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We consider positron scattering on the alkali atoms of Li, Na, and K at very low energies, where
only the elastic scattering and positronium formation in the ground state are the two open channels.
Utilising the recently developed two-center convergent close coupling method [Lugovskoy et. al.,
Phys. Rev. A 82, 062708 (2010)] we investigate the behavior of the cross sections as the impact
energy goes to zero and demonstrate their convergence. The study sets quantitative benchmarks
for any rigorous theoretical treatment of the collision problems.

PACS numbers: 34.80.-i

I. INTRODUCTION

In 1948 Wigner showed that the cross-section energy
dependence near the threshold energy does not depend on
the particular reaction mechanism, but is governed only
by the long-range interaction of the reacting particles [1].
For the case of a final state with two fragments Wigner
gave a solution for three typical cases of long-range po-
tentials. The derived threshold laws were found to be
applicable for the description of a rich variety of collision
processes [2]. Initially, studies of threshold effects uti-
lized collisions involving electrons [3] and positrons [4–7].
Their longer wavelengths allowed characterization of the
scattering process using few parameters over a substan-
tial energy range. More recently experimental techniques
have evolved for direct study of threshold effects in ultra-
cold collisions with heavier particles such as atomic nuclei
[8], fermionic atoms [9] and molecular fragments [10].
In the case of positron-alkali scattering the positron-

ium (Ps) formation threshold lies at zero energy. For such
exothermic reactions the Wigner law predicts that the S-
wave cross sections behave as 1/k0, where k0 is the wave
number of the incident positron, and hence be infinite at
threshold. For elastic scattering the cross section should
converge to a constant. Watts and Humberston [11] and
Humberston and Watts [12] conducted Kohn variational
calculations for positron-lithium collisions and observed
the rise in the s-wave cross section for positronium forma-
tion with decreasing momentum of the incident positron.
They interpreted this observation in terms of the Wigner
threshold law.
Similar exothermic reaction systems occur elsewhere.

Using the Kohn variational method Armour and Cham-
berlain [13] have found such results for the elastic and
rearrangement cross sections in hydrogen-antihydrogen
scattering. A similar 1/k0-dependence of the cross sec-
tion for H formation in Ps collisions with protons was
reported by Mitroy [14]. A simple explanation of such
behavior was given by McAlinden et al. [5] in their paper
on positron-lithium scattering. But the argument is of
general character. They point out that the observed reg-
ularities are due to the dominating kinematic 1/k0 factor
in the expression for the cross section in the absence of
amplitude dependence on k0. However, this needs to be

established in a fully convergent formalism.
There are several theoretical studies of positron scat-

tering from alkali targets at energies above 1 eV [15–21],
where they could be tested against experiment [22–24].
Threshold behavior in positron scattering from lithium
was studied in Refs. [5, 11, 12, 25]. It was shown that
both elastic and Ps(1s) formation cross sections obey
Wigner threshold laws. In Kohn variational calculations
up to two hundred and twenty of short-range correla-
tion terms were used for the trial wave functions [12].
However, the absolute values of the Ps formation cross
sections differ by orders of magnitude depending on the
chosen model parameters [11, 12]. In the case of close-
coupling calculations up to fourteen states were used and
no convergence was established for these quantities which
also varied in wide limits [5, 25]. Recently, Ward and
Shertzer [20] and Ward et al. [21] applied the hyperspher-
ical hidden crossing method to Ps formation in positron-
lithium scattering and found a rise in the s-wave cross
section for Ps formation as the momentum of the incident
positron is decreased. A similar result was also obtained
for positron-sodium scattering [26].
In this work we present the results of the convergent

close-coupling (CCC) calculations for positron scattering
from the alkali atoms of Li, Na and K, at very low pro-
jectile energies. The first two atoms are able to weakly
bind a positron while the third atom, K, is not [27]. The
existence of these states was shown theoretically with the
use of variational calculations [28]. Our goal is to present
convergent Ps-formation and elastic cross sections at the
very low incident positron energies, as well as confirming
Wigner’s threshold law for Ps(1s) formation utilizing a
fully convergent formalism.

II. THEORY

The details of the two-center CCC formalism for
positron scattering have been given in Refs. [29, 30]. The
lighter alkali atoms are readily treated by the frozen-core
Hartree-Fock model of one valence electron above a rela-
tively inert core [31]. Core polarizability is treated using
phenomenological polarization potentials. To incorpo-
rate explicit Ps-formation, it is convenient to replace the
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non-local exchange part of the core potential by a local
approximation [30, 32]. Another approximations is to ne-
glect electron exchange between the Ps electron and the
target core electrons. Given the relatively inert closed
shell core we expect the effect of these approximations to
be small.
The one-electron target (T) Hamiltonian HT is diag-

onalised for each orbital angular momentum l ≤ lmax to
obtain target pseudostates using

〈φ
(T)
f |HT|φ

(T)
i 〉 = ǫ

(T)
f δfi, (1)

where the φ
(T)
n (r) are linear combinations of the complete

Laguerre basis functions

ξ
(λ)
n,l (r) =

(

λ(n− 1)!

