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Abstract: We study the coevolutionary dynamics of network topology and social complex contagion
using a threshold cascade model. Our coevolving threshold model incorporates two mechanisms:
the threshold mechanism for the spreading of a minority state such as a new opinion, idea, or
innovation and the network plasticity, implemented as the rewiring of links to cut the connections
between nodes in different states. Using numerical simulations and a mean-field theoretical analysis,
we demonstrate that the coevolutionary dynamics can significantly affect the cascade dynamics.
The domain of parameters, i.e., the threshold and mean degree, for which global cascades occur
shrinks with an increasing network plasticity, indicating that the rewiring process suppresses the
onset of global cascades. We also found that during evolution, non-adopting nodes form denser
connections, resulting in a wider degree distribution and a non-monotonous dependence of cascades
sizes on plasticity.

Keywords: coevolution; threshold cascades; link rewiring

1. Introduction

Understanding collective interactions among agents is crucial for predicting the behav-
ior of complex systems [1–5]. Recently, studies of group and higher-order interactions have
received significant interest in the study of the statistical physics of complex systems [5–8].
Social contagion is one of the most interesting examples of group interactions, underlying
the spread of information, fads, opinions, or behaviors [1–3,9–14]. Unlike the simple conta-
gion process for the spread of infectious diseases which occurs via pairwise interactions [15],
social complex contagion [3,4,6] usually requires simultaneous interactions with multiple
neighbors. The threshold model is a pioneering work in the field of complex contagion
describing cascading dynamics [1,2,9,10]. It is a binary-state model in which the adoption
of an initial minority state by a node in an interaction network requires that the fraction of
neighboring nodes that have already adopted that state exceeds a threshold value. Cascade
phenomena described by this model can represent not only the spread of social behaviors
but also the transmission of neural signals [16], error propagation in financial markets [17],
and the collapse of power grids [18].

Although many studies have been conducted on threshold cascade models [2,10,19–23],
including competition of simple and complex contagion processes [24–26], most have fo-
cused only on the dynamics on static networks [2,10,19–23]. However, real-world complex
systems change their connection patterns and the network of interactions changes dynam-
ically [27–30]. In this respect, some studies have attempted to analyze coevolutionary
dynamics, that is, dynamical processes in which the time evolution of the states of the
nodes and the evolution of the network topology are dynamically coupled. These include
coevolving voter models [31–38], coevolving spin systems [39,40], coevolving models of
opinion formation [41,42], epidemic models of adaptive networks [43–45], coevolving
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models of cultural evolution [46,47], and game theoretical models [48]. While we here
focus on the coevolution of node states and network topology, there have been studies that
address the coevolution between different dynamical processes in a static network [49–52].
In cases where cascading dynamics are coupled with the evolution of the network struc-
ture, it is essential to understand the coevolutionary dynamics of the network topology
and threshold dynamics. However, only a few studies have been conducted on models
of coevolutionary dynamics including group or collective interactions [40,53]. Here, we
attempt to understand the behavior of the threshold cascade model by incorporating the
adaptive dynamics of the network topology. This is a tool for a better understanding of the
comparison of threshold models with empirical data [3,11,54–60].

In this study, we propose a coevolving threshold cascade model, where the nodes
are in two possible states and can redefine their connections in the network depending
on the dynamical states of the nodes. Initially, only a few seed nodes in a network are in
a minority state that can represent new information, opinions, or innovations that might
spread into the system. According to the threshold process, given a node i in the initial
majority state, if the fraction of its neighbors that are already in the new initial minority
state exceeds a certain threshold θ, the node i changes state, and becomes “adopting”. In
addition, by following the homophilic tendencies observed in society [61,62], an agent
may reduce its social ties with individuals who are in an opposite state and establish new
connections at random with agents who share the same state. To be specific, when a node i
is adopting, then a non-adopting node from the neighbors of node i breaks its link with
node i and establishes a new link with a non-adopting node in the network. Therefore, the
evolution of the network topology by link rewiring is coupled with the complex contagion
processes so that the network structure constantly evolves in response to changes in the
behavior of its constituents. The main result obtained from simulations of this model, which
is well described by an appropriate mean-field theoretical approach, is that the rewiring
process can suppress the emergence of global cascades by a mechanism of the segregation
of adopting nodes.

