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Threshold amplitudes for transition to turbulence in a pipe
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Abstract

Although flow in a circular pipe is stable to infinitesimal perturbations, it

can be excited to turbulence by finite perturbations whose minimal ampli-

tude shrinks as R → ∞ (R = Reynolds number). Laboratory experiments

have appeared to disagree with one another and with theoretical predictions

about the dependence of this minimal amplitude on R, with published results

ranging approximately from R
−1/4 to R

−3/2. Here it is shown that these dis-

crepancies can be explained by the use of different definitions of amplitude

by different authors. An attempt is made to convert the existing results to

a uniform definition of amplitude, the nondimensionalized L
2 definition com-

mon in the theoretical literature. Although subtleties in the physics raise

some questions, agreement appears to be reached on a minimal amplitude

that scales as R
−3/2±0.3.
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I. INTRODUCTION

Laminar incompressible flow in an infinite circular pipe is mathematically stable, but in
practice, pipe flows invariably undergo transition to turbulence if the Reynolds number R is
high. It is generally accepted that an explanation for this phenomenon is that although the
laminar state is stable to infinitesimal perturbations of the velocity field, certain small finite
amplitude perturbations are enough to excite transition for large R. A natural question is,
if ǫ = ǫ(R) denotes the minimal amplitude of all perturbations that may excite transition,
and if ǫ scales with R according to

ǫ = O(Rγ) (1.1)

as R → ∞, then what is the exponent γ ? A value of γ substantially below zero would
correspond to a sensitivity of the laminar flow that increases rapidly with R.

We six, coming from diverse backgrounds in applied mathematics, scientific computing,
and laboratory experimentation, have all been interested in (1.1), but the exponents γ that
our different lines of research have suggested have varied by as much as a factor of six, from
≈−1/4 to −3/2. In discussions at the ERCOFTAC Workshop on Subcritical Transition in
Delft in October, 1999, it became clear that we have been using inconsistent definitions of
the amplitude of a velocity perturbation. Without a consistent definition, (1.1) of course
has little meaning. The purpose of this note is to attempt to cast our various results in
terms of a single definition of amplitude. The definition we shall use is essentially the one
employed previously by Chapman [1], Schmid and Henningson [2], Trefethen, et al. [3], and
others, and we shall call it the L2 amplitude. We do not argue that this definition is more
or less appropriate physically than any other, merely that it is precise and that it provides
a reasonable starting point for discussion.

Specifically, in this note we attempt to convert the experimental results of Draad and
Nieuwstadt [4,5] (henceforth DN) and Darbyshire and Mullin [6] (henceforth DM) to L2

amplitudes. We conclude that in the L2 framework, DN’s published exponent of −1 should
be adjusted to between about −2 and −1, and DM’s published exponent of between −0.4 and
−0.2 should be adjusted to between −1.8 and −1.15. One reason why these adjusted values
are expressed as ranges rather than single numbers is that both sets of experiments introduce
perturbations by injection from the side of the pipe, and it is not known exactly what
perturbations these injections induce in the velocity field within the pipe. We emphasize
that these ranges are rough, having nothing like the two-digit precision suggested by a
number like −1.15.

Based on an asymptotic analysis of the Navier–Stokes equations, Chapman [1] has pre-
dicted the values γ = −5/4 for plane Couette flow and γ = −3/2 for plane Poiseuille flow,
and discussed the relationship of these predictions to existing evidence from direct numer-
ical simulation of the Navier–Stokes equations (DNS) [7,8]. (In the plane Poiseuille case
one restricts attention to perturbations that avoid the Tollmien–Schlichting instability.) In
work not yet written for publication, Chapman has extended the prediction γ = −3/2 also
to pipe flow. Thus if our adjusted exponents for the DN and DM experiments are correct,
there would appear to be reasonable agreement between two independent laboratories and
a theoretical calculation on an exponent for the pipe in the vicinity

γ ≈ −3

2
. (1.2)
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This result would be consistent with the conjecture of Ref. [3] that γ is strictly less than −1,
an inequality also satisfied by most of the low-dimensional ODE models of the Navier–Stokes
equations that have been published in the 1990s [9]. The apparent convergence of various
lines of evidence on the estimate (1.2) looks promising, but we urge that it not be taken
as definitive or as numerically precise. There are uncertainties at many points on both the
experimental and theoretical sides, and no relevant data at all yet from DNS simulations for
the pipe. Moreover, as we mention in Section 3, Chapman’s asymptotic arguments are based
on pipe lengths much longer than those in the DN and DM experiments, and for these pipes
of finite lengths, somewhat less sensitivity to perturbations may be expected. We regard
(1.2) as a rough working approximation.

