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ABSTRACT

Arabic and English handwritten digit recognition is a challenging problem because
the writing style differs from one writer to another. In middle east countries, many
official forms are prepared to be written using either Arabic or English languages.
However, some people fill the form using both languages (Arabic and English),
which adds more challenges to recognize digits. Nowadays, deep learning
approaches are considered the hot trend of new research, including Convolutional
Neural Networks (CNN). CNN is used in many applications and modified to produce
other models such as Local Binary Convolutional Neural Networks (LBCNN).
LBCNN was created by fusing Local Binary Pattern (LBP) with CNN by
reformulating LBP as a convolution layer called Local Binary Convolution (LBC).
However, LBCNN suffers from the random assign 1, 0, or -1 to LBC weights,
making LBCNN less robust. Nevertheless, using another LBP-based technique such
as Center-Symmetric Local Binary Patterns (CS-LBP) can address such issues. In
this thesis, a new model based on CS-LBP is proposed called Center-Symmetric
Local Binary Convolutional Neural Networks (CS-LBCNN) that addresses the issues
of LBCNN. Further, an enhanced version of CS-LBCNN is proposed called
Threshold Center-Symmetric Local Binary Convolutional Neural Networks (TCS-
LBCNN) that addresses another issue related to the zero-thresholding function. The
proposed models are compared against state-of-the-art techniques that used the
MNIST and MADBase as a bilingual dataset. The proposed TCS-LBCNN model
proves its ability to give a more accurate and significant classification rate than the
existing LBCNN models. For the bilingual dataset, the TCS-LBCNN enhances the
performance of LBCNN and CS-LBCNN, in terms of accuracy, by 0.15% and
0.03%, respectively. In addition, the comparison shows that the accuracy acquired by

TCS-LBCNN is the second-highest using the MNIST and MADBase datasets.
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ABSTRAK

Pengecaman digit tulisan tangan Arab dan Inggeris merupakan masalah yang
mencabar kerana gaya penulisan berbeza antara penulis. Di negara timur tengah,
banyak borang rasmi disediakan untuk ditulis sama ada menggunakan bahasa Arab
atau Inggeris. Walau bagaimanapun, sesetengah orang mengisi borang menggunakan
kedua-dua bahasa menyebabkan lebih banyak cabaran untuk mengenali digit. Kini,
pendekatan pembelajaran mendalam dianggap sebagai corak terkini di dalam
penyelidikan, termasuk Convolutional Neural Networks (CNN). CNN digunakan
dalam banyak aplikasi dan diubahsuai menghasilkan model baru seperti Local Binary
Convolutional Neural Networks (LBCNN). LBCNN dicipta dengan menyatukan
Local Binary Pattern (LBP) bersama CNN dan merumuskan semula LBP sebagai
lapisan konvolusi yang disebut Local Binary Convolution (LBC). Namun begitu,
LBCNN mengalami kelemahan penetapan rawak 1, 0, atau -1 ke pemberat LBC,
menjadikan LBCNN kurang mantap. Walau bagaimana pun, menggunakan teknik
LBP lain seperti Center-Symmetric Local Binary Patterns (CS-LBP) dapat mengatasi
masalah tersebut. Di dalam tesis ini, model baru CS-LBP telah dicadangkan, yang
dinamakan Center-Symmetric Local Binary Convolutional Neural Networks (CS-
LBCNN) yang dapat menangani isu-isu pada LBCNN. Selanjutnya, versi tambahbaik
CS-LBCNN  dicadangkan, iaitu Threshold Center-Symmetric Local Binary
Convolutional Neural Networks (TCS-LBCNN) yang menangani masalah fungsi
zero-thresholding. Model yang dicadangkan dibandingkan dengan teknik terkini
menggunakan MNIST dan MADBase sebagai set data dwi-bahasa. TCS-LBCNN
yang dicadangkan membuktikan keupayaannya untuk memberikan kadar klasifikasi
yang lebih tepat dan ketara daripada model LBCNN yang sedia ada. Untuk set data
dwi-bahasa, TCS-LBCNN meningkatkan prestasi LBCNN dan CS-LBCNN, dari
segi ketepatan, masing-masing sebanyak 0.15% dan 0.03%. Di samping itu,
perbandingan menunjukkan bahawa ketepatan yang diperoleh oleh TCS-LBCNN
adalah yang kedua tertinggi menggunakan set data MNIST dan MADBase.
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CHAPTER 1