2. Model

We consider a coevolving threshold cascade model as shown in Figure 1. The coevolu-
tionary threshold model consists of two parts: (i) the rewiring of links and (ii) the adoption
of a new state (opinion, idea, or innovation). Dynamics start from seed node initiators: a
small fraction R0 of randomly selected adopting nodes. Furthermore, the dynamics proceed
by the specific rules below.

rewiring

adoption non-adopting

adopting

Figure 1. An example of the evolution rules of the coevolutionary dynamics of a threshold cascade
model. A connected pair of an adopting (filled circles) and a non-adopting node (open circles) is
removed with a probability p, and the non-adopting node establishes a connection to a new node
that is not adopting, chosen randomly from the entire network. In addition, a non-adopting node
becomes adopting if the fraction of adopting neighbors is larger than the threshold θ. Once a node
becomes adopting, the node is then permanently in this state.
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Link rewiring adaptively changes the structure of the network representing the situa-
tion in which an agent meets a new possible state, but does not want to adopt it. At each
time step of a random sequential update, each link that connects a pair of an adopting and
a non-adopting node is removed with probability p. In addition, the non-adopting node
that loses a link establishes a new link with a node that is not currently adopting, chosen
randomly from the entire network. The parameter p, called the network plasticity, is a
measure of the ratio of the timescales of network evolution to the adoption dynamics.

The adoption of a new state is a complex contagion process following the dynamics
of Granovetter’s and Watts’ threshold model [1,2], where a non-adopting node becomes
adopting if the fraction of its adopting neighbors exceeds a threshold θ. We assume that
each node has the same threshold θ. Once nodes are adopting, their adopting state remains
permanently. The two processes of link rewiring and adoption proceed until there are no
active links connecting a pair of adopting and non-adopting nodes in a network.

3. Results
3.1. On a Static Network

To establish a benchmark for comparison, we begin by analyzing the threshold dy-
namics on a static (non-adaptive) network. This is a well-established model to explain the
onset of the extensive size of the cascade of adoption from a few seed nodes, referred to as
a “global cascade” [2,10]. Typically, the global cascade occurs in a specific domain of two
parameters: network connectivity and threshold. For instance, in Erdös–Rényi (ER) graphs,
when the average degree z is less than the percolation threshold z1 of the graphs, global
cascades do not occur, as there is no giant connected component. In addition, when z is
greater than a second threshold z2 which depends on the threshold θ, the nodes that exceed
their threshold are rare because the network becomes too dense. Therefore, global cascades
can occur only in the range between z1 and z2.

For local tree-like networks, the transition lines in the parameter space between the
global cascade and no cascade domains can be precisely identified using a mean-field
analysis [2,10]. On a random graph, the average fraction of the adopting nodes in a
stationary state, called the cascade size R, is given by the probability of a randomly selected
node to become adopting. The size R can be obtained by approximating the network as a
tree, with a chosen node as the root and considering the cascade of adoption towards the
root. For a fixed degree distribution P(k) and initial seed fraction R0, such a probability is
given by [10]:

R = R0 + (1− R0)
∞

∑
k=0

P(k)
k

∑
m=0

(
k
m

)
qm

∞(1− q∞)k−mF(m/k, θ), (1)

where q∞ represents the probability that a node, reached via a randomly selected link, is
adopting in the stationary state and F(m/k, θ) is the threshold function. To be specific, if
m/k > θ, F(m/k, θ) = 1, otherwise F(m/k, θ) = 0.

The probability q∞ is computed by solving the following self-consistency equation
iteratively [10],

qn = q0 + (1− q0)
∞

∑
k=0

kP(k)
z

k−1

∑
m=0

(
k− 1

m

)
qm

n−1(1− qn−1)
k−m−1F(m/k, θ), (2)

where qn is the probability of step n and q0 = R0. In the limit n → ∞, we can obtain the
probability q∞ in the steady state. In addition, mean-field theory predicts the necessary
conditions for global cascades from the linear stability analysis of a trivial fixed point
q∞ = 0 in the limit R0 → 0 as:

∞

∑
k=1

k(k− 1)
z

P(k)F(1/k, θ) > 1. (3)
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Using this transition point and the size of adopting nodes predicted from the above theory
as benchmarks, we will now analyze how they are modified by the coevolutionary adaptive
dynamics of the network.