II. NONDIMENSIONALIZATION AND L
2

AMPLITUDE

One source of confusion about γ has been the nondimensionalization of the Navier–
Stokes equations. The L2 definition of amplitude is formulated within a particular choice of
nondimensional variables, the standard one. We shall review this choice and explain why it
can be a point of confusion.

We are concerned with the idealized problem of laminar flow through an infinite circular
pipe. The standard nondimensionalization takes the pipe radius as the space scale and the
centerline velocity as the velocity scale. Thus, after nondimensionalization, the radius and
velocity become

radius = 1, velocity = 1.

These choices imply that the nondimensional time scale is the convective one, i.e., the time
it takes the flow to travel downstream a distance of one pipe radius:

time to travel one pipe radius = 1.

Now there is also another time scale physically present in the problem, on which the effects
of viscosity are felt. In our nondimensionalization this viscous time scale is R, the Reynolds
number. Thus we have the following situation: a typical flow perturbation of small amplitude
and of spatial extent comparable to the pipe radius is convected down the pipe at speed
O(1) for a time O(R) and a distance O(R) before the effects of viscosity become significant.

With these scales agreed upon, we imagine an initial value problem in which at time t = 0,
the velocity field consists of the laminar solution plus a divergence-free finite perturbation
u(0) = u(x, r, θ, 0). The flow now evolves according to the Navier–Stokes equations, with
the result that the initial perturbation develops as a time-dependent divergence-free function
u(t) = u(x, r, θ, t). At any time t, we measure the amplitude of u in an L2 fashion:

‖u(t)‖ =
(

∫

∞

−∞

∫ 1

0

∫ 2π

0
u(x, r, θ, t)2 dθrdrdx

)1/2

. (2.1)

Thus ‖u(t)‖ is the root-mean-square velocity perturbation over the whole pipe.
We now return to the matter of why these formulations may sometimes be confusing.

In most laboratory experiments, and certainly in DM and DN, the Reynolds number R
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is controlled by varying the speed of the flow, not the viscosity. On the other hand in
nondimensional units the speed of the flow is always 1, and other velocities are defined as
ratios to this one. Thus to convert from laboratory to nondimensional units we must

multiply time measured in seconds by R (2.2)

and

divide velocity measured in meters/second by R (2.3)

(as well as R-independent scalings by pipe diameter divided by kinematic viscosity). In
particular, the nondimensionalized O(Rγ) and O(R−3/2) formulas of (1.1) and (1.2) would
appear as O(Rγ+1) and O(R−1/2) in laboratory units. Thus (1.2) can be paraphrased by the
statement that if you double the speed of flow of water through an infinitely long pipe, the
minimal velocity perturbation needed to excite transition becomes smaller in meters/second
by a factor of about

√
2 and smaller relative to the flow speed by a factor of about 2

√
2.

III. ASYMPTOTIC ESTIMATES OF CHAPMAN

Chapman’s paper [1] estimates γ for channel flows by asymptotic analysis of the Navier–
Stokes equations. The exponent γ = −3/2 is obtained for plane Poiseuille flow, and though
this has not yet been written for publication, the same exponent results from an analogous
analysis of pipe flow. Chapman uses the L2 definition of amplitude as described above,
except that he assumes a periodic flow perturbation and defines amplitude by an integral
over one period. We believe that this does not affect the final result, so that his conclusion
can be fairly summarized by (1.2).

We shall say nothing of the arguments of Ref. [1] except to note that they are based
on the specific initial condition that appears to be most effective at exciting transition,
a streamwise vortex plus small non-streamwise components. If the analysis is correct, the
threshold amplitude for such perturbations to excite transition will scale as R−3/2 as R → ∞.
In principle −3/2 is thus a proposed upper bound for γ in the sense that there is the
possibility that some other initial configuration might be found that would excite transition
more effectively.