INTRODUCTION

1.1 Overview

Handwriting recognition is a challenging problem due to the exponential
development of technology. Handwriting recognition is categorized into two kinds,
online and offline, based on the input method to the system. The applications that use
the online form receive the input by moving the pen on a pen-based screen, while the
offline applications use the image captured using an interface such as a scanner or
camera [1]. Many applications need an automatic recognition system to recognize
handwritten images with high accuracy and speed, such as postal code, bank checks
reading in offline systems and editors, enjoyment applications in online systems.
Nowadays, the interest in script and language identification is growing for
multilingual and bilingual scripts due to their different forms and styles [2]-[5].

Furthermore, the digit and character forms vary from one language to
another, leading to build different handwriting recognition systems. In many studies,
English digit and character recognition have been examined for four decades [6]-[7],
while Arabic digit and characters have been investigated in the Nineties. After that,
many studies on Arabic handwriting recognition have been done using different
Arabic handwritten datasets that include some challenging writers' styles.

Moreover, Arabic and English handwritten digit recognition is a challenging
problem because the writing style differs from writer to others and the variation of
style at different instances of the same writer. Because of these reasons, many studies
were proposed to address either Arabic [8]-[11] or Latin [12]-[16] character/digit

recognition problems. In contrast, none of the research focused on bilingual Arabic-



Latin character/digit systems except those developed for discriminating between the
languages of documents/scripts [17]-[18].

In addition, some languages are universal such as English, Arabic, Spanish,
etc. These languages are considered as a second language in countries where their
language is not one of the universal languages. They need the second language
because of one of the following reasons: religious reasons, when their holy books
were written in a different language like the holy Quran in some Islamic countries
(i.e., East Asian countries), educational reasons when references or lectures were
written or explained in another language and social reasons when people visit other
countries. Due to these reasons, bilingual scripts have been used in some countries.

Further, many commercial forms, including opening bank accounts, bank
checks, and handwritten sales invoices, can be written in bilingual forms. For
example, a customer can fill an opening bank account form using Arabic, while
another can fill it in English. Also, others can use both languages to fill the form.
Figure 1.1 shows three samples of filling the form using either Arabic digits, English
digits, or both. Therefore, in this case, the operation in the bank needs two systems to
recognize the digits, one for Arabic and the other for English. Using such two
systems consumes the resources and requires user interaction to move from one
language to another, requiring more users’ time and effort. Thus, bilingual
handwriting recognition systems are needed in real applications instead of using two

systems, which is a less practical solution.
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Figure 1.1: Samples of filling an opening bank account form (a: filling form using
Arabic), (a: filling form using English), (a: filling form using bilingual)



1.2 Research Background

Handwriting recognition is a task done by a machine to interpret understandable
handwritten input from photographs, touch screens, and other devices. Many
computer applications need an automatic recognition system to recognize
handwritten images with high accuracy and speed, such as searching for words, sub-
words, or numbers in large volumes of documents, automatic sorting of postal mail,
and convenient editing of previously printed documents, postal code, and bank
checks reading in offline system and editors, and enjoyment applications in online
systems.

Many studies proposed systems to allow a computer to recognize handwritten
scripts using statistical approaches or machine learning algorithms. These systems
receive a digit, character, word, or/and text image as input and classify it to its
corresponding label. However, only a few of them consider bilingual scripts.
Researchers are not concerned deeply about bilingual recognition of Arabic-Latin
digits, although it is a significant issue, especially in the middle east. Most public and
government documents in Arabic states are typed or written in bilingual forms (i.e.,
mixed of Arabic and English) such as application forms, railway reservation slips,
and cheques that need applications that support bilingual involving handwriting
recognition systems.

Furthermore, several studies applied statistical approaches for digit
classification. Linear Discriminant Function (LDF) is an example of this approach
applied to the Latin digit dataset [19]. Quadratic Discriminant Function (QDF) is
another statistical approach that was modified to produce the Modified Quadratic
Discriminant Function (MQDF) [20]. Moreover, Learning Quadratic Discriminant
Function (LQDF) [21] is proposed based on the QDF technique that merges the
power of MQDF and neural classification. Additionally, a Discriminative Learning
Quadratic Discriminant Function (DLQDF) [7] and Graphical Lasso Quadratic
Discriminant Function (GLQDF) [20] are modified versions of QDF that GLQDF
uses the graphical lasso approach to find the covariance instead of using the
Maximum-Likelihood Estimation (MLE). Further, generative models used in [22],
multi statistical approach in [23], Gaussian Mixture Models (GMM) in [24], and



Naive Bayesian (NB) classifier used in [25]-[26] are other statistical-based
techniques.