3.2. Segregation of Adopting Nodes via Link Rewiring

We have explored the coevolutionary threshold dynamics with link rewiring in Erdös–
Rényi (ER) networks with N = 105, z = 3, and θ = 0.18. We set the initial fraction of seeds
as R0 = 2× 10−4. To start with, we measured the global cascade size R as a function of
network plasticity p in order to examine the effect of link rewiring. We also computed
the size S of the largest cluster composed of non-adopting nodes in order to inspect the
network structure. The size of adopting nodes R and the largest non-adopting cluster S
in a steady state is shown in Figure 2a as a function of p. Note that the case of p = 0
corresponds to the result of threshold cascading dynamics in a static network.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
p

R
S

(a)

0

0.02

0.04

0.06

0.08

0.1

0 0.2 0.4 0.6 0.8 1
p

nc
(b)

(c)
(d)

Figure 2. (a) The final fraction R of adopting nodes and the size S of the largest non-adopting cluster
as a function of the network plasticity p. (b) The number nc of clusters to network size N as a function
of p. The dynamics starts with θ = 0.18 in ER networks with N = 105, z = 3, and an initial fraction
of seeds of R0 = 2× 10−4. The average values are obtained by 104 independent runs with different
network realizations for each run. Examples of network structures with N = 200 at the steady
state with (c) p = 0.2 and (d) p = 0.8. Red and blue nodes represent adopting and non-adopting
states, respectively.

We found a transition between a global cascade and no cascade for a critical value pc
of the plasticity. When p < pc, most nodes are adopting, forming a large connected cluster
of adopting nodes. Almost all nodes belong to a single cluster when p ≈ 0.4. As p further
increases, adopting nodes are separated from the large cluster due to rewiring. Beyond the
transition point, the cascading dynamics originating from the seed nodes fail to propagate
throughout the entire network. As a result, many small adopting clusters appear and a
large cluster composed of non-adopting nodes emerges.

Figure 2b shows the number of clusters nc normalized to the total number of nodes N
in a steady state as a function of network plasticity p. For small values of p, nc decreases
as p increases. That is, small non-adopting clusters gradually join adopting clusters as p
increases due to rewiring. Around p ≈ 0.4, almost all nodes belong to a single adopting
cluster, and therefore nc ≈ 0. As p increases beyond the transition point, adopting nodes
become segregated due to rewiring and small adopting clusters appear. Examples of
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network structures at a steady state are shown in Figure 2c for p = 0.2 and Figure 2d for
p = 0.8. When p = 0.2 in Figure 2c, there exists a single large cluster of adopting nodes.
On the other hand, when p = 0.8 in Figure 2d, adopting nodes are segregated, resulting
in a low R value. Therefore, we find that in the “global cascade” phase, there is one large
adopting cluster, whereas in the “no cascade” phase there is a large non-adopting cluster
and many small adopting clusters. In summary, a mechanism for the transition to the
“no cascade” phase in the coevolutionary model is the segregation of adopting nodes via
link rewiring.

3.3. Phase Diagram for Global Cascades

We conducted numerical simulations to determine the fraction R of the adopting nodes
in the steady state by varying the average degree z, the adoption threshold θ, and rewiring
probabilities p = 0.2, 0.4, and 0.6 using ER graphs with N = 105 and R0 = 2 × 10−4