It must be noted, however, that Chapman’s analysis is based on flow structures that
evolve on a time scale O(R), during which they move a distance O(R) and stretch a distance
O(R). For the mechanisms involved to come fully into play, a pipe would have to have length
at least O(R), i.e., O(R) pipe diameters. This exceeds the actual pipe lengths of experiments,
which are in the hundreds, not thousands or tens of thousands. Thus an exponent as low
as the theoretical value of −3/2 should not necessarily be observable in any existing pipe
experiment. (Conversely, Chapman also identifies other finite-R effects that act in the
opposite direction, effects which make exponents γ estimated from data with R < 104 more
negative than the asymptotic values for R → ∞.)

IV. PIPE EXPERIMENTS OF DRAAD AND NIEUWSTADT

The DN experiments in the 36m pipe at the Delft University of Technology are described
in detail in Ref. [4]. In these experiments, a disturbance is introduced into the laminar flow
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through a set of slits in the side of the pipe. These are pumped in an oscillatory fashion so
that water is injected and extracted sinusoidally at a controllable frequency and amplitude.
As a measure of disturbance amplitude, DN take injection velocity nondimensionalized ac-
cording to (2.3), i.e., divided by the flow velocity in the pipe. Their experiments lead to the
following estimates, summarized for example in Figure 6.8 on p. 140 of Ref. [4]:

DN as published: γ ≈
{−2/3 for long wavelengths,
−1 for short wavelengths.

(4.1)

“Long” and “short” wavelengths are defined in the usual nondimensional space scale, i.e.,
relative to the pipe radius. For simplicity, since our interest is in smallest perturbations that
may excite turbulence, from now on we shall consider just the value −1 reported by DN for
short wavelengths.

Several matters arise in the attempt to convert the DN result to the amplitude measure
(2.1). The most obvious is the fact that since the DN perturbations are periodic in time,
they have infinite L2-amplitude. For the conversion to (2.1) we must guess how short
a finite-length perturbation might have led to approximately the same observations. If
a perturbation of length O(1) (i.e., of length independent of R) would suffice, then the
exponent γ ≈ −1 can be taken at face value. On the other hand one might also imagine
that perturbations of length and time scale O(R) (i.e., laboratory time O(1) as measured
in seconds) would be needed. In this case the disturbance amplitudes must be multiplied
by O(R1/2) for conversion to L2 amplitude because of the square root in (2.1), so that the
estimate γ ≈ −1 should be increased by 1/2 to −1/2.

Thus at this stage of the discussion it would appear that the DN minimal exponent −1
corresponds in the amplitude measure (2.1) to a figure in the range −1 to −1/2.

It appears to us that there is also a second adjustment that should be applied to cast
these results in terms of the L2 amplitude (2.1). DN measure disturbance amplitude by
velocity in the injection and extraction slits. However, the velocity of the water in the slits
is not proportional to the velocity of the perturbation it induces in the pipe. The reason is
that as the flow speed in the pipe increases with R, a proportionally greater volume of water
is disturbed by the injection and extraction, implying that the pointwise velocity disturbance
shrinks.

Penetration scenario. Suppose that for any flow speed R, the injected perturbation
penetrates approximately the full width of the pipe. Then because the amount of fluid into
which it is injected scales as O(R), the velocity amplitude reduces pointwise by O(R). The
exponents −1 to −1/2 would need to be decreased by 1, giving the range from −2 to −3/2.

Non-penetration scenario. On the other hand, it is not obvious that injected pertur-
bations penetrate the pipe effectively, and the other extreme scenario would seem to be
that the injected perturbation affects a region near the pipe wall of width O(R−1). In this
case, the perturbation is distributed over a volume O(R−1) × O(R) = O(1), i.e., a volume
independent of R. The pointwise velocity amplitude will accordingly be independent of R
in that region. At the same time, the fraction of the pipe filled by the velocity perturbation
is now not O(1) but O(R−1), implying an L2 correction factor of O(R−1/2). Thus according
to the L2 definition of amplitude, the exponents −1 to −1/2 would need to be decreased by
1/2, giving the range from −3/2 to −1.

