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ABSTRACT 

Arabic and English handwritten digit recognition is a challenging problem because 

the writing style differs from one writer to another. In middle east countries, many 

official forms are prepared to be written using either Arabic or English languages. 

However, some people fill the form using both languages (Arabic and English), 

which adds more challenges to recognize digits. Nowadays, deep learning 

approaches are considered the hot trend of new research, including Convolutional 

Neural Networks (CNN). CNN is used in many applications and modified to produce 

other models such as Local Binary Convolutional Neural Networks (LBCNN). 

LBCNN was created by fusing Local Binary Pattern (LBP) with CNN by 

reformulating LBP as a convolution layer called Local Binary Convolution (LBC). 

However, LBCNN suffers from the random assign 1, 0, or -1 to LBC weights, 

making LBCNN less robust. Nevertheless, using another LBP-based technique such 

as Center-Symmetric Local Binary Patterns (CS-LBP) can address such issues. In 

this thesis, a new model based on CS-LBP is proposed called Center-Symmetric 

Local Binary Convolutional Neural Networks (CS-LBCNN) that addresses the issues 

of LBCNN. Further, an enhanced version of CS-LBCNN is proposed called 

Threshold Center-Symmetric Local Binary Convolutional Neural Networks (TCS-

LBCNN) that addresses another issue related to the zero-thresholding function. The 

proposed models are compared against state-of-the-art techniques that used the 

MNIST and MADBase as a bilingual dataset. The proposed TCS-LBCNN model 

proves its ability to give a more accurate and significant classification rate than the 

existing LBCNN models. For the bilingual dataset, the TCS-LBCNN enhances the 

performance of LBCNN and CS-LBCNN, in terms of accuracy, by 0.15% and 

0.03%, respectively. In addition, the comparison shows that the accuracy acquired by 

TCS-LBCNN is the second-highest using the MNIST and MADBase datasets. 
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ABSTRAK 

Pengecaman digit tulisan tangan Arab dan Inggeris merupakan masalah yang 

mencabar kerana gaya penulisan berbeza antara penulis. Di negara timur tengah, 

banyak borang rasmi disediakan untuk ditulis sama ada menggunakan bahasa Arab 

atau Inggeris. Walau bagaimanapun, sesetengah orang mengisi borang menggunakan 

kedua-dua bahasa menyebabkan lebih banyak cabaran untuk mengenali digit. Kini, 

pendekatan pembelajaran mendalam dianggap sebagai corak terkini di dalam 

penyelidikan, termasuk Convolutional Neural Networks (CNN). CNN digunakan 

dalam banyak aplikasi dan diubahsuai menghasilkan model baru seperti Local Binary 

Convolutional Neural Networks (LBCNN). LBCNN dicipta dengan menyatukan 

Local Binary Pattern (LBP) bersama CNN dan merumuskan semula LBP sebagai 

lapisan konvolusi yang disebut Local Binary Convolution (LBC). Namun begitu, 

LBCNN mengalami kelemahan penetapan rawak 1, 0, atau -1 ke pemberat LBC, 

menjadikan LBCNN kurang mantap. Walau bagaimana pun, menggunakan teknik 

LBP lain seperti Center-Symmetric Local Binary Patterns (CS-LBP) dapat mengatasi 

masalah tersebut. Di dalam tesis ini, model baru CS-LBP telah dicadangkan, yang 

dinamakan Center-Symmetric Local Binary Convolutional Neural Networks (CS-

LBCNN) yang dapat menangani isu-isu pada LBCNN. Selanjutnya, versi tambahbaik 

CS-LBCNN dicadangkan, iaitu Threshold Center-Symmetric Local Binary 

Convolutional Neural Networks (TCS-LBCNN) yang menangani masalah fungsi 

zero-thresholding. Model yang dicadangkan dibandingkan dengan teknik terkini 

menggunakan MNIST dan MADBase sebagai set data dwi-bahasa. TCS-LBCNN 

yang dicadangkan membuktikan keupayaannya untuk memberikan kadar klasifikasi 

yang lebih tepat dan ketara daripada model LBCNN yang sedia ada. Untuk set data 

dwi-bahasa, TCS-LBCNN meningkatkan prestasi LBCNN dan CS-LBCNN, dari 

segi ketepatan, masing-masing sebanyak 0.15% dan 0.03%. Di samping itu, 

perbandingan menunjukkan bahawa ketepatan yang diperoleh oleh TCS-LBCNN 

adalah yang kedua tertinggi menggunakan set data MNIST dan MADBase.   
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CHAPTER 1  

INTRODUCTION 

1.1 Overview 

Handwriting recognition is a challenging problem due to the exponential 

development of technology. Handwriting recognition is categorized into two kinds, 

online and offline, based on the input method to the system. The applications that use 

the online form receive the input by moving the pen on a pen-based screen, while the 

offline applications use the image captured using an interface such as a scanner or 

camera [1]. Many applications need an automatic recognition system to recognize 

handwritten images with high accuracy and speed, such as postal code, bank checks 

reading in offline systems and editors, enjoyment applications in online systems. 

