at regional scales. The average AOD of this clus-
ter is 60% higher than for cluster A from the same direction
and more than double compared to the typical Athens winter
background of 0.12, while the average a (1.5, see Table 2)
indicates mixing with marine aerosols over the Aegean Sea.
Another significant source from the same direction is the ex-
tended area of biomass burning around the north coast of the
Black Sea, mainly during summer, which may contribute sig-
nificantly to AOD (e.g. Balis et al., 2003; Sciare et al., 2008).
Both biomass burning and pollution contributions are con-
sidered to be episodes rather than a constant influence, a fact
illustrated by the enhanced standard deviation of the average
AOD, compared to the rest of the clusters of Classes 1 to 3
(see Table 2).

Finally, the third cluster of trajectories (cluster C) of Class
2, accounts for 39% of this class and has an average AOD
of 0.25 and an average & of 1.7. The high & of this cluster
is possibly representative of very fine particles from power
plants in the Balkans (Zerefos et al., 2000).

3.3.3 Class 3: W sector

The third most frequent class is Class 3 representing 22% of
the total trajectories (Fig. 6, class 3). This class includes
air masses arriving from the west, equally distributed be-
tween long and short trajectories. The average AOD cor-
responding to the long trajectories (cluster A) is 0.21 and
the average a is 1.4. This cluster mainly brings air masses
from above the Mediterranean, enriched in marine aerosols,
and in some cases it may include continental air masses
from the south part of the Iberian and the Italian peninsulas.
The contribution of fine aerosols from biomass burning from
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Fig. 6. Cluster analysis of HYSPLIT trajectories for the period 2006-2008. 16 distinct synoptic set ups were grouped into 5 main classes by
means of sectoral direction. Arrows follow the direction of the cluster centroid; where feasible, the width of the arrow is representative of

the scatter of the trajectories around the calculated centroid.

forest fires, typically detected in summertime in the Iberian
and Italian Peninsulas, should also be considered (e.g. Elias
et al., 2006; Basart et al., 2009). For short trajectories from
the west (cluster B), enhanced average AODs are seen (0.27).
These short trajectories are possibly coupled with conditions
that favour pollution accumulation and moreover they are
partly displaced to the NW thereby sweeping polluted air
masses from the Po valley industrial area towards the east,
mainly during summer.

Atmos. Chem. Phys., 11, 2145-2159, 2011

3.3.4 Class 4: S sector

The south sector, Class 4, is related to the highest aerosol
loadings over the area, since it includes the transport of dust
particles from desert and arid locations of North Africa. Dust
transport pathways towards the Eastern Mediterranean, both
in the horizontal and in the vertical, have been reported in a
number of studies (e.g. Kalivitis et al., 2007; Amiridis et al.,
2005; Giannakaki et al., 2010). Our cluster analysis has re-
vealed the three major paths and also a cluster of trajectories
with less contact to the African continent (Fig. 6, class 4).
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Table 2. Mean AOD and Angstrém coefficient () per trajectories cluster.

% Appearance Traj. Characteristic and/or Main % Appearance Mean AOD  Mean a
Potential Source Influence Direction in class
Class 1 31% Short, W-Central Europe W 0.16£0.06 12404
NW 64% 0.16+0.11 1.5+04
N 0.17+0.11 1.7+0.3
Long-fast, Atlantic W 0.13+£0.10 14+04
NW 36% 0.13+0.09 1.7+0.3
N 0.12+0.05 1.6+04
Class 2 25% Long-fast, E. Europe NE 39% 0.19£0.10 1.6+03
Short, Istanbul/Black Sea NE 22% 0.30+0.17 15403
Short, Balkans N 39% 025+0.12 1.74+0.3
Class 3 22% Short, stagnant Mediterranean/Po valley w 51% 027£0.15 154+04
Long, Mediterranean \%% 49% 021+£0.13 14+04
Class 4 16% Short, dust S 11% 0414+£040 0.6+0.5
Long, dust via Tunis gulf SW 4% 036+022 04403
Long, dust/time over Mediterranean W-Ww 11% 042+029 0.6+04
Mixed of the two above W-SW 37% 034+£027 0.7+04
Short, less African contact SW 37% 029£020 1.140.5
Class 5 6% Stagnant conditions - - 034£021 12405