Our discussion has raised two physical questions (whose answers may be related). Rather
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than attempt to resolve them on the basis of meagre evidence, we summarize our current
understanding of the DN observations for short wavelengths by the range

DN adjusted to L2 amplitudes: − 2 ≤ γ ≤ 1.

In principle these are estimated upper bounds for γ, as it is always possible that the pertur-
bations actually injected are not maximally efficient in exciting turbulence.

V. PIPE EXPERIMENTS OF DARBYSHIRE AND MULLIN

The DM experiments, described in Ref. [6], were carried out in a 3.8m pipe at Oxford
University. (The equipment subsequently moved with Mullin to the University of Manch-
ester, where a new 17m pipe has recently been built based on the same design.) These
experiments differ in many ways from those of DN, the most fundamental one being that
water is sucked out of the pipe at fixed speed rather than pushed into it at fixed pres-
sure. Another important difference is that whereas the DN perturbation is periodic, the
DM perturbation is injected just once.

The DM paper does not propose a value for γ except to suggest that it seems to be just
slightly less than 0. Based on the plots in Ref. [6], a rough estimate would seem to be

DM as published: − 0.4 ≤ γ ≤ −0.2. (5.1)

However, the disturbance amplitudes reported by DM are not normalized by the velocity in
the pipe. Introducing the adjustment (2.3) gives

DM after nondimensionalization: − 1.4 ≤ γ ≤ −1.2.

Now the more difficult question arises, as in the DN case, of what further adjustment
may be needed because of the complex relationship between the flow velocity in the slits and
the perturbation velocities induced in the pipe. As with DN, the DM flow perturbations
are measured in the slits, not in the pipe. The form of the injections even in the slits
is complicated by the geometry of a drive mechanism mounted on a rotating plate. In
adjusting what they call the amplitude A, DM increase the injected volume in proportion
to A, the injection time approximately in proportion to A1/2, and the maximum injection
velocity approximately in proportion to A1/2. Within the pipe, this will produce a velocity
perturbation extending a distance on the order of A1/2R.

Penetration scenario. Suppose the perturbation penetrates a distance O(1) into the
pipe. Then the volume of the effective disturbance is O(A1/2R) and its pointwise amplitude
is O(A1/2R−1), giving an L2 amplitude O(A3/4R−1/2).

Non-penetration scenario. Suppose the perturbation penetrates only a distance O(R−1)
into the pipe. Then the volume of the effective disturbance is O(A1/2) and its pointwise
amplitude is O(A1/2), giving an L2 amplitude of O(A3/4).

We conclude that two further adjustments of the DM results are needed to convert them
to L2 amplitudes. First, because what DM call A becomes O(A3/4) in the L2 measure, the
numbers −0.4 and −0.2 should be multiplied by 3/4, becoming −0.3 and −0.15. Second
and more important, the final numbers obtained should be reduced by between 0 and 1/2.
Putting all these adjustments together gives:
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DM adjusted to L2 amplitudes: − 1.8 ≤ γ ≤ −1.15.

We emphasize once more that our arguments and measurements are not as precise as these
numbers may suggest.

In principle these are again estimated upper bounds for γ, as it is again possible that
the perturbations actually injected are not maximally efficient. In particular, it might be
possible to excite turbulence more efficiently by disturbances shaped to have a streamwise
length with a different dependence on R and on amplitude.

VI. DISCUSSION

The existing experimental and theoretical literature on threshold exponents for transition
in a pipe is based on inconsistent definitions of amplitudes, so the published results are not
comparable. Here we have attempted to reformulate some of these results in a matter consis-
tent enough for a meaningful comparison. There are numerous uncertainties in this process,
including spatial vs. temporal growth of disturbances, solitary vs. periodic disturbances,
form of the velocity field perturbation effectively introduced by injection, non-“optimality”
of experimentally injected disturbances from the point of view of exciting transition, the
effects of finite pipe length, and, of course, experimental error. For all these reasons, no
decisive conclusion can be drawn from our comparison. The tentative conclusion we draw
is that the reformulated experimental (Draad and Nieuwstadt; Darbyshire and Mullin) and
theoretical (Chapman) results appear to agree upon a critical exponent roughly in the range
γ = −3/2 ± 0.3, if the centerline velocity is nondimensionalized to 1.
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