In addition, many machine learning techniques were utilized, such as Support
Vector Machine (SVM), Neural Networks (NN), decision trees, etc., for handwritten
recognition [27]-[30]. A random forest classifier is a large collection of tree
classifiers [31]. This classifier aims to averaging noisy and unbiased models to build
models with low variance in terms of classification. Each tree classifier is grown in
random form. The advantages of the random forest classifier are that it is suitable for
extensive data, deals with missing values present in the data, does not require
normalizing data as it uses a rule-based approach. However, it needs many resources
to build numerous trees to combine their outputs, is hard to interpret the results and
fails to determine the significance of each variable, and can be unreliable with deep
trees. Moreover, it suffers from overfitting because of the randomized trees. It needs
much focus on the subsampling phase that has a role in random forests algorithm and
may need to be tuned more carefully than other parameters [31]-[33].

Further, Support Vector Machine (SVM) is a classification approach used to
classify linear or nonlinear data. The first work using SVM was proposed by [34].
The idea of using SVM is based on statistical learning theory [35]. In general, the
idea of this classifier is by separating the data set of two classes with a maximum
distance between them. SVM was applied for developing handwritten digit
recognition models with several feature extraction techniques, including Local
Binary Pattern-based techniques [27], sliding window approach [28], projections
histograms [29] [36], rule-based reasoning approach [36]; ring-zones, and Kirsch
features [37]; and Histogram of Oriented Gradient (HOG) [38].

Likewise, SVM was fused with other techniques to produce hybrid models
that provide more accurate models for classifying digits. Multilayer Perceptron
(MLP) was fused with SVM [39], Bat algorithm as a swarm intelligence algorithm
was combined with SVM [40], and unbalanced decision tree [41]. Nevertheless,
SVM is not suitable for large datasets and does not perform well when the classes in
the data set overlap. Also, it does not work well if the number of features for each
data point exceeds the number of training data samples and may be affected by the

presence of missing data [32]-[33] [42]-[43].



Furthermore, Neural Networks (NN) is a widespread machine learning
approach applied to handwritten recognition [44]-[46]. MLP classifier is an NN
technique used for image classification problems and built using a back-propagation
algorithm [47]. The network's input layer receives the features or the variables
extracted from training data. The input of hidden layers and output layer is the
weighted sum of the outputs from the previous layer. The strengths of NN are the
ability to deal with large volumes of data [32]-[33][48], no need to the prior
knowledge of the data generating process, and no specific architecture used due to
the ability of the network to learn the hidden relationship in the data [49].

However, the disadvantages of NN are the difficulty of listing out all possible
NN architecture, and it causes the difficulty to find the optimal architecture, hard to
interpret the results, needs comprehensive cross-validation to confirm validity [32].
Moreover, using too many hidden layers causes the overfitting problem and is time-
consuming [49]. Additionally, the three most famous NN approaches are Deep
Neural Network (DNN), Deep Belief Network (DBN), and Convolutional Neural
Network (CNN) [46].

Nowadays, deep learning approaches are considered the hot trend of the new
research that composes many non-linear information processing layers. The main
groups of deep learning techniques are defined based on the architectures and the
purpose, such as synthesis or classification [50]. One common deep learning
technique called CNN is a type of feed-forward neural network that uses three
architectural ideas, including local receptive fields, weight sharing, and pooling
layers or sub-sampling [51]. Although CNN gives astonishing outcomes [13]-[15]
[52]-[57], it suffers from a considerable time complexity due to the need for many
hidden layers, and when deeper networks can start converging, a degradation
problem is exposed, or when the network depth increases, accuracy gets saturated
(which might be unsurprising) and then degrades rapidly [58]. This drawback
motivates researchers to suggest many versions or modifications of CNN, including
Deep Residual Network (ResNet). ResNet is one of the common variations of CNN
that needs less computational complexity than CNN and addresses the degradation
problem [58]. However, it still needs a large number of learnable parameters.