Nowadays, the interest in script and language identification is growing for 

multilingual and bilingual scripts due to their different forms and styles [2]–[5]. 

Furthermore, the digit and character forms vary from one language to 

another, leading to build different handwriting recognition systems. In many studies, 

English digit and character recognition have been examined for four decades [6]-[7], 

while Arabic digit and characters have been investigated in the Nineties. After that, 

many studies on Arabic handwriting recognition have been done using different 

Arabic handwritten datasets that include some challenging writers' styles. 

Moreover, Arabic and English handwritten digit recognition is a challenging 

problem because the writing style differs from writer to others and the variation of 

style at different instances of the same writer. Because of these reasons, many studies 

were proposed to address either Arabic [8]–[11] or Latin [12]–[16] character/digit 

recognition problems. In contrast, none of the research focused on bilingual Arabic- 
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Latin character/digit systems except those developed for discriminating between the 

languages of documents/scripts [17]-[18].  

In addition, some languages are universal such as English, Arabic, Spanish, 

etc. These languages are considered as a second language in countries where their 

language is not one of the universal languages. They need the second language 

because of one of the following reasons: religious reasons, when their holy books 

were written in a different language like the holy Quran in some Islamic countries 

(i.e., East Asian countries), educational reasons when references or lectures were 

written or explained in another language and social reasons when people visit other 

countries. Due to these reasons, bilingual scripts have been used in some countries.  

Further, many commercial forms, including opening bank accounts, bank 

checks, and handwritten sales invoices, can be written in bilingual forms. For 

example, a customer can fill an opening bank account form using Arabic, while 

another can fill it in English. Also, others can use both languages to fill the form. 

Figure 1.1 shows three samples of filling the form using either Arabic digits, English 

digits, or both. Therefore, in this case, the operation in the bank needs two systems to 

recognize the digits, one for Arabic and the other for English. Using such two 

systems consumes the resources and requires user interaction to move from one 

language to another, requiring more users’ time and effort. Thus, bilingual 

handwriting recognition systems are needed in real applications instead of using two 

systems, which is a less practical solution. 

 

(a) 
 

(b) 
 

(c) 
 

Figure 1.1: Samples of filling an opening bank account form (a: filling form using 
Arabic), (a: filling form using English), (a: filling form using bilingual) 
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1.2 Research Background 

Handwriting recognition is a task done by a machine to interpret understandable 

handwritten input from photographs, touch screens, and other devices. Many 

computer applications need an automatic recognition system to recognize 

handwritten images with high accuracy and speed, such as searching for words, sub-

words, or numbers in large volumes of documents, automatic sorting of postal mail, 

and convenient editing of previously printed documents, postal code, and bank 

checks reading in offline system and editors, and enjoyment applications in online 

systems. 

Many studies proposed systems to allow a computer to recognize handwritten 

scripts using statistical approaches or machine learning algorithms. These systems 

receive a digit, character, word, or/and text image as input and classify it to its 

corresponding label. However, only a few of them consider bilingual scripts. 

Researchers are not concerned deeply about bilingual recognition of Arabic-Latin 

digits, although it is a significant issue, especially in the middle east. Most public and 

government documents in Arabic states are typed or written in bilingual forms (i.e., 

mixed of Arabic and English) such as application forms, railway reservation slips, 

and cheques that need applications that support bilingual involving handwriting 

recognition systems.  

Furthermore, several studies applied statistical approaches for digit 

classification. Linear Discriminant Function (LDF) is an example of this approach 

applied to the Latin digit dataset [19]. Quadratic Discriminant Function (QDF) is 

another statistical approach that was modified to produce the Modified Quadratic 

Discriminant Function (MQDF) [20].  Moreover, Learning Quadratic Discriminant 

Function (LQDF) [21] is proposed based on the QDF technique that merges the 

power of MQDF and neural classification. Additionally, a Discriminative Learning 

Quadratic Discriminant Function (DLQDF) [7] and Graphical Lasso Quadratic 

Discriminant Function (GLQDF) [20] are modified versions of QDF that GLQDF 

uses the graphical lasso approach to find the covariance instead of using the 

Maximum-Likelihood Estimation (MLE). Further, generative models used in [22], 

multi statistical approach in [23], Gaussian Mixture Models (GMM) in [24], and 
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Naive Bayesian (NB) classifier used in [25]-[26] are other statistical-based 

techniques.  