The first cluster of trajectories (cluster A) arrives over
Athens directly from the south, transporting dust particles
from extended arid areas in Libya and Egypt. The direc-
tion of this cluster centroid also points to the Bodélé De-
pression in southern Chad, which is among the major dust
sources as seen from space measurements (e.g. Engelstaedter
and Washington, 2007), with dust storms occurring on aver-
age about 100 days per year (Washington et al., 2006). The
trajectories of this cluster traverse the shortest distance over
water before reaching Greece, compared to the rest of the
clusters that bring dust from Africa. The average AOD for
this cluster, which accounts for 11% of the trajectories of
this class, is 0.41 with an & of 0.6 and as in all clusters of this
class, the maximum frequency of occurrence is in spring.

The second cluster of trajectories (cluster B) includes only
4% of the south sector cases and brings air masses from the
heart of the Sahara in Mali and Mauritania, via the gulfs of
Sirte and Tunis. The reason for including it as a separate
cluster is that apart from the high aerosol loadings (average
AOD 0.36) it is related to the lowest &, equal to 0.4. Another
11% of the trajectories (cluster C) is related to dust mobilised
over the W-NW parts of Sahara and then transported to the
east having travelled all along the Mediterranean Basin. Even
though strong mixing with the marine environment is highly
expected, as well as gravitational settling of the heavier par-
ticles, these trajectories still retain high loadings of aerosols
with average AOD equal to 0.42 and & of 0.6.

Finally, most of the trajectories fall into cluster D (74%)
which is a mixture of clusters B and C, both in origins of air

www.atmos-chem-phys.net/11/2145/2011/

masses and characteristics. The average AOD corresponding
to this cluster is 0.34 and the average a is 0.7. However,
half of these trajectories show less contact with the African
continent and as a consequence have a lower AOD (0.29) and
higher a (1.1).

3.3.5 Class 5: stagnant conditions

The final class (Fig. 6, class 5) includes short trajectories
of local influence mainly found during stagnant conditions.
Such conditions favour the impact of local sources and the
accumulation of aerosols in the area. The average AOD of
the class is 0.34 and the average a is 1.2, indicating signif-
icant presence of coarse particles, either resuspended dust
from the vicinity or marine aerosols from the Aegean Sea.
As a follow up of the analysis for each distinct class we
have attempted to calculate the contribution of each class
to the average AOD of 0.23. Taking into account both the
percentage appearance of each class and the respective AOD
value, all major classes, initially grouped due to the direc-
tion and characteristics of the air mass trajectories, are found
to contribute equally (20-25%), except Class 5 which has
a contribution of about 10%. Interesting findings however
are revealed when grouping the various clusters by means
of qualitative characteristics such as the distance range and
type of the source. This is shown in Fig. 7 where the
new groups are: sources from continental Europe (includ-
ing the short trajectory clusters of Class 1 and the long-fast
ones from Class 2), regional/local influence (including the
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Fig. 7. Contribution of discrete source areas to the average AOD
taking into account the percentage time of influence and the respec-
tive AOD level.

impact from neighbouring urban/industrial sites such as the
Balkans, the Po valley, Istanbul and nearby biomass burn-
ing areas, but also local sources under stagnant conditions),
dust, the Mediterranean Basin environment and finally re-
mote, clean areas (those cluster originating over the At-
lantic). The greatest contribution comes from regional and
local sources accounting for almost 40% of the average AOD
during the whole period of study. Another important contri-
bution (23%), despite the relatively lower percentage of time
influence (16% see Table 2), is dust from Africa, whereas the
rest of Europe contributes another 22%.