On the other hand, LBP [59] is one of the common texture descriptors used in

many studies due to its resistance to lighting changes and low computational



complexity [60]-[62]. The LBP technique converts an image's pixels' value to a
binary number based on a threshold value. This threshold value is the center pixel of
a block of pixels [63]-[64]. Further, many versions of LBP were proposed to improve
the performance of the LBP systems, including Uniform Local Binary Patterns
(ULBP) [65], Center Symmetric Local Ternary Patterns (CS-LTP) [66], center-
symmetric local binary patterns (CS-LBP) [67], etc.

As reported in [67], CS-LBP is more efficient for tolerance to illumination
changes and computational simplicity and is used as a keypoint descriptor. The
illumination change is challenging for character classification problems [68]. This
problem is related to the digit images captured under several illumination conditions
causing illumination variations, including changes in lighting, shadows, or noise. For
example, the car plate is captured under the sun from various directions. In general,
object surfaces appear different in different lighting conditions. Depending on the
direction in which it reflects, the reflectance of a material tells us how much light is
absorbed. The object's appearance changes according to the position of the camera
and the illumination of the object.

In addition, CS-LBP can detect the keypoints and estimate the local patch
around the keypoints. Moreover, CS-LBP has higher stability in the flat image region
and is closely related to gradient operator that considers gray-level differences
between pairs of opposite pixels in a neighborhood. CS-LBP is two times faster than
LBP, and the probability of getting a 0 value does almost not happen [69].

Fusing LBP with CNN generates another version of CNN called Local Binary
Convolutional Networks (LBCNN) [15] that reduces the learnable parameters that
CNN suffers from. LBP has been formulated as a convolution layer called Local
Binary Convolution (LBC). The LBC layer has several parts, including a set of fixed
scattered binary convolutional filters (called anchor weights), a non-linear activation
function, and a set of learnable linear weights. The significant difference between the
LBC and CNN is that LBC has fewer learnable parameters than CNN [15]. However,
LBCNN suffers from some limitations discussed in the next section.

Generally, in CS-LBP, each center-symmetric pair of pixels is compared
instead of comparing each pixel to the center pixel used in LBP. Moreover, CS-LBP
has higher stability in the flat image region and is closely related to gradient operator

that takes into account gray-level differences between pairs of opposite pixels in a



neighborhood [69]. The advantages of the CS-LBP motivate this research to propose
a new CNN-based model fused with the CS-LBP technique called center-symmetric
local binary convolutional networks (CS-LBCNN). Although CS-LBP detects the
key points by comparing each center-symmetric pair of pixels, the comparison
process is restricted by subtracting a pixel from the other and applying a zero-
thresholding function. This restriction enforces the CS-LBP to be encoded in only
one way that may straiten the CS-LBP descriptors. A modified version of CS-LBP
called threshold center-symmetric local binary patterns (TCS-LBP) is proposed to
address such an issue. CS-LBP is fused with CNN to produce an enhanced version
on CS-LBCNN called threshold center-symmetric local binary convolutional
networks (TCS-LBCNN). In TCS-LBCNN, non-zero values are applied as thresholds
instead of the zero-value of CS-LBCNN, explained more in Section 4.3 (Chapter 4).

1.3 Problem Statement

Many official documents are written in the bilingual form in most middle east
countries, such as bank forms, invoices, memos, etc. One scenario has been
presented to show the need for a bilingual digit recognition system using Figure 1.1,
which shows some samples of used forms. Presently many studies were proposed in
handwritten digit recognition either in Arabic [8]—-[11] or Latin [12]-[16]. However,
none of the research focused on bilingual Arabic-Latin digits to provide such a
system. Consequently, bilingual handwriting recognition systems are required in
many real applications, as mentioned in Section 1.2.

Furthermore, CNN is the core of the image-based deep learning model used
in many applications and modified in some research, including ResNet and LBCNN.
The main drawbacks of the CNN model can be summarized as follows, it needs more
computational complexity, and when deeper networks start converging, a
degradation problem has been exposed [58]. Therefore, the ResNet technique was
proposed to reduce the complexity of CNN and address the degradation problem but
still needs more learnable parameters. Hence, LBCNN was introduced to overcome

the drawback of the ResNet by applying the LBC layers [15]. LBCNN uses eight
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