(2l + 1 + n)!

)1/2

×(λr)l+1 exp[−λr/2]L2l+2
n−1 (−λr), (2)

and where L2l+2
n−1 (x) is the associated Laguerre polyno-

mial, and n ranges from 1 to the basis size N . With
increasing N the negative-energy states converge to the
true discrete eigenstates, while the positive-energy states
yield an increasingly dense discretization of the target
continuum. Explicit inclusion of Ps (pseudo)states also
requires diagonalization of the Ps Hamiltonian in a La-
guerre basis

〈φ
(Ps)
f |HPs|φ

(Ps)
i 〉 = ǫ

(Ps)
f δfi. (3)

To get the scattering cross sections we solve the set of
momentum-space coupled-channel equations for transi-
tion matrix elements (γ′ = 1, . . . , N (T) +N (Ps))

Tγ′,γ(qγ′ , qγ) =Vγ′,γ(qγ′ , qγ) +

N(T)+N(Ps)
∑

γ′′

∫

dqγ′′

×
Vγ′,γ′′(qγ′ , qγ′′)Tγ′′,γ(qγ′′ , qγ)

E + i0− ǫγ′′ − q2γ′′/(2Mγ′′)
, (4)

where E is the total energy, qγ is the momentum of the
free particle γ relative to the c.m. of the bound pair in
channel γ (T or Ps), ǫγ is the corresponding pseudoen-
ergy of the bound pair, Mγ is its reduced mass and Vγ′,γ

are the effective potentials [30].
One of the strengths of the two-center CCC formalism

is the ability to check for internal consistency. Both ex-
pansions approach completeness with increasing N , but
are not orthogonal to each other. The unitarity of the
close-coupling formalism ensures that double-counting
cannot occur, but the potential overcompleteness man-
ifests itself through ill-conditioned linear equations when
solving Eq. (4). Thus, we cannot arbitrarily increase our
basis sizes, but need to be particularly careful in demon-
strating convergence. At the very low energies considered
here we only have two open states, the target ground
state and Ps(1s). All other states are closed, and repre-
sent virtual excitation, ionization and Ps formation (in

excited states). These virtual effects can be very large,
and due to the completeness of the Laguerre basis, can
be treated by either center. Internal consistency is estab-
lished when widely varying choices of expansions on the
two centers yield much the same results.

The critical aspect of the CCC approach is to demon-
strate convergence at each energy of the projectile with
increasing basis size parameters N and lmax, for specified
exponential fall-off λ. We are free to vary N and λ for
each l, for both the target and Ps. This creates consider-
able flexibility, but for the purpose of a clear presentation

of the convergence we take λ
(Ps)
l =1 (yields exact Ps(1s)

with N (Ps) = 1), and λ
(T)
l = 4 in all presented calcula-

tions. Furthermore, following a series of calculations we

have chosen the N
(T)
l = 25 − l to ensure a sufficiently

large number of states to yield an accurate alkali target
structure and convergence in the scattering calculations.
We will demonstrate convergence by variation of lmax and
the number of Ps states.

III. RESULTS

For the three alkali targets considered we perform cal-
culations over the energy range from 10−5 to 1 eV. The
lower limit was chosen to clearly demonstrate the thresh-
old behavior of Ps-formation. The upper limit is some-
what arbitrary, but ensures that only elastic scattering
and Ps(1s) formation remain the only open channels over
the entire energy range. The emphasis on Ps-formation
at the very low energies allows us to consider only the
zeroth partial wave. Our calculations show that the next
partial wave has a contribution that begins to be com-
mensurate with the zeroth partial wave above 10−3 eV.

As a starting point we obtained convergence by tak-
ing only the Ps(1s) state and increasing the lmax of the
target. Given that explicit Ps(1s) formation is already
included, surprisingly we found that a large lmax = 8 was
necessary. These calculations are labeled CCC(258,1).
In the case of lithium, sodium and potassium the total
number of atomic states included in the close-coupling
expansion is 188, 186, and 184, respectively. These cal-
culations serve as the benchmark results for the zeroth
partial wave since all of the required boundary conditions
are satisfied, and the effects of virtual Ps-formation and
target excitation and ionization are incorporated by the
closed large-l target states.