3.4 Comparison between ground based and satellite
derived AODs

In order to compare the AODs from the MFR to the MODIS
derived AODs for Athens, we have first calculated the AOD
at 550nm. For that we used Angstrom’s (1929) empirical
formula and the a calculated from 415 and 867 nm. Smirnov
et al. (2002), using data from AERONET, found that the daily
mean AOD values are very close to the mean values in the
time window frame within +30 min of the MODIS overpass.
However, this depends on the diurnal variability of the indi-
vidual site.

For this reason, two data sets were produced from the
MFR measurements for the purpose of the comparison,
one with daily averages (AODMER—daily) and one with the
30 min averages centred around the time of the satellite over-
pass over Athens (AODMFR—ovps) at around 09:30 UTC. The
overpass time coincides with the middle of the diurnal in-
creasing branch (see Fig. 5a), thus the two time series are ex-
pected to be significantly correlated. Indeed, the calculation
of the regression line between the two data sets gives a slope
of 1.02, an intercept of 0.004 and R? equal to 0.89, after the
exclusion of only 10 points for which the overpass averages
exceed the daily averages by 40—-150%, characteristic of very
spiky episodes. The correlation with MODIS data is better
with the use of the daily averages dataset (R? 0.65 vs. 0.55),
thus we use the AODMER —daily for further analysis.
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The average AOD at 550 nm during the common days
(N =1740) between the two data sets is 0.19 &= 0.13 from the
MFR while from MODIS it is 0.22 +0.15. The regression
line between the two is shown in Fig. 8. Both the slope and
the intercept are in agreement with similar comparisons be-
tween MODIS and AERONET data (e.g. Remer et al., 2008;
Papadimas et al., 2008). The insert panel in Fig. 7 shows the
ratio AODpopi1s/AODyvER, highlighting that throughout the
year the deviation between MODIS with the ground based
data lies within £10% (there is underestimation in winter
and an overestimation in the transition periods), but in late
summer and September MODIS may overestimate AOD val-
ues on average 30%. As a consequence, the main seasonal
pattern is reproduced by MODIS, namely the spring max-
imum; however summer levels are relatively enhanced and
appear as a secondary maximum.

The relation between MFR and MODIS has also been in-
vestigated in AOD bins of 0.1, with the highest AOD bin
typically representing fewer observations than the other bins,
however no particular pattern was revealed.

Our results are in general agreement with El-Metwally et
al. (2010), who showed that MODIS generally tends to over-
estimate the sunphotometer reference optical depths over the
city of Cairo, Egypt. They find a fairly good agreement in
winter (ratio close to 1, but still overestimation), and an over-
estimation of the AOD by MODIS larger than 40% in spring
and autumn (still high in summer months). They have at-
tributed this tendency to the inappropriate adaption of the
aerosol model for inverting the MODIS radiances measure-
ments in the desert dust and biomass burning periods, and
a possible worse parameterization of the reflectance of the
desert-like soil surface.

In Athens’ case, the comparison results are somewhat bet-
ter, since the second reason, above, is not the cause, however,
indeed overestimation coincide with periods of dust trans-
port (around 10% in spring) or smoke transport from biomass
burning (around 30% in late summer).

3.5 Contribution of fine and coarse particles to AOD

AOD and & give information on the columnar aerosol load-
ing over an area and a first indication of the particle sizes.
It is obvious that for more information on the composition
of this aerosol, full chemical analysis is needed, which how-
ever describes the aerosol composition only at the surface.
Gobbi et al. (2007) have presented a graphical framework
for classifying additional aerosol properties using AOD ob-
servations. Their method relies on the combined analysis
of a and its spectral curvature, which allows for the infer-
ence of fine mode aerosol size and fractional contribution
to the total AOD. In addition, it permits the separation of
AOD growth by aerosol humidification and/or coagulation
(aging), from AOD growth by inclusion of coarse mode par-
ticles or cloud contamination. It should be noted that for
AOD < 0.10, the errors associated to 4 and a difference are
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Fig. 8. Scatter plot between AODs from the MFR versus MODIS
derived AODs over Athens. The red thick line is the regression line
between the two data sets. The internal panel presents the annual
cycle of the AODyop1s/AODMER ratio, the red dashed line shows
the unity value of the ratio, while the red thin lines corresponds to
the average between months of close ratio values.