(Figure 3). The dashed lines in Figure 3 represent the location of the transition lines
between the “global cascade” and “no cascade” phases in static networks as obtained from
Equation (3). One of the key findings is that the domain of global cascades shrinks with
increasing network plasticity p. Specifically, for a fixed threshold θ, as p increases, the first
transition point z1 of the mean degree increases, whereas the second transition point z2
decreases. The first threshold z1 for the global cascades becomes delayed with increasing
p because the rewiring of links effectively segregates the adopting nodes, as described in
the previous section. In addition, the second threshold z2 decreases because the nodes that
exceed their threshold also become rare due to link rewiring p. Unlike coevolving simple
contagion models [29], the second transition z2 is a peculiar feature of threshold models.
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Figure 3. The final fraction R of adopting nodes in ER networks with N = 105 as a function of the
average degree z and threshold θ, with various rewiring probabilities, i.e., (a) p = 0.2, (b) p = 0.4,
and (c) p = 0.6, in a steady state. Th dashed lines represent the transition points between the global
cascade and no cascade phases in static networks, that is p = 0, obtained from Equation (3). The solid
lines represent the transition points with network plasticity p by using mean-field approximations.
The numerical results are obtained by 103 independent runs with different network realizations for
each run.

Our finding shows that link rewiring suppresses the emergence of global cascades
as compared to what occurs in a static network. This is because the rewiring process
removes the links that connect adopting and non-adopting nodes. Consequently, the
cascading dynamics become segregated and cannot propagate further. Therefore, the
adaptive mechanism enabled by the rewiring process effectively suppresses global cascades
by removing active links, i.e., links that connect adopting and non-adopting nodes. This
mechanism allows the network to reorganize itself in response to the changes in the state of
the nodes, effectively preventing the spread of a new state.

3.4. Non-Monotonicity in the Size of the Global Cascade

While the area of the parameter space (z,θ) in which global cascades occur decreases
monotonically with the increasing network plasticity p, the size R of the global cascades
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exhibits more complex patterns. One could expect that the size R also decreases mono-
tonically with increasing p, but we found that R can increase with increasing p within a
certain range of p in the global cascade phase. Figure 4a shows the size R of cascades as
a function of p and z, with R0 = 2× 10−4, N = 105, and θ = 0.18 in ER networks. As p
increases, the value of z1 at which the global cascades begin to occur is delayed. However,
when the global cascade is initiated, the rate of increase in R is greater for larger values
of p, as shown in Figure 4b. Hence, in the region in which 2 . z . 4, we show that the
cascade size R increases as the link rewiring probability p increases. Figure 4c shows R as a
function of p with θ = 0.1 and z = 2 and 2.5 in the region where the increase in R with p
is maximized. In this figure, R increases as the plasticity p increases below the transition
point to the “no cascade” phase.
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Figure 4. (a) The final size R of cascades as a function of network plasticity p and average degree z of
the ER networks with threshold θ = 0.18 and seed fraction R0 = 2× 10−4. The dashed lines represent
analytical predictions obtained by Equation (9). (b) The size R as a function of the average degree z in
ER networks for p = 0, 0.2, 0.4, and 0.6 with θ = 0.18. The lines represent analytical predictions based
on Equations (4) and (5). (c) Inset shows the size R with respect to the probability of link rewiring p
for z = 2 and 2.5 and θ = 0.1. The numerical results were obtained with 103 independent runs with
different network realizations for each run.

The increase in R with increasing p can occur when separated non-adopting clusters
are connected to the giant cluster through new connections established during link rewiring.
This effect can be characterized by considering the number nc of clusters, as shown in
Figure 2b. The fraction nc of the clusters decreases as p increases from p = 0. This
implies that increasingly more small clusters merge into the giant connected component
of the network as p increases, thereby promoting the larger size of cascading dynamics.
For instance, when p = 0.4, the separated nodes cease to exist, indicating that initially
separated nodes have become linked to a cluster via link rewiring.

3.5. Structure of Rewired Networks

We examined the network structure in the steady state. We found that the degree
distribution broadens as p increases. Figure 5 shows the degree distribution P(k) in the
steady state for various values of p, where the dynamics start from ER networks with
z = 4 and N = 105. As p increases, the distribution deviates from a Poisson distribution
as indicated by the solid line in Figure 5a. In particular, the probability of finding a large
degree value k increases with p, which leads to a broader degree distribution. This implies
that as the network plasticity p increases, the degree distribution becomes broader owing
to rewiring.