In Fig. 1 the positron-lithium results are presented.
The upper panel shows the very low-energy behavior of
the Ps(1s) cross section σPs multiplied by the positron
momentum k0, while the lower panel presents the elastic
cross section σel. As expected, both k0σPs and σel tend to
constant values as the positron energy goes to zero. To
demonstrate the remarkable nature of the convergence
with increasing l of the lithium states, we also present
the CCC(254,1) calculations, which are roughly an order
of magnitude above the converged results. This is rather
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FIG. 1: (Color online) σel (lower panel) and k0 σPs (upper
panel) for positron-lithium scattering, as a function of the in-
cident positron energy (13.6k2

0), for the zeroth partial wave

calculated with the indicated CCC(N
(Li)
lmax

, N
(Ps)
lmax

) Laguerre
basis parameters, see text.

extraordinary, as it says that the inclusion of the closed
lithium states with 5 ≤ l ≤ 8 has such a dramatic reduc-
tion of the Ps(1s) cross sections, though almost no effect
on the elastic ones. The presented CCC(254,2) calcula-
tions show that most of the very large effect of the large-l
lithium states can be taken into account by the addition
of just the single closed Ps(2s) state. In other words,
the large-l atomic states are essentially taking into ac-
count the effect of virtual Ps(2s) formation on the Ps(1s)
cross section. For completeness, though not presented,
the addition of Ps(3s) yields barely distinguishable re-
sults from CCC(258,1), confirming the required internal
consistency.

Fig. 2 shows k0σPs (upper panel) and σel (lower
panel) for positron-sodium scattering. Once again the
CCC(258,1) calculations represent the benchmark results
for the zeroth partial wave, and again a clear linear de-
pendence of σPs on k0 at the very low energies is estab-
lished. Unlike the case of lithium, the CCC(254,1) results
(not shown) are already not far from the convergent ones.
So instead, to demonstrate internal consistency, we start
from the much smaller CCC(251,1) calculations, which
yield results almost an order of magnitude too large for
the Ps(1s) cross section, and substantially smaller for
elastic scattering. Given that the atomic states with
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FIG. 2: (Color online) The same as Fig. 1 but for positron-
sodium scattering.

2 ≤ l ≤ 8 have been dropped it is not surprising to see
such a difference. An interesting question is whether the
convergent results can be recovered by just adding more
Ps states. We found that indeed this can be achieved
by setting l

(Ps)
max = 1, and increasing N

(Ps)
l to convergence

around N
(Ps)
l = 10 − l. These calculations are labeled

CCC(251, 101), and include 10 Ps s-states and 9 Ps p-
states of both negative and positive energies.

In Fig. 3 similar results for positron-potassium scat-
tering are presented. Again, it is the CCC(258,1) cal-
culations that are convergent, and demonstrate the lin-
ear behavior of σPs at the lowest energies. Here, as for
lithium, we demonstrate internal consistency by start-
ing with the CCC(254,1) results. These are an order
of magnitude above the convergent results for the Ps(1s)
cross sections, though hardly different for the elastic cross
sections. This time just adding the closed Ps(2s) state
(not shown) has little effect on the results. However,

taking l
(Ps)
max = 1 and setting the Laguerre basis size to

N
(Ps)
l = 5− l we find that the CCC(254, 51) calculations

yield the converged results. So in this case considerably
more Ps states were necessary to recover the convergent
results than for lithium.

It is the complex interplay of atomic and core polar-
izability, which varies substantially for each alkali atom,
that leads to such a variety of convergence behavior. It
is also interesting to observe other variations. For ex-
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FIG. 3: (Color online) The same as Fig. 1 but for positron-
potassium scattering.

ample, for both Li and Na there is a minimum in the
elastic cross section around 0.001 eV, yet for K it moves
to around 0.04 eV. The magnitude of the energy elas-
tic cross section (determines the scattering length) rises
rapidly from Li to K, as does k0 σPs.

IV. CONCLUSION

In conclusion, we have established convergent elas-
tic and Ps-formation cross sections at very low energy

positron scattering on the considered alkali targets. Util-
ising the interplay between states on either the atomic,
or the Ps center, internal consistency has been demon-
strated. Much larger calculations were required for
convergence than previously reported [5, 25], with the
smaller calculations yielding results in error by as much
as an order of magnitude. The 1/k0 threshold behav-
ior for the Ps-formation cross section has been clearly
observed. It is interesting to note that this threshold be-
havior is the same in the present smallest non-convergent
calculations, as well as the much smaller ones performed
earlier [5, 25]. Clearly, establishing the functional behav-
ior is much easier than the absolute cross sections.

Lastly, we have demonstrated the internal consistency
of the calculations. The fact that the atomic and Ps
states are not orthogonal, and yet both form (near)
complete expansions, ensures that the two-center close-
coupling approach is fundamentally ill-conditioned. Con-
sequently, this does not allow for an arbitrary increase
in the number of expansion states used, not only in the
problems considered, but more generally wherever multi-
center collision problems appear. Hence considerable
care needs to be undertaken to demonstrate convergence
as has been done here.
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