~20% and ~50%, respectively. For this reason, AOD > 0.15
are used in Gobbi et al. (2007), in order to avoid errors
>30%. Here we have used the AOD retrievals from the
MFR measurements to classify the aerosol properties as a
function of 8449,870 and the difference of 4440,675—8675/870,
for bimodal, lognormal size distributions. This graphical
method is used to visually investigate the contribution of fine
aerosol to the AOD (through the fine mode fraction) and the
size of the fine aerosols (Fig. 9). The black solid lines ac-
count for a fixed effective radius (Ry) of the fine mode and
the dashed lines for a fixed fraction contribution (1) of the
fine mode to the AOD. For the three years of measurements
analyzed for Athens, it can be seen that a variety of fine mode
fractions can be found for typical AOD values, with an av-
erage fine mode Ry of about 0.12um. A great number of
cases with a lower than 0.5 demonstrates the high impact of
coarse particles at the site. As already shown in the clus-
ter analysis section, most of the cases with maximum AODs
are characterized by the presence of dust particles from the
Sahara. Characteristically, 23% and 44% of the cases with
AOD=>0.3 are related to 4 < 0.5 and & < 1, respectively. In
Fig. 9 we can distinguish two cases with high AOD combined
with low &: (a) n <30% and Ry~ 0.12um and (b) n < 50%
and Ry > 0.20um. In the first case, the fact that d440/675—
d¢75/870 > 0 indicates the presence of two separate particle
modes, suggesting dust mixed with fine anthropogenic par-
ticles. In the second case, 4440/675—4675/870 <0 shows the
dominance of one mode, which is associated to coarse dust
particles given that in the part of Fig. 9 limited by n < 50%
and Ry > 0.20 um, a is lower than 0.5.
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Basart et al. (2009) provided an atmospheric aerosol char-
acterization for the Mediterranean among other areas, based
on AERONET data for the period 1994-2007, applying the
same graphical method. The closest sites to Athens pre-
sented in this work are Thessaloniki to the north and Crete
to the south. In the first case high AODs mainly cluster in
the fine mode corresponding to n = 85% and Ry =0.13 um,
representative of fine particles from local and regional ur-
ban/industrial sources. AOD growth is linked to increased
extinction due to both, coagulation-aging and hydration. In
Crete, the data shows high AODs, mainly clustering in the
coarse mode corresponding to n < 30%, with particles re-
lated to long-range transport of mineral dust from the south.
The pattern revealed for Athens, which is located in the mid-
dle of the two other sites, shows great similarities to the one
recorded for Rome, Italy (Gobbi et al., 2007; Basart et al.,
2009). Both cities are located at the middle of the Mediter-
ranean Basin in the north-south direction and at about the
same distance from the main sources of particulate matter in
the area, e.g. dust from Sahara and anthropogenic particles
from continental Europe. Moreover, both cities have similar
populations and are influenced by distinct sources of pollu-
tions from the north, namely Istanbul, Black Sea biomass
burning and Balkan power plants on one hand, and the Po
valley on the other hand.