In our coevolving threshold model, non-adopting nodes remove their links to adopting
nodes and then randomly connect to a new non-adopting neighbor. Through this process,
the link density of the non-adopting nodes continuously increases over time. Consequently,
nodes with higher degrees gradually appear during the evolution. Furthermore, this
continuous increase in link density and the emergence of higher degree nodes intensify
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the overall connectivity of non-adopting nodes, potentially promoting the larger size of
cascading dynamics. On the other hand, in the no cascades phase, there are no adopting
nodes of extensive size; therefore, the number of active links that can be potentially rewired
is limited. Therefore, the degree distribution in this region remains approximately a Poisson
distribution (Figure 5c).
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Figure 5. Degree distribution P(k) of the coevolving threshold model at the steady state in (a)
linear and (b) log scales for p = 0, 0.1, 0.2, 0.3 (global cascade region) and (c) linear scale for p =

0.4, 0.5, 0.6, 0.7 (no cascades region). The results were obtained from ER networks with z = 4 and
N = 105 with 104 independent runs. The solid lines in (a,c) represent the Poisson distribution with
z = 4.

3.6. Mean-Field Approximations

Finally, we propose a mean-field approximation of the coevolving threshold model on
random networks that accounts for our numerical results. We consider the effects of link
rewiring by generalizing the mean-field equations for the static networks. In our model,
there are two main effects of link rewiring: removing active links between adopting and
non-adopting nodes and increasing the density of links between non-adopting nodes as
new links are created. By implementing these two effects, we modify the self-consistency
equation (Equation (2)) for the probability qn in a local tree-like network as

qn = (1− p̃)q0 + (1− p̃)(1− q0)
∞

∑
k=0

kQ(k, n)
z

k−1

∑
m=0

(
k− 1

m

)
qm

n−1(1− qn−1)
k−m−1F(m/k, θ), (4)

where Q(k, n) is the degree distribution of the non-adopting nodes at time step n and p̃
is the probability that an active link will be removed before a non-adopting node at one
end of the link is adopting. Note that unlike the threshold model in a static network, the
degree distribution is neither time independent nor initially given because of the rewiring
processes. Similarly, the mean-field equation of the cascade size at step n is approximately
given by

Rn = R0 + (1− R0)∑
k

Q(k, n)
k

∑
m=0

(
k
m

)
qm

n (1− qn)
k−mF(m/k, θ), (5)

where Rn is the fraction of adopting nodes at time step n.
We suggest a zero-th order estimation of the probability of link removal p̃ and the

time-dependent degree distribution Q(k, n). If an adopting node is connected to a non-
adopting node, the link between them is removed with probability p at each time step.
Therefore, in order to make an accurate prediction of p̃, it is necessary to know the time
interval required for a non-adopting node to become adopting. However, this interval is
difficult to predict, because the value is determined by collective interactions and not by
the properties of individual links. To qualitatively explore the effect of link rewiring, we
assume that link rewiring only affects one time step, leading to p̃ ≈ p. This assumption
underestimates the actual value of p̃ because the active links can persist for multiple steps.
However, it can qualitatively explain the effect of active link removal as an approximation.
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Subsequently, we estimated the time-dependent degree distribution Q(k, n) by adding
a new connection randomly among non-adopting nodes. As the time step n increases, the
average degree of non-adopting nodes also increases. In well-mixed populations consisting
of N nodes, the degree distribution of non-adopting nodes at step n can be approximated
as follows:

Q(k, n) =
(

Nn

k

)
πk

n(1− πn)
Nn−k, (6)

where Nn is the number of non-adopting nodes (Nn = (1− Rn)N) and πn is the probability
that two randomly chosen non-adopting nodes are connected at time n. To estimate the
probability πn, we assume again that the effect of link rewiring lasts for only one time step.
Thus, the probability πn can be approximated as follows:

πn = πn−1

[
1 +

p(1− θ)∆Rn−1

1− Rn−1

]
, (7)

where ∆Rn−1 is the change in R between the steps n− 1 and n. The estimation is based on
the assumption that the number of additional links between the non-adopting nodes is
equal to the number of links lost by the adopting nodes during link rewiring. The term
(1− θ) represents the maximum fraction of active links in an adopting node that are subject
to link rewiring, because at least θ fraction of links are already connected to adopting
neighbors.