In addition, many machine learning techniques were utilized, such as Support 

Vector Machine (SVM), Neural Networks (NN), decision trees, etc., for handwritten 

recognition [27]–[30]. A random forest classifier is a large collection of tree 

classifiers [31]. This classifier aims to averaging noisy and unbiased models to build 

models with low variance in terms of classification. Each tree classifier is grown in 

random form. The advantages of the random forest classifier are that it is suitable for 

extensive data, deals with missing values present in the data, does not require 

normalizing data as it uses a rule-based approach. However, it needs many resources 

to build numerous trees to combine their outputs, is hard to interpret the results and 

fails to determine the significance of each variable, and can be unreliable with deep 

trees. Moreover, it suffers from overfitting because of the randomized trees. It needs 

much focus on the subsampling phase that has a role in random forests algorithm and 

may need to be tuned more carefully than other parameters [31]–[33]. 

Further, Support Vector Machine (SVM) is a classification approach used to 

classify linear or nonlinear data. The first work using SVM was proposed by [34]. 

The idea of using SVM is based on statistical learning theory [35]. In general, the 

idea of this classifier is by separating the data set of two classes with a maximum 

distance between them. SVM was applied for developing handwritten digit 

recognition models with several feature extraction techniques, including Local 

Binary Pattern-based techniques [27], sliding window approach [28], projections 

histograms [29] [36], rule-based reasoning approach [36]; ring-zones, and Kirsch 

features [37]; and Histogram of Oriented Gradient (HOG) [38].  

Likewise, SVM was fused with other techniques to produce hybrid models 

that provide more accurate models for classifying digits. Multilayer Perceptron 

(MLP) was fused with SVM [39], Bat algorithm as a swarm intelligence algorithm 

was combined with SVM [40], and unbalanced decision tree [41]. Nevertheless, 

SVM is not suitable for large datasets and does not perform well when the classes in 

the data set overlap. Also, it does not work well if the number of features for each 

data point exceeds the number of training data samples and may be affected by the 

presence of missing data [32]-[33] [42]-[43]. 
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Furthermore, Neural Networks (NN) is a widespread machine learning 

approach applied to handwritten recognition [44]–[46]. MLP classifier is an NN 

technique used for image classification problems and built using a back-propagation 

algorithm [47]. The network's input layer receives the features or the variables 

extracted from training data. The input of hidden layers and output layer is the 

weighted sum of the outputs from the previous layer. The strengths of NN are the 

ability to deal with large volumes of data [32]-[33][48], no need to the prior 

knowledge of the data generating process, and no specific architecture used due to 

the ability of the network to learn the hidden relationship in the data [49].  

However, the disadvantages of NN are the difficulty of listing out all possible 

NN architecture, and it causes the difficulty to find the optimal architecture, hard to 

interpret the results, needs comprehensive cross-validation to confirm validity [32]. 

Moreover, using too many hidden layers causes the overfitting problem and is time-

consuming [49]. Additionally, the three most famous NN approaches are Deep 

Neural Network (DNN), Deep Belief Network (DBN), and Convolutional Neural 

Network (CNN) [46]. 

Nowadays, deep learning approaches are considered the hot trend of the new 

research that composes many non-linear information processing layers. The main 

groups of deep learning techniques are defined based on the architectures and the 

purpose, such as synthesis or classification [50]. One common deep learning 

technique called CNN is a type of feed-forward neural network that uses three 

architectural ideas, including local receptive fields, weight sharing, and pooling 

layers or sub-sampling [51]. Although CNN gives astonishing outcomes [13]–[15] 

[52]–[57], it suffers from a considerable time complexity due to the need for many 

hidden layers, and when deeper networks can start converging, a degradation 

problem is exposed, or when the network depth increases, accuracy gets saturated 

(which might be unsurprising) and then degrades rapidly [58]. This drawback 

motivates researchers to suggest many versions or modifications of CNN, including 

Deep Residual Network (ResNet). ResNet is one of the common variations of CNN 

that needs less computational complexity than CNN and addresses the degradation 

problem [58]. However, it still needs a large number of learnable parameters. 