4 Conclusions

Three years of observations (2006-2008) of the Aerosol Op-
tical Depth (AOD) in the urban environment of Athens, in
the eastern Mediterranean, were analysed and presented in
this work. This is the first long term, ground based data

Atmos. Chem. Phys., 11, 2145-2159, 2011



2156

set available for this area, which is being continued by the
newly established “Athens-NOA” AERONET station at the
same location. The main conclusions of this work can be
summarized as follows:

— The daily average AOD at 500nm over Athens is
0.2340.17 and the Angstrém coefficient (&) calculated
between 415 and 867 nm, is 1.41 +0.48. Similar val-
ues are found along a north-south axis in the eastern
Mediterranean Basin, indicative of strong sources of
particulate matter in the area, which contribute to the
degradation of air quality at regional scale.

— The position of Athens in the middle of the above men-
tioned axis defines the annual cycle of AOD and &. The
patterns observed in Athens appear to be closer to that
of the southern stations, which exhibit a pronounced
spring mode, reflecting dust transport from the Sahara,
rather than that of northern stations, where the sum-
mer mode prevails, reflecting continental (Balkans and
central-east Europe) sources of pollution.

— A diurnal cycle of AOD typical for urban sites is found
in Athens, with AOD steadily increasing throughout
the day. A similar increase is observed in &, and
both patterns are shown to be a combination of aerosol
sources/processes in urban environments and local scale
transport.

— Three general points are concluded from the trajec-
tory cluster analysis: (i) The variation of both aerosol
columnar loadings and size are controlled by well dis-
tinguished regional rather than local sources of pollu-
tion, (ii) Short trajectories versus long trajectories, from
the same direction, are responsible for more efficient
particle transport, since their motion is closer to the sur-
face, thus sweeping polluted air masses from within the
boundary layer, (iii) A tendency of increasing & from
west to north-northeast exists, indicative of different
types of sources and mixed types of aerosols at the sec-
tor edges, namely sea salt (coarse particles) for clusters
close to the Mediterranean Sea and anthropogenic par-
ticles (fine particles) for continental clusters.

— The greatest contribution to the annually averaged AOD
comes from regional and local sources and accounts for
almost 40%. Dust from desert and arid locations of
North Africa has an important contribution (23%) de-
spite the lower frequency of occurrence, whereas the
rest of continental Europe contributes another 22%.

— The cleanest conditions are found under N-NW winds
and long trajectories that originate from high altitudes
over the Atlantic. An average AOD of 0.12-0.13 can
be considered as typical background for Athens, in the
absence of major transported aerosol loads, and it is
mainly encountered during winter.
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— Maximum aerosol loads (AOD of 0.34-0.42) are found
in spring in conjunction with low & values, representing
the significant contribution of transported dust particles.
The second most important source area of high aerosol
loadings originates from the direction of the Istanbul
metropolitan area and the extended areas of biomass
burning around the north coast of the Black Sea. They
prevail only 6% of the time resulting in an AOD of about
0.3. Point sources spread through the Balkans (mostly
power plants) also seem to cause elevated AODs (0.25)
associated with finer particles mainly during summer.

— The comparison between MFR and MODIS revealed
that the main seasonal pattern is reproduced by MODIS,
namely the spring maximum, however summer levels
from MODIS are relatively enhanced and appear as a
secondary maximum.

— The contribution of fine particles to typical AOD ranges
widely from 10% to 90%, indicative of a mixture of
aerosol types over Athens. A predominant number of
cases with a lower than 0.5 demonstrates the high im-
pact of dust particles at the site. Dust particles can ei-
ther be present without altering the local fine mode size,
or they can be associated with fine mode growth mech-
anisms at the same time.

This analysis is intended to provide data on the climato-
logical aspects of aerosol loadings over an urban environ-
ment in the eastern Mediterranean, based on ground mea-
surements. Such data sets are essential for the validation of
satellite products, which can then be used for long term cli-
matic studies. However, for the detailed identification and
apportionment of sources, chemical composition of aerosols
is needed. With such information it will then be feasible to
estimate the contribution of distinct sources at local or re-
gional scales versus the pollution from urban activities, in an
area characterized by diverse mixtures of aerosols and pro-
cesses.
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