Combining Equations (6) and (7), we can estimate the final fraction R∞ of the adopting
nodes in the steady state by iteratively solving Equations (4) and (5). A comparison of the
theoretical predictions for R and the numerical simulation results is shown in Figure 4b.
The lines in Figure 4b corresponding to the analytical results give a good description
of the main features of the numerical results. Our approximation accounts for the two
dynamical effects of link rewiring: one segregates the adopting nodes by removing the
active links, and the other increases the link density of non-adopting nodes, which could
promote contagion above the first transition z1. The quantitative discrepancies between our
mean-field approximation and numerical results are primarily caused by the assumptions
that we made to derive p̃, Q(k, n) and the term (1− θ) in πn.

In addition, the necessary condition for global cascades in the limit R0 → 0 can be
predicted by a linear stability analysis of a trivial fixed point q∞ = 0 as follows:

(1− p̃)
∞

∑
k=1

k(k− 1)
z

P(k)F(1/k, θ) > 1. (8)

In order for a global cascade to occur, an initial cascade must be triggered; hence,
we estimate the necessary condition using the degree distribution with n = 0, P(k). The
cascading condition in the coevolutionary dynamics is approximately modified by a factor
of (1− p̃) from the condition in static networks. This implies that the cascading condition of
the coevolutionary cascading model obtained with the mean-field approximation predicts
the condition for the cascading dynamics that involves random link removals with a
probability p̃. When we approximate p̃ ≈ p, the transition point can be estimated. The
transition points between global cascade and no cascade phases predicted by the theory
are denoted by lines in Figures 3 and 4a. Overall, our mean-field approximations give
reasonable predictions. We can predict the critical value of network plasticity, denoted as
pc, as:

pc = 1−
[

∞

∑
k=1

k(k− 1)
z

P(k)F(1/k, θ)

]−1

. (9)
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The critical values pc with respect to z with fixed θ and with respect to θ with fixed z
are shown in Figure 6.
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Figure 6. The critical values pc of network plasticity estimated by the mean-field approximation (a)
with respect to z with fixed θ = 0.1, 0.15, 0.2 and (b) with respect to θ with fixed z = 2, 4, 6, 8.

4. Summary and Discussion

We have studied the coevolutionary dynamics of network topology and social complex
contagion using a binary-state threshold cascade model. We investigated how the mecha-
nism for a global cascade is modified by the dynamics of the network topology and also
the asymptotic stationary state of the network structure. Network dynamics, characterized
by a plasticity parameter p, follow from a rewiring of links to cut the connections between
nodes in different states. We find that the network dynamics suppress the onset of global
cascades; there is a transition from a “global cascade” state to a “no cascade” state as the
network plasticity p is increased beyond a critical value pc, so that the domain of param-
eters (threshold θ and network mean degree z) for which global cascades occur shrinks
compared to the situation in a static network. We have found that non-adopting nodes
become more densely connected during evolution, leading to a broader degree distribution
and to a non-monotonous dependence of cascades sizes on plasticity p within the “global
cascade” phase. We have also developed a mean-field approximation that provides a good
description of the transition lines between the “global cascade” and “no cascade” phases in
the presence of link rewiring.

In previous models of coevolving voter dynamics, a generic result, different to what
we find here, was the existence of a network fragmentation transition in two main network
components [32,36]. However, these studies considered binary-state models with two
equivalent states, while here we consider the spreading of an initial minority state with
threshold dynamics in which a change of state is only allowed from the initial majority state
to the minority state. Additionally, unlike coevolving epidemic models with simple conta-
gion [29], once a node becomes adopting, it remains in that state permanently in our model.
The consequence is that there is always a large network component and small segregated
clusters, some of which are reminiscent of the shattered fragmentation transitions found in
multilayer coevolution [34,38]. Overall, this study offers insights into the coevolutionary
dynamics of social complex contagion and network evolution for an understanding of com-
plex and evolving systems. In addition, this study provides a framework for studying and
controlling the cascading phenomena in real-world systems, highlighting the importance
of the interplay between network dynamics and social complex contagion.
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