On the other hand, LBP [59] is one of the common texture descriptors used in 

many studies due to its resistance to lighting changes and low computational 
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complexity [60]–[62]. The LBP technique converts an image's pixels' value to a 

binary number based on a threshold value. This threshold value is the center pixel of 

a block of pixels [63]-[64]. Further, many versions of LBP were proposed to improve 

the performance of the LBP systems, including Uniform Local Binary Patterns 

(ULBP) [65], Center Symmetric Local Ternary Patterns (CS-LTP) [66], center-

symmetric local binary patterns (CS-LBP) [67], etc.  

As reported in [67], CS-LBP is more efficient for tolerance to illumination 

changes and computational simplicity and is used as a keypoint descriptor. The 

illumination change is challenging for character classification problems [68]. This 

problem is related to the digit images captured under several illumination conditions 

causing illumination variations, including changes in lighting, shadows, or noise. For 

example, the car plate is captured under the sun from various directions. In general, 

object surfaces appear different in different lighting conditions. Depending on the 

direction in which it reflects, the reflectance of a material tells us how much light is 

absorbed. The object's appearance changes according to the position of the camera 

and the illumination of the object. 

In addition, CS-LBP can detect the keypoints and estimate the local patch 

around the keypoints. Moreover, CS-LBP has higher stability in the flat image region 

and is closely related to gradient operator that considers gray-level differences 

between pairs of opposite pixels in a neighborhood. CS-LBP is two times faster than 

LBP, and the probability of getting a 0 value does almost not happen [69]. 

Fusing LBP with CNN generates another version of CNN called Local Binary 

Convolutional Networks (LBCNN) [15] that reduces the learnable parameters that 

CNN suffers from. LBP has been formulated as a convolution layer called Local 

Binary Convolution (LBC). The LBC layer has several parts, including a set of fixed 

scattered binary convolutional filters (called anchor weights), a non-linear activation 

function, and a set of learnable linear weights. The significant difference between the 

LBC and CNN is that LBC has fewer learnable parameters than CNN [15]. However, 

LBCNN suffers from some limitations discussed in the next section.  

Generally, in CS-LBP, each center-symmetric pair of pixels is compared 

instead of comparing each pixel to the center pixel used in LBP. Moreover, CS-LBP 

has higher stability in the flat image region and is closely related to gradient operator 

that takes into account gray-level differences between pairs of opposite pixels in a 
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neighborhood [69]. The advantages of the CS-LBP motivate this research to propose 

a new CNN-based model fused with the CS-LBP technique called center-symmetric 

local binary convolutional networks (CS-LBCNN). Although CS-LBP detects the 

key points by comparing each center-symmetric pair of pixels, the comparison 

process is restricted by subtracting a pixel from the other and applying a zero-

thresholding function. This restriction enforces the CS-LBP to be encoded in only 

one way that may straiten the CS-LBP descriptors. A modified version of CS-LBP 

called threshold center-symmetric local binary patterns (TCS-LBP) is proposed to 

address such an issue. CS-LBP is fused with CNN to produce an enhanced version 

on CS-LBCNN called threshold center-symmetric local binary convolutional 

networks (TCS-LBCNN). In TCS-LBCNN, non-zero values are applied as thresholds 

instead of the zero-value of CS-LBCNN, explained more in Section 4.3 (Chapter 4).  

1.3 Problem Statement 

Many official documents are written in the bilingual form in most middle east 

countries, such as bank forms, invoices, memos, etc. One scenario has been 

presented to show the need for a bilingual digit recognition system using Figure 1.1, 

which shows some samples of used forms. Presently many studies were proposed in 

handwritten digit recognition either in Arabic [8]–[11] or Latin [12]–[16]. However, 

none of the research focused on bilingual Arabic-Latin digits to provide such a 

system. Consequently, bilingual handwriting recognition systems are required in 

many real applications, as mentioned in Section 1.2.  

Furthermore, CNN is the core of the image-based deep learning model used 

in many applications and modified in some research, including ResNet and LBCNN. 

The main drawbacks of the CNN model can be summarized as follows, it needs more 

computational complexity, and when deeper networks start converging, a 

degradation problem has been exposed [58]. Therefore, the ResNet technique was 

proposed to reduce the complexity of CNN and address the degradation problem but 

still needs more learnable parameters. Hence, LBCNN was introduced to overcome 

the drawback of the ResNet by applying the LBC layers [15]. LBCNN uses